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1. Introduction. T an attempt to put things like gaps between square-
free integers in a general setting, Hrdds initiated in [1], researches on the
following problem.

Dmpmvrnxon. In order to state the problem it is better to define a con-
stant G(B) (0 < G(B) < oc) associated with any given sequence B= {Pa}
(n==1,2,...) of integers satigfying 2 < b, < b, < ... thus: If all natural
numbers with o finite number of possible exceptions are divisible by some
integer or other of the sequence B then we put G(B) = oo. Otherwise
we have an infinite sequence {g,} (» =1, 2, ...) of all natural numbers g,
not divisible by any &,,. Let 1 = ¢, < g, < ... In this case we put

G(B) = limsup (%’W),
=00 »

(G(B) may be called the gieving power of B or the gap congtant aggociated
with B.) 'We put for w > 2, B{s) = 3 1.
by e
Prosrum, ‘What conditions on B will imply &¢(B) < 1%
P. Bredds proved in [1] the following
o
Trogoan Lo If (b, by) == L d8 impossible unless i == j, and iof 3 byt i
Rl
convergent then the supremum of G(B) as B runs over oll such sequences is
less than 1.
Theorem 1 wus fmproved by B, Szemerédi who proved in [7],
Tunorym 2. Under the conditions of Theorem 1, G(B) < 4.
By a modiflication of Szemerédi’s method and using the results avail-
able from small sleve we improve Szemeréddi’s theorem to
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THEOREM 3. For each fired prime p lot us denole by v(p) the nmber of
nwmbers b, divisible by p. Then the following two conditions together dmply
G(B) < 6/(1+0).

1 -2
() limsup (—'33-(1'@—5-1) = 4, < co.
pron logp

(i) im( ¥ 379 =0,

¥-ro0 Yby?
where 0 is o positive constant not exceeding 1.
Remarks. Note that the condition “(b;, b)) > 1 is impossible unloss

o
1 = j" i3 equivalent to “r(p) < 17”. Also the convergencs oﬂnz!b;j‘ trivially

implies eondition (i} with 6 =1. Hence Theorcm 3 with. € == L givey
& slightly more general form of Theorem 2. Probably ander the conditions
of Theorem 3 and § = 1, it I8 true that G{B) = 0. But thig is beyond the
reach of any known techniqnes and looks very difficult.

Theorems 4 and 5 below give gome new information on G'(B) whoen
the conditions of Erdos, in Theorem 1, are slichtly strengthened. The
proofs of Theorems 4 and 5 are based on a new idea and sowmo applications
of a theorem of van der Corput.

THEROREM 4. Let the condition (1) of Theorem B be satisfied with A, = 0,
In addition let the following two conditions be satisfied:

(i) Y a(b,)b7" < oo
n=1
(where d(b,) is the number of natural numbers which divide b
{iv) im( 3 {logd, )57} =0
Yoo vh, wy’
(where p = (log 2)(log 3)~1).
Then G(B)< 3
Remark. If in the course of our proof (instead of ¥, V. Atkingon's
results) we use Wen-Yin-Lin’s improvement [9] of the results of T, V. Atki-
nson (see [8], p. 270) then our proof leads to G(B) < 8 /L7 under conditions
(1) with 4, = 0, (iii) and (iv).
TemOoREM 5. Let the condition (1) of Theorem 3 be sabigfied with A, == 0.

In addition let the following condition be satisfied Jor a fiwed positive sonstant 0
ot exoeeding 1 and for all positive constants C:

)3

- Ologb, »
P (exp (1oglog(b,.+20))) bl < oo

Then G(B) < (14+1/0+(2°—1)"Y"Y, where g is the smallest positive
t_'nteger; 14-1/8,
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Remark L. Note that when § = Land 6 = § Theorem 5 gives G(B) <2
and G(B) < 5 respeetively.

6 1\t
Remark 2. Note that the regult G(B) < w6 =(1+F) , of The-

_ 1 1\
orem 3, is improved to G (B) < (1 + 3 + —z—ﬂ——-i-) at the cost of strengthen-

ing very slightly the condition (ii) and also condition (i).

