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Thus B(kn') < B(n'), so » is k-flimsy. Since #' < 2°** < 8k2, the proof
is complete.

5. Some further remarks. As with all apparently irregular sequences,
one can ask a large variety of questions about the distribution of sturdy
and flimsy numbers. The following facts can be shown by various elemen-
tary (and sometimes simple) arguments.

For s > 0 and @ sufficiently large, there is a 3-flimsy number between
#—a*P+e and w44***% also there is a sturdy number between o — 35
and x. There are > #° consecutive 3-sturdy numbers which are <3
also » ' congecutive 3-flimsy numbers which arve <. Given an integer
n =1, there is an mteger k= 27 B(n) /n sueh that Tn iy sturdy, and an
integer % < 16%22)” guch that kn is flimsy (here the logarithm is taken
to the bage 2).

In response to a question of the author, the reforee has remarked
that gtandard results on prime distribution in arithmetie progressions
imply that at leagt “half” fhe primes are flimsy. Simply consider the
primes congruent to 3 or 5 modulo 8. They satiely '

20~V = (2/p) = —1modp.

Hence there are integers o and & such that the relation kp = 142% holds.
The referee alzo points out that an argument of ¥asse [2] shows that
in fact more than half the primes satigly such a relation.
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Simple groups of square order
and an interesting sequence of primes

by

Morris NEwMAN* (Santa Barbara, Calif.), DAriEn SEANES (College
Park, Md.) and H. C. Woriams (Winnipeg, Man., Canada)

1. Introduction. If a gimple group has @ square order, we call it
a special group. The sequence of integers 1, 7, 41, ... given by

(1+ }/5)2712-1-1_{_ 1- ]/2_)2m+1

(1} Somi1 = 5

for m =0,1,2,... we call special numbers. We are investigating two
questions:

{A) Which finite groups are special?

(B} Which gpecial numbers are prime?

Although Question {A) does not explicitly refer to prima.li{;y, we will
gee that it leads us to Question (B).

A partial motivation for this investigation is the obselvatlon of
R. Brauer [1] that the analysis of a simple group is facilitated if at least
ote prime dividing its order divides it to the first power only. Most simple
groups do satisty this Braver condition but our special groups obviously
do not.

We pursue (A) and (B) by following the closely analogous clasgical
investigation into two much clder questions:

(Ay) Which integers N are perfect?

(By) Which Mergenne numbers

(2) Mzm-;—l = oxm+l_ 1

-are prime?

Ag betore, (A,) does not explicitly meﬁtion primality but it leads us
to (B,) ag follows:

e it s e

* The work of this author was éupporhed in part by N8F grant MCS 76-82028.
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TEREOREM 1, (Euclid). If My, ., =P is prime, then N = P(P-+1)/2
ig perfeet.

TuroREM 2, (Buler). If an even N > 6 is perfect, then N == P(P-1)/2
with P = M, , prime for some m.

TarOREM 3, (Oataldi). If My, i prime, then 2m+1 = p iz also
prime ,

THEHROREM 4, (Fermat, Buler). If p ds an odd prime, oll positive
divisors d of M, salisfy

d =1(mod2p), d = L1(mod8).

THEOREM B,. If p and q are distinet odd primes, M, and M, are prime
to cach other.

TEEOREM 6, (Euler). If p = 3(mod4) and ¢ = 2p+1 are both prime,
then g divides M.

Still unsettled in this investigation are these famous questions:

(Op) Are all perfect numbers even?

(Do) Are infinitely many M, prime?

(Ey) Are infinitely many M, composite?

‘While Theorems 5, and 6, clearly relate to (D) and (E,), respectively,
they do not suffice to settle thege questions.

We will see that our s,, ., satisfy Theorems 3, 4, B, and 6 whieh ave
obtained from Theorems 3, 4, 5y, and 6,, respeetively, simply by replacing
M,y With 8,,, . Analogous to Theorems 1, and 2, we now have

THEOREM 1. If @ special number s, 18 & prime P, then the symplectic

group Sy(4, P) is special since its order equals
(3) N = (PYP? 1)ty )t
where :
(L+ 1/5)2"""'1 —(1— ﬁ)ﬂm+l
2 '
TEROREM 2. Conversely, if a symplectic group is apecial, it i8 Sp(élu, F)

with P = 8, prime for some m,
Unsettled now are these open questions:

(4) tzm+1 [

{(0) Axe all special groups symplectic?

(D) Are infinitely many s, prime?

() Are infinitely many s, composite?

The sequence of prime M, > 3 begins with thege indices:

&) . P =3,5,7,13,17, 19, 31,
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while the sequence of prime s, begins with the indices
{6) p =3,5,7,19, 20, 47,

Note that M, and s, are both composite for p =11, 23, 83 ... That
follows from Theoremg 6, and 6. A necesgary and sufficient condition for
the primality of .M, is the well-known ILueas—Lehmer eriterion.
Using this, one easily extends (b) to these remaining indices p < 1000:

(Ba) p = 61, 89, 107, 127, 521, 607.

Unfortunately, the analogy breaks down here; we know of no useful
necessary and sufficient condition for the primality of s,. Therefore, to
extend (6) to the remaining p < 1000 for prime g,; namely,

(6a) ' p = 59, 163, 257, 421, 937, 947,

requires much more elaborate methods.

