Thus

\[T = (1 - \lambda) \frac{\psi(x^{-1})}{x} \frac{1}{n^{s-1}} + O\left(\frac{\log n}{n^{s-1}} \right). \]

Combining (a) and (b) we see that

\[X' = \psi(x^{-1}) \frac{1}{n^{s-1}} + \frac{(1 - \lambda)\psi'(x^{-1})}{x} \frac{1}{n^{s-1}} + O\left(\frac{\log n}{n^{s-1}} \right). \]

Relation (29) combined with relations (30), (31) and (32) gives the desired relation (28) and hence completes the proof of Theorem 1.

On an extension of a theorem of S. Chowla

by

Tadamichi Okada (Hachinohe, Japan)

1. **Introduction.** In [4] S. Chowla proved that if \(p \) is an odd prime, then the \((p-1)/2 \) real numbers \(\cot(2\pi a/p) \), \(a = 1, 2, \ldots, (p-1)/2 \) are linearly independent over the field \(\mathbb{Q} \) of rational numbers. Other proofs were given by H. Haase [5], R. Ayoub [1], [2] and T. Okada [8].

The purpose of this note is to show the following theorem, which is an extension of S. Chowla's theorem mentioned above.

Theorem. Let \(k = 2 \) and \(q \) be integers with \(k > 0 \) and \(q > 2 \). Let \(T \) be a set of \(\psi(q)/\phi \) representatives modulo \(q \) such that the union \(\{ T, -T \} \) is a complete set of residues prime to \(q \). Then the real numbers \(D^{k-1}(\psi(q)/\phi)(x) \), \(x \in T \) are linearly independent over \(\mathbb{Q} \), where \(\psi \) is the Euler totient function and \(D = d/dz \).

In the case \(k = 2 \), this corresponds to the result of H. Jager and H. W. Lenstra, Jr. [6].

2. **Preliminary results.** We put

\[F_k(x) = \begin{cases} \frac{k}{(-2\pi i)^k} D^{k-1}(\psi(x)) & \text{if } z \text{ is not an integer}, \\ 0 & \text{if } z \text{ is an integer and } k \text{ is odd}, \\ B_k & \text{if } z \text{ is an integer and } k \text{ is even}, \end{cases} \]

where \(B_k \) is the \(k \)th Bernoulli number. Then we have the following partial fraction decomposition of \(F_k(x) \):

\[F_k(x) = \frac{k!}{(2\pi i)^k} \sum_{n=-\infty}^{\infty} \frac{1}{(x + n)^k}, \]

where the dash ' means that the term with \(n = -x \) is omitted if \(x \) is an integer. (If \(k = 1 \), we interpret the sum as grouping the corresponding positive and negative terms together.)

References

Let \(\psi \) be an arithmetical function which is periodic mod \(q \). Then we have from (1)

\[
\sum_{n=-\infty}^{\infty} \frac{\psi(n)}{n^k} = \sum_{m=0}^{\infty} \frac{\psi(m)}{m^k} \sum_{n=-\infty}^{\infty} \frac{1}{(mq + n)^k} = \frac{1}{q^k} \sum_{m=0}^{q-1} \psi(m) \sum_{n=-\infty}^{\infty} \frac{1}{(m/q + n)^k}
\]

If we put

\[
\psi_*(m) = \frac{1}{q} \sum_{n=-\infty}^{q-1} \psi(n) e \left(\frac{-mn}{q} \right),
\]

where we write \(e^{i\theta} \) for \(e^{\text{int} \theta} \), then \(\psi_* \) is also periodic mod \(q \) and the following inversion formula holds:

\[
\psi(n) = -\frac{1}{q} \sum_{m=0}^{q-1} \psi_* (m) e \left(\frac{mn}{q} \right).
\]

From this we get

\[
\sum_{n=-\infty}^{\infty} \frac{\psi(n)}{n^k} = \sum_{m=0}^{\infty} \psi_* (m) \sum_{n=-\infty}^{\infty} \frac{1}{mn^k} = \frac{2\pi i k}{k!} \sum_{m=0}^{q-1} \psi_* (m) P_k \left(\frac{m}{q} \right),
\]

where

\[
P_k(x) = \begin{cases} 0 & \text{if } h = 1 \text{ and } x \text{ is an integer}, \\ B_k(x - [x]) & \text{otherwise}, \end{cases}
\]

is the \(k \)th Bernoulli function, \(B_k(x) \) denoting the \(k \)th Bernoulli polynomial (cf. [9], p. 16).