Remark 3. The condition with 6 = +¢ includes the difference
betwoen consecutive gquare-free integers (though slightly more general).
Theorem 3 gives (for ¢ arbitrary) G¢(B) < } and Theorem 5 gives G(B)
< g5 In the gpecial case of sguareiree integers,ie. B = sequence of squares
ofall primes, ¢(B)< } is due to K. B, Roth, T. Estermann and H. Daven-
port, G(B)={ due to K. F. Roth. (For these references sees Roth’s
paper [6].) However, EL-E. Richert [B] hag shown in this special case
that ¢(B) <% Turther slight improvements are also known by more
gpecial and more complicated methods. Similar remarks apply to cube-
froa integers and 30 on [3] due to H. Ealberstam and K. F. Roth. In con-
cluding the introduction, we remark that our method can be applied in con-
junetion with some other methods (see [3] and [6])} to prove certain xe-
gults of which we state one.

TunoruM 6, Let B consist only of primes and squares of primes and
Tet condition (v) of Theorem b be satisfied with 0 = . Then G(B) < 3.

Remark. Note that Theorem b gives &(B) < 33 and that } < 3

2, Proof of Theorem 3. We borrow the following result from the
small gieve (soe the book [2] by II. Halberstam and H.-T. Richert) which
we gtabe ag our first lemimna.

Tomvca 1. Im the interval (@, x+a%) (6> 0, &> 0 positive constants
and » = #y(2, 6)) thore ewist > a°(logw)™ integers all of whose prime factors
ewveed o', provided only that e is fived to be a small conslant depending on 4.
Also the number of such integors is O (x(loga)™).

Our next lemma is meant to be proved as an easy exercisze by the
reader. :

LosmMwA 2. Let o be a positive constant less than 1L and & = o/ be a small
posilive constant, where N i8 am integer. Let 5 be a real variable and put
(for @ 2= my(e)), -

.u....1 " N -‘WMT a
(8 m( Z P 3) = ..E%.
e

where the swm on the right side cwtends only over those g for which ay 5= 0.
(We will denote such integers with a, % 0 by ¢.) Then 1 < ap = O(1) and
F) » 1, .
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Levwa 3. Let n be a positive constant satisfying ¢ < a - << 1. Then
for every integer q of Lemma 2 there are, in the interval (v, ¢ 27, > ¢~ g%
integers of the form ng where n runs over a block of consecutive integers.
Of these imtegers m there ave » ¢ ‘o™ "(logw)™" integers (which we denote
by m) all of whose prime factors exceed x* where ¢ is a positive constant de-
pending on & and 9.

Remark. The firgt part iz trivial and the second part follows from
Lemma 1. The details are left to the reader.

Luywa 4. The number of distinct integers of the form my which le in the
interval (@, ¢+ o™t is > "t (logx)~.
A gtraightforward applieation of Lemma 1 gives

Lenmwa 5. Of the distinet indegers of Lemma 4, the number N, of numbers
divisible by b, is 0 (m“*”(logw)”lb,fl«}-m‘m“). Also this number is zero if
b, < min (&, «*). Tt is also zero if b, > 2a.

From Lemmas 4 and 5, Theorem 3 follows thus: Now we have only
to show that ) N¥,= o(x"""(log2)™"). We split up the sums over N, accord-
ing as (b;, ¢) > 1 or not (the latter case canmnot occur if N, 1 and
by > 20'7%). So necessarily (b;, ¢) > 1 and number of such b, are not too
many by our assumption on r(p). This proves Theorem 3 provided we
choose a by 6(1 —a) = o, since ¢ and » are arbitrary subject to % > s For
an alternative proof of Theorem 3 by using analytic methods see a paper
by M, J. Naxlikar [4].

3. Proofs of Theorems 4 and 5. The main idea in the proof of Theorems
4 and 5 ig to congider the sums related to

S

Ea oL < R

where & is & certain positive power of u, (n,, 5y, g) run over all triplet
of integers where ¢ is as before and iy 4 Mg PUN OVeEr corbain sets of conse-
cutive integers. Then we have to use a theorem of van der Corput (usod
by K. F. Roth [6]) to deal with such sums and related ones. Finally we
deduce Theorems 4 and 5. We give a brief sketch of the details.

