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1. Introduction. Lct d be the diseriminant of a quadratic field % and
let

d
y(n) = (_a?) (Kronecker’s symbol).

It ig well known that if Z(s, x) has no zero in the interval (1. —e, jlog |d], 1)
then L(1, z) > ey/log|d|, where o, and o, are positive constants and e,
depends apon ¢, (see Lemma 1). If, however, L(s, ) has a real zero cloge
to 1, the only non trivial lower bounds that are known for L{1, ¥) are
ineffective. Siegel, for example, hag shown that for any s> 0

o(e)

L1, e
(1, 1) > PG

where efe) i3 an ineffective constant depending upon & [3], while
Tatuzawa has shown [5]that i 1/11.2 > s> 0 and |d} > e* then with at most

.one exeeption

bbb e
L1, x) > _léF—
Thoe main objective of this paper is to arrive at a result somewhat
stronger than Tatuzawa’s. Using & technique of Goldfeld [1]), we prove:
Trwormym 1. Let d and x have the meaning defined above and let
1/(6logl0) > & > 0. If |d] > o"*then with at most one emoeption the follow-
ing two ewpressions hold:

» 1 s
L, 2) > mm[7.73610g idl’ (.349) !dl’]’

. 1 | . |
L(l.: 2> mm[?.’!SElog}dl ' AT elog ) 506) @ ]
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We also show:

TERoREM 2. Let 1/1000> ¢> 0 and suppose the exceplional
quadratic field in the above theorem is imaginary with class number h,.
For any other diseriminant &, |d] > &¢™?

. 1 gt
L@, ) > win [ 7.73510g (4] | 15.360 hy(log |@1)* A 4ler ]

This implies large valnes for all L(1, x) if there exists just one imagin-
ary quadratic field with a large discriminant and small elass number.

2. The proof of Theorem 1 depends upon several lemmas.

Tmmma 1. Let d, %, x be as above, |d) > 10% If L(s, x) = 0 on the
interval (B, 1) and 1—p < (11.657logd)™" then,

L(1, ) > 1.507(L—p).
If L(s, ) # 0 on the interval (0, 1) then

_r
1.502log|d|

Proof. Let a = —}—~p where 0 < § <1 and let @ = |d|4,
If [, (s) is the zeta function of %, then by the functional equation

i (] (R LT .

We note first that
|6l =il <GBl < &

L1, %) >

A > 0.

(2) < £{2)* = »'/36
and also that
PG~ (=5 it)] = [l ae

and
\CE—it2) DY (=54 at/2)|® = %3+t |2 5ot
TUsing the above we can show
af-foo
6! - Bt
W B[ o 350
a—ico & I_Iz (84 n) |d]-4(5'$-ﬂ)-—2

Now by the standard argument ([2], . 31)

2fdea R
1 o*ds 2(” W= o o>,
o7 ; & (e — 'n,)‘m

3=teo 8[7(-94-%) 0 if O0O<a<l.

LIE
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Since for Res > 1

Lts) = 3 (Fay™e,
it follows that

24-doo

L b

I =
2mi

Z(N - ﬂ( }“’1 n—1)(—1)" (.N[L)n),
2~~io0 s”(s—l—'m No<a 6! J;"J w6 —n)! 2

Nowad

where the right;hand sum goes over all ideals a of Q (Vd) with norm. < .
Now »*is the norm of an ideal for every integer n and every term of the xight-
hand side is > 0, so if we choose 4 > .88

100
1 15n2
@) _ 6!1;2‘(5-—72 )> 1.635.
. R=1

* On the other hand, moving the line of integrations to Res = a

o foo

1 In(s+platds L1, paF £ (8)
i § + § T T
o g [](s+n)  (1—p) [T nt1—p)

Al n=2
L2+ pe
24! ’

Ohoose o > 0 and let £ be a zeal zero of L(s, 2) with 1 — 8 < ¢flogd| if sueh
a zero exists, and let § = 1 —o¢/log|d| otherwise. Then —Ck{ —24+8) <0
and e;'k £ < 0. Algo, as 1 —p < oflog|d|

Ae
18 € A3 >54— .
o< e®  and G+8) =54 Tog [d]
This, together with (1), (2), and (3) implies
D{l,y) 1.612 250
b Ae - 5
18 € 2 A2
(10°)*

Letting A = .92 in the fivgt cage, and letting ¢ == 1.06 and A = .88 in
the second gives the result.