Letting \(\psi \) be the characteristic function of the set \(\{nq+b\} \), \(n = 0, \pm 1, \pm 2, \ldots \) and noting that \(\psi_*(m) = \frac{1}{q} \sum_{n=-\infty}^{\infty} e \left(\frac{-nm}{q} \right) \), we have from (1) and (3)

\[
P_k \left(\frac{b}{q} \right) = -\frac{k!}{(2\pi i)^k} \sum_{n=-\infty}^{\infty} \frac{1}{(b/q + n)^k} = -\frac{k!q^k}{(2\pi i)^k} \sum_{n=-\infty}^{\infty} \frac{\psi(n)}{n^k}
\]

\[
= q^{k-1} \sum_{m=0}^{q-1} e \left(\frac{-mb}{q} \right) P_k \left(\frac{m}{q} \right).
\]

Since \(P_k (-x) = (-1)^k P_k (x) \), we have from (5)

\[
F_k \left(\frac{-b}{q} \right) = (-1)^k F_k \left(\frac{b}{q} \right).
\]

We say that \(\psi \) is even (resp. odd) if \(\psi (-n) = \psi (n) \) (resp. \(\psi (-n) = -\psi (n) \)) for all integers \(n \). We note that if both \(k \) and \(\psi \) are even (or odd), we have

\[
\sum_{n=-\infty}^{\infty} \frac{\psi(n)}{n^k} = 2 \sum_{n=0}^{\infty} \frac{\psi(n)}{n^k}.
\]

We shall need the following lemma in the next section, which follows easily from the well-known Frobenius determinant relation (cf. [7], p. 284, Th. 5).

Lemma. Let \(G \) be a finite abelian group and let \(H \) be a subgroup of \(G \). Let \(\lambda \) be a character of \(H \) and let \(A \) be the set of all characters of \(G \) whose restriction to \(H \) is equal to \(\lambda \). Then for each (complex valued) function \(f \) on \(G \) with

\[
f(ab) = \lambda(h) f(a) \quad (a \in G, h \in H),
\]

we have

\[
\det f(a^{-1}) = \prod_{\alpha \in A} \left(\sum_{\beta \in \mathcal{Z}} \alpha \beta f(a) \right),
\]

where \(T \) is a complete representative system of \(G \) by \(H \) and \(\mathcal{Z} \) is the complex conjugate of \(\alpha \).

3. Proof of Theorem. Let \(\zeta \) denote a primitive \(q \)th root of unity. Then the Galois group of \(Q(\zeta) \) over \(Q \) is given by the mappings \(\sigma_q : \zeta \mapsto \zeta^a \), where \(a \) runs through a complete set of residues prime to \(q \). Since \(B_k(x) \) is a polynomial in \(x \) with coefficients in \(Q \), it follows from (4) that \(P_k (x) \in Q \)

for all \(x \in Q \). Hence the equation (5) shows that \(P_k \left(\frac{b}{q} \right) \in Q(\zeta) \) for all integers \(b \) and that

\[
\left(P_k \left(\frac{b}{q} \right) \right)^a = P_k \left(\frac{ab}{q} \right).
\]

To prove our theorem it suffices to show that \(P_k \left(\frac{b}{q} \right) \), \(b \in T \) are linearly independent over \(Q \).

Suppose that there exist \(G_b \in Q \) such that

\[
\sum_{b \in T} G_b P_k \left(\frac{b}{q} \right) = 0.
\]

Then applying the mappings \(\sigma_q : (a \in T) \), we have

\[
\sum_{b \in T} G_b P_k \left(\frac{ab}{q} \right) = 0,
\]
where a is defined by $\overline{a} = 1 \mod q$. Now (8) together with (6) calls for the application of our lemma with

G: the group of reduced residue classes mod q,

$H = \{1, -1\}$,

$\lambda(1) = (-1)^k$,

Δ: the set of all even or odd Dirichlet characters mod q according as k is even or odd,

$f(b) = F_k\left(\frac{b}{q}\right)$,

T: the set occurring in our theorem.