Let b = 0" " where 5 3> ¢ is a positive congtant such that ag-kn << %
Let 8 be a positive constant, S a fixed pogitive integer and. b a pogitive
integer is prime to 8§ and less than #* where ¢ ig the pogitive eongtant
of Lemma 2. Our first object i to obtain, a8 z-+oco, an agymptotic formula
for (it will be convenient to set f = 6(1 ~a) (L -+ 6)~*)

Qp = 2 B |
sy gl @l ny wpf+ 00
(1 B) mel g, §) ma k1 iy at (0L )
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where the sum ig over all possible triplets (n,, 1y, ¢) satisfying the stated
conditions. Clearly

b
Q =D D @) uida) D @yla)

) i8 dgl8 a=1
where
Qs(a) = 2 N 1.
mﬁnlnzdldzq£m+h,m“<q<¢“(1+’ ¥
e (modb),ninymt (modd}
mﬂ‘:nldl(wﬁ*"wu
Actually it ig better to write the sum over @ in the definition of ¢, as
b pa—1
%
D Y =3 3 Qplad).
= dib =1
W arbima ® b=

In the lagt sum the congruence conditions in the sum for @,(ad} read
ny, = ad(modd), n, = 0(modbd™*). Now

Qlad) = Y

- 300 _
¢ mﬁd] lﬁnlsmﬂ" dll

I,

where
I, = Z 1
(g dnadi =) Mg R (e B iy dagbd 1)
—1y— 0 4]
~ byt £ —o( 2,
where (u) = u—[u]—~}, o =(didyqbd™)} and gy = (@+A)X

X (dy dpqbd™1)~%. Denoting by g either of the quantities g, or g, We see that
(log o) (loga)™! is approximately 1—a = A(L--671). We now proceed to

estimate
Ig = Z

= 800 __q
T nymadimodbyaldy ! smy<af Tt 4y

w(efn,).

Tapormy (van der Corput). Let y(v) denote o —[v]—%. %}et a,b be
integors B> 0, k=2 a positive integer, K = 2""‘ Lg}; the f@otwn _f(u})b bst
defined for o< u<b such that the k-th derivalive f _(u) ewisls .thmug(yk)ou
the interval (with obvious modifioations ab the end points) and either f(u)
> B or fOHu) < — R throughout the interval. Then

| Zb‘ p (f(m))|< 5400 KP (P~*Flog (3 +-P) + BHOED 4 (RPHHEY,

b

where P = R{f* 3 (p) —fE ) (a)].
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Remarkl. This is nsed by Roth in his work “On gaps between gquare-
free integers” to make an essential improvement on ¢ (B) < } in the special
case of square-free integers.

Remark 2. Let a> 30, b< 2a, and f(n) = g/(dn+B), where 4
and B are integers which in absolute valne do not exceed o°, and A = 0.
Then for fixed k, log R is very nearly log(a**?/}, logP is very nearly loga,
and log (RP~*) is nearly log{afp). Thus we record the following lemma
which is a special case of the above theorem.

LevmA 6. We have for any fimed integer o = 2,

Al
0
2 ey
) dI—_l 1

ny=ad(mod o), gfd] t <nyat

. By 11T} - c
Y [y p— P+ 07 4y 1K 1)+ h“__??fm B 3K
Pz R PFTRVES) '

Next choosing % such that pk > B(1-+067') and observing that the first
and last terms in the flower brackets are small we deduce from Lemma 6,
Levma 7. We have ‘

I, - O(wzoua{aa+ﬂ (1-~K11)+a).
From this lemma follows
Lexa 8. We have
2
Qp = J&d* (b)b~"k(loga) ]_[ (1 ~ i) +0(ha=*) +0 ( = )‘”““"’”")
pI8 P
where

a'(b) = D o(d)a

2

and J =2 1lg.

Proof. We have only to simplify the rmain term in @, namely

bg—1

B wdudy YN ¥
q|

18,8, - "
R 1o (a,gld)];nl Oﬂﬁdl 1<n1<mﬁ+ﬂ
ngemad (modd)

(nydy &y qbd—2)2,
800,

-1
9

Here the innermost sum does not change much if we replace n, = ad(mod b)
by %, = 0(modb), and then replace both the conditions of surmation on g,
by a single condition & d;1b™! < 0y < of % 37191 with obvious changes.
This sum over , is (on using the well known formula 5 1/n = logw 4y -+
o ’
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400 jx)) 2leoge with a small error. Thus we are led to

b1
B >‘1 2‘"1 1 {dy) u(dy) slog s z (B2a-)
L dydy )
418 dg)8 b a=1
{abjd)=1

TTove the s over dis b7 3 de(b/d) which is plainly b~'d*(b). This comple-
b
tey the proof of Lemma 8.