Luvwa 2. Let K be an algebraio number field with diseriminant Dy,
Then [ (2) hae at most one real simple zerc § with

1

1— R ———
< S oiazloa Dy’
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Prootf. In [4], Lermma 3, we see that if § is any subset of the real
zevog of {p(s) then for any o> 1

v 1
® a—p o"—-l

1
+'2—1“g | D -

asﬁ-

Let 0 =14+2/[(1 +l/2_)log |Dg(] and suppose there exist two real zeros p,
with ¢ > 1—1/ylog|Dy|. By (4), v < 2.9142,

Levma 3, Let d, &', |d] 2 |@'| = 10° be the diseriminants of two quadratic
Sields and let L(s, y), L(s, x') bs the corresponding L-series. If L(s,y')
has a real zero §', then

1

L R togaa

1
L(l S
W8> S s lenial
Proof. Let K = Q(Vd,Vd). Then Lr(8) = C(8)YL(s, ) L(s, x) %
L8, xx'). I L(s, g} 5 0 on the interval (1—1/11.657log|d|, 1)
then by Lemma 1 the result follows. If L(8, z) = 0 for some g in that
interval then both fand 8’ ave zeros of £, (s) 5o by Lemma 2
1 1
1— Or 1>,
P> aiiogmg B> S Taaton D]
But Dg|(dd")* and @ = |d'] so 2.9142log | Dyl <
lower bound for 1 — 8" must hold.

We have now shown that the best we can hope for as a general lowoer
bound for L(1, x) is (7.738log(d))~*. In what follows we will take the
first d' o come along with L(1, y') smaller than thig and use it to find a lowor
bound for all L(1, y) with (d| > [d’|. In fact it will twen out that the

smaller Z(1, x') is, the better the results we will get for all other digerimi-
nants.

11.667log |d|. Thus the

3. Proof of Theorem 1. Let (6log10)™ > ¢ 0 and let d’ bo fhe
discriminant: of smallest absolute value such that ld'] > " and

5 Ll 7)< oo
®) 7)< T
By Lemma 1, L(s, y') has a real zero, f', and

1
6 Y L B .
©) < 11, 65710g[d’|

Let ¢ be another diseriminant such that ld] > e, By our choice of @'
we can assume |d > |d'|. Let K, Dy, {x(s) be a8 in Lemma 3 and lob
a= —~1—f and gz = [Dgl*, 4> .8, Using the functional equation
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for [ (s) wo can show ag in Lemma 1 that

g1 cK(erﬁ') 2 ds 099
r(7) 27':?: f ‘~<-. ’ A(E+pf) -2
a~qjoa ” 3-|-Ir,‘, i-DKT 2
and algo that
910 (—248a" 000237
| [S— < . .
(8) 0< 8.7 . == |_DK[2A+#1 —5/2
Proceeding a8 in Lemma 1, as
] 9
1 T ol — (1 —~1—) it ax>1
o e 1Y) "
s 8 [T(84+m) {0 i O0<w<l
Tom ]
it follows that
po b Framkiawa 1w 1 Xy
T 2w 2 Y Na)* T
2T o ¢ [ (s4m) &=, (Na)
=]
where the right-hand. sum is over all ideals a of K with norm <. For
every integer n, ' ig the norm of an ideal, 8o
(9) *I>Z (1—m) > 1.080.
Bl
Moving the line of integration to Res = a,
P S R QO (E1C0Y LT A L
10) 22 e SAELALS oy oA : ’
e s [Jetm (Q=F) [[onk1—f)
Mo ] =1
Cx(ﬂ) _ fg(~ 1+ﬁ i (=2 "HB'_)E":i
YT 2-71

But £y (8 = 0 and — e (—1+ ") < 0, so letting A = 2/(%+ﬁ’), (7, {8)
(9), and (10) give us
(11) 0.981(1 —f) < I(1, ) I(L, ) L(L, gx)= ™"

To use (11), wo need to bound L(l, xx Y and % from above talilr.;%'
1 -8 from helow, We know from Tatuzawa ([5], Lemmas 4 and 3)
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if 4 is a real non-principal character mod# then

)

: 1
(12) L) AT

where ¢ is Buler's constant and M(y) == mavxZ 2 (4.
N gl

are primitive characters modk, and &, Tespectively, then

Also, if x; and x,

(18) M g1x0) & 1/701752 log iy Tra—l~21051()g701]cg+10g4 - 6 4= wmlr»»::w)
As id|, |’} > 105 (12) and (13) imply

(14) L(1, zz') < .589log |d4d'}.