We obtain

$$\det F_k\left(\frac{\alpha b}{q}\right) = \prod_{\alpha \in \Delta} \left(\sum_{a \in \mathbb{Z}} \frac{\chi(a)}{\alpha} F_k\left(\frac{a}{\alpha q}\right)\right).$$

Here from (2) and (7) we have for any $\chi \in \Delta$

$$\sum_{a \in \mathbb{Z}} \frac{\chi(a)}{\alpha} F_k\left(\frac{a}{\alpha q}\right) = \frac{1}{2} \sum_{m = a}^{q-1} F_k\left(\frac{m}{q}\right) = -\frac{k!q^k}{(2\pi i)^k} \sum_{\alpha \in \Delta} L(k, \overline{\chi}).$$

From this and (9) we have

$$\det F_k\left(\frac{\alpha b}{q}\right) = \left(-\frac{k!q^k}{(2\pi i)^k}\right)^{\omega(\alpha)} \prod_{\alpha \in \Delta} L(k, \overline{\chi}) \neq 0.$$

This together with (8) shows that $C_b = 0$ for all $b \in T$, which completes the proof of our theorem.

4. Corollaries. Let Φ_q denote the qth cyclotomic polynomial.

Corollary 1 (cf. Baker–Birch–Wirsing [3], Th. 1). If ψ is a non-vanishing arithmetical function with period q such that (i) ψ is even or odd according as k is even or odd, (ii) $\psi(n) = 0$ if $(n, q) > 1$, (iii) Φ_q is irreducible over $\mathbb{Q}(\psi(1), \ldots, \psi(q))$, then

$$\sum_{n=1}^{\infty} \frac{\psi(n)}{n^k} \neq 0.$$

Proof. We have from (7), (2), and the conditions (i), (ii)

$$\sum_{n=1}^{\infty} \frac{\psi(n)}{n^k} = \frac{1}{2} \sum_{m = 1}^{q-1} \psi(m) \sum_{n = 1}^{\infty} \frac{1}{n^k} = \frac{(2\pi i)^k}{k!q^k} \sum_{m = 1}^{q-1} \psi(m) F_k\left(\frac{m}{q}\right) = -\frac{(2\pi i)^k}{k!q^k} \sum_{b \in \mathbb{Z}} \psi(b) F_k\left(\frac{b}{q}\right).$$

We see from the condition (iii) that the qth cyclotomic field $\mathbb{Q}(\zeta)$ and the field $\mathbb{Q}(\psi(1), \ldots, \psi(q))$ are linearly disjoint over \mathbb{Q}, so our theorem implies that $F_k\left(\frac{b}{q}\right), b \in T$, are linearly independent over $\mathbb{Q}(\psi(1), \ldots, \psi(q))$.

Therefore

$$\sum_{b \in \mathbb{Z}} \psi(b) F_k\left(\frac{b}{q}\right) \neq 0,$$

as required.

Corollary 2 (cf. [3]; Cor. 1 to Th. 1). Let $\{q, q(g)\} = 1$ and let A be the set of all even or odd Dirichlet characters mod q according as k is even or odd. Then the numbers $L(k, \overline{\chi})$, $\chi \in A$ are linearly independent over \mathbb{Q}.

Proof. This follows immediately from Corollary 1 on noting that any

$$\psi = \sum_{\alpha \in \Delta} a_{\alpha} \chi$$

with rational a_α fulfills the conditions of Corollary 1, since Φ_q is irreducible over the $q(g)$-th cyclotomic number field and the matrix $[\chi(a)](a \in T, \chi \in A)$ is nonsingular.

In conclusion the author would like to express his thanks to the referee for his kind advice regarding the improvement of this note.

References

Received on 9. 9. 1977
and in revised form on 10. 5. 1978 (983)