Let N, denote 2 large positive integer constant and put 8 = [[p
whero the produet xuns over all primes whieh divide [T b,. Note that the

NN,
conditions of the Theorems 4 and b imply the convergenge of 3 b, @'(b,,).
Hereafter wo agree to omit those b, which are divisible by some ons or
other of the primes dividing 8. The condition (b,, 8) = 1 is satisfied for
all % > N,. It s now a simple matter to reduce from Lemma & that

Q =Qy— @, > hloga,

1N gby <®

provided we agree to impose the condition oy > a+ f (1 — ) -+ 3000%e.

K—1
Note that the only condition on the integer constant % which we have
imposed is % = 1+ 67

Under these conditions we state

LavmA 9. Let m vun through distinet integers of the form nyng where
2 <y < P, Then

a(m) » hloga,

asamg=ge+ i, by ting for overy by<a®

where f == 6(1 —a)(1+0)"" and b = a*0*"

Wo would now like to subtract from the sum in Lemma 9 the contri-
butions from those integers mg which are divisible by some one or other
of the b, satistying o* < b, < 22. Note that the number of representations
of an integer ny in the form mg is bounded provided @ < my < o-+h and
so N d(m) = O(d{ns)).

=l

QLE::MMA 10, Let ng run over distinct integers of the form mn,nyq where
@< 1y < @by, and which appear in the swin in Lemma 9. Let Ny denote
the number of integers divigible by b, for & fized b, > ", Then either Ny = O
or

h
ané.‘z—); +2.
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In the tatter case the contribution from mng with g = 0(modbd,) for fived b,
1o the sum in Lemma 9 is uniformly

k Cylogd,
0 ((Z + 1) exp ( Toglogh. )
where O, is a constant depending on &,
Proof. The proof follows from d(n} = 0 (ex‘ Slogn
. ’ » N o loglogn

It ig clear that the term involving A eontributes o(Aloga). The other
term eontributes at most

a® 2 1.

Ny, # 0.2y 2

The contributions to this sum from those b, with (b, ¢) > 1 iz very small.
In fact the contributions from those b, with (b,, #,9) > 1 is O(a™?),
while the contributions from those b, with (b, #, ¢) = 1 ig O (gt~ of+i0e)
We select § such that § = 8(L—a—p), ie. f = 8(1—a)(1+0)"". Next

we seleet o such that a»~i~ﬁ‘ (1— Ve - 1): Brie. o= 0l —a)(Ll-0)"'x

®(K -1 ie. 1~8(1+ 67 = (K —1) This proves Theorem B gince &
i8 arbitrary, 5 = ¢ is arbitrary and «, 3= p is arbitrary.
To prove Theorem 4 we go baek to Lemuna 9.In the notation of
Lemma 10 we have from Lemma 9, the result that

Lemva 11. We have

y

d&(ny} » hloge.
rEnyseth
In standard notation it is casy o cheek that for every positive in-
teger n,

A < dy(n)  where

Now F. V. Atkinson has proved that if /™ < b < @ then

Z ds(n) == O (h(loga)®

prt- o

In Lemma 11 the contributions from thoso Hy  with ding) 22 ¥V iy

O(Y“h Iogm)z) provided the conditions on h are satisliod, We chooss ¥

such that this contribution is less than hloga times a sulficiently small

constant. This requires ¥ = (logs)' times a large constunt and we gotb
Levyva 12, We hawe

1 » h(loga) =",
TRRYET4 D
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where A = (log3){log2)™! and m runs over those ny with d{n,) not exceeding
a large constant times (loga)' ™. Clearly g == —1-271,

The contributions from those s, with =, = 0(modb,), 2*°<b, < 2=
can be freated as before and this leads to Theorem 4. We leave the details
to the reader. In tho course of proving Theorems 4 and 5 we have used
ati the final stagoe

L 13, We have,

B(z) = 0(@").

Thig can be left as o trivial exercise and thig completes the proofs
of Theorems 4 and 5.

Addod in proof. The result of Atkingon quoted before Lemma 12, has heen impro-
ved in o beautiful paper by P, Shin (4 Brun-Titehmarsh theorvem for multiplicative
fumctions, J. Reine Angow. MM].L 313 {1980), pp. 161-170). One of his results reads:

If ¢ is any positive constant < 1 and o < <, then ' di(w) = O(h{logz}?).
[t L=l o)

Accordingly, using this result in place of Atkin’s in our proof, we ean improve
Theorem 4 te G(B) < 3/7 in place of {B) < 37/75.
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