By (6),

(15) 2= |_DKJA_(1-—ﬁ’) < |dd’|2“d(1—"ﬂ') < Iddll.laﬂllomd’f‘

Finally, 1 — §’ is easy to bound from below, for ag- we éam assume L1, )
< (7.785log|d)"", Lemma 3 implics
| 1

16 O S
(o) L < EgETogiad

Combining (9), (11), (14), (15) and (16) we get
Tarorem 1. If |4 = &' > 10°
: L(lr_ x> : .

52010g|d’[(1+ 10*%'[;’1) |dd’ - Lo0ilog /L

This is a degeription of the lower bound in terms of . To intro-
duce z we note that the expression decreases ag |d’| decreases and we
can substitute &* for |@'l. To demonstrate this, let y = log!d| flog|d’|. IF
J < 4. 63 the above expression gwos

1
L, ) > ———ey
_ s 2) 7.73B1og |d|
Hencg We may assume y > 4.63. In this case

2log(y+1) < .6189(y-+1)
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and
1

1,101 (log |d@’|) d} "5*es 4] "

L@, x) >

For fixed & > 0, w¢®® decreages until it reaches o minimum at @ = k.
In this case o ==logid’| and & =.752log|d|, so as log|d| > 4.631ogld’|
> (.762)"*log|d'| we may substitute &' for log|d’|.
This, together with the lower bound for |d|, establishes the first parb
of Theorem 1.
For the second part wo notice that it log|d| is fixed then
log |d{ \*

) ]dl‘laBlloglcl'[

(log ")) (1 * Togld|

decreages to @ minimum when log|d’| = 1.2481og |d|. Thus it is again

safe to substitute £~ for log|d'|.

4. Proof of Theorem 2. Let ¢> 0 and let a',|d'|>¢&* be the
exceptional diseriminant of the previous theorem (where we have replaced
£ by 2loge™t), Suppore that @ < 0. Then

nhu

Vid|

where b, i the class number of Q(l/d’). If A’ is the real zero of L(s, x'),
then as L(1, ') < (7.788log[d’|)"" it follows from Lemma 1 that

a7 L1, ) =

, L, 7))
1P < er
Then o
(18) B = D40 < [ PO < 1,148 @I

Proceeding as in Theorem 1 but using (17) and (18) instead of (B)
and (18) we sec thab

Vid'|
12.624 hy (log |dd’|)2 @[>/ 1T
As wo can again agsame that log|d|/log|d’] > 4.63, log{dd'| < 1.216log|d|

and
Vid'|
15.350 1y (log [])2 ] #4470/ @]

It ig clear that the .a,bove expresgion. remains true if we substitute a smaller
value for V|d'], so-as V|d’] > &', Theorem 2 follows.

L1, x) >

L1, x) >
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On the coprimality of certain multiplicative functions
by
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1. Introduction. An intoger-valued multiplicative function f is said
to be polynomial-like if there exists a polynomial W with coetficients in Z
(the set of all integers) such that

{1) flp) = W(p) for all primes p;

it will not be necessary for us to impose any corresponding eondition
on f(p*) for a 3= 2. Obvious examples of functions in this class are Fuler’s
fanction ¢ and the divisor functions

(2) o) =D&
din
for » a non-negative integer.
In an earlier paper [8] we investigated the sum
3) () = 2 1,
gy
(n.Fa)=1
and for f a pblynomml-]ike multiplicative function such that the poly-
nomial Win (1) hag degree I and satisties W(0) # 0, weobtained the asymp-
totic formula
Oz(loglogloga)™ i 1>0,
N ow it 1=
a8 ¥-»00, where 0, 1 are positive constants with 1 rational and A< 1
‘When W (0) == 0, we deduced easily that
| Zy(w) = 0",

and indeed for some f in this category, one can obtain, by a minor adap-
tation of the argument in [8], an agymptotie formula of the type in (4)
but with o replaced by #* for some rational o with 0 <ea< 3. The proof
of (4) is elementary, although complicated, and depends in part on & double

() Zy ()