'We briefly discuss those methods in Section 4. Theorems 3, 4, 5,
and 8 are special cases of known results of Lucas and are listed in Sec-
tion 3. Theorem 2 is much more difficult. It is proven in the next section.
Theorem 1 is very simple:

Proof of Theorem 1. Let §,(2n, ¢) be the symplectic group of
dimengion 2n over GF(g). As is known, its order is

l k3
(7 ¥ =2 [[@*—1), @=q-.
k=1

Therefore, it # = 2 and ¢ is an odd prime P,d = 2, and the order of
8,(4,P) is
P41
N = 4PYP*—1)(P'—1) = PP —1)2——;——.

But (1) and (4) give
(8) t§m+1 = %(sgmﬂ +1)

and therefore P = s,,,, gives (3). Since §,(4, P) is simple, the theorem
follows.

Our first prime in (8) ig sy = 7. Thiz gives a well-known gimple group
8,(4, 7) which hag (11760)? for its order. The example 8;{4, 8g,,) from (6a)
is enormous. Since log,(1 —}--1/2_) = (582775 ... we readily determine that
its order is & nwmber of 3622 digits.

2, The converse theorem. To prove the more difficnlt Theorem 2,
we first show that the dimension 2n of §8,(2n, g) must be 4. We generalize ¢
to be any integer » > 1 and so assert
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TezoREM 7. If © > 1 and d = (2, v —1), and if

(9 = % a H (z** 1)
k=1

i8 o square, then n = 2.
We will nge two well-known results:
LummA 1 (Bertrand’s Postulate). If n is an inleger > 2, there is an

odd prime p such that
(10) ni2 < psn.

LeyvwA 2. If m and » are positive integers and x i8 any integer w1,
the GOD

a™—1 g*—1 gmm)
(11 ( e—1"' w-«-l)— p—1

We also use this result of Nagell [6] and Ljunggren [5]:

Luvma 3. If # = 3, the enly solutions of the diophamtine equation
" —1

&1

(12) ¥ =

that have |@| > 1 are

(18) {n:4,w=_7,y=;|:2{},

% =D5,m =3,y = £11.
Proof of Theorem 7. We rewrite (9) as

zt—1 ‘mﬁ-—l
(2 —1) 2*—1"

21,

(14) Sl

2
N =a" (& —1)"
| (@ 1"~
where the third factor is an integer since d divides »*--1. Fivat assumo
that » is even and > 2. Since the first two factors on the right of (14) are
squares, if ¥ is a square then so is

P I VI Gy

e —1) (a*—1) (w*—1) "
Let p be the odd prime in (10). By Lewma 2, (&*? —~1) /(@* 1) ig prime to
the other factors of ¥, and so is itself a squave. Bub @ 2> 1 and p = 3.

Lemma 3 now shows that there is no such even » > 2.
Suppose » is odd and > 2. If ¥ ig & square then go iy

N, = w(e—1)N,.

{15)

Let (#* —1}j{z® —1) be as before. Tt is prime to » and if it is also prime
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to (#*—1) the same argument as before shows that there is no such n,
Suppose the GCD

g
={xt—1 .
(o 2

Since 2% =1(modg) we have (#* —1)/(2* ~1) = p(modg). Therefore,
g =p and (& —1)/(s*—1) = py~.
Put

a” 1 a?+1  (—aP—1

’ o2+l {(—m)~1

and we have
uY = py3.
Since p is odd, g0 are # and v, Thercfore

(Z+1)p—~(z—1)u = 2

implies that (u,») =1. We cannot have pu since ¢ cannot be a square
by Lemma 3. If plv, » is a square and, in (15),  is itself a square. There-
fore (13) again indicates that there is no such odd » > 2.

Finally, when # =1, we have

N =(@-La(@+1)/d.

If » is even, and therefore d =1, ¥ is obviously not a square. Jfz =1
(mod4), #,#-1, and (z--1)/2 are pairwise relatively prime. Thus, ©
and »—1 are squares with # > 1. That is impossible. If z = —1(mod4),
z,o+1, and (#—1)/2 are pairwise relatively prime. Now z and z-+1
are squares with # > 1, which is also impossible.
Therefore, if ¥ in (9) is a square, » = 2 and Theorem 7 is proven.
If the ¥ in (7) is & squazre, from Theorem 7 we now have

1
N :Eq*(qzml)(q“l),

and
1
¥y = (g*+1)

iz also a square. Clearly, ¢ iz odd, 4 equals 2, and for Theorem 2 we want
to show that ¢ is not a power of a prime but & prime itself. As before, we
generalize and assert ‘ '

TomoreM 8. If m 2= 2 the diophantine equation
(16) P = 2y

has mo solution with x| > 1.

§ — Acta Arithmetica XXXVIIT 2.2
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Tt suffices to prove this for m prime. We will treat m = p = 2 gepar-
ately. For p odd we will need the following

T 4. Let m and 0 be positive integers with nf'm. Then unique
integers k and r owist such that '

(17) m o=2kntr, kz0,0<r<n,

This “even guotient” division algorithm, which, incidentally, is
esgential in the reduction of binary quadratic forms, follows fvom the usual
division algorithm by taking 2a as the divisor. Tf the regulling positive
remainder is now greater than n, inerease the quotient k by 1 and redueo
the remainder by 2n.

Proof of Theorem 8. It m = 2 in (16), o*4+1 == 2y* implics

yt—at = (y2-1)°

and the solutions of this well-known equation of Fermat are given by

s =+1, ¥y = %L
Now assume m = p, an odd prime, and consider the GCD

an l
g .:(w‘z_l_l’_?imwj:—)'

As before, g = 1 or p. If g = 1, from

#+1 Pl
s Fri Y
(@24 1) j(#* +1) is a square, and Lemma 3 shows that only porgibilities
have |o| < 1. Sinee (z2-+1, p) must equal 1 for any p = 3(mod4), that
proves Theorem 8 for all such p, but for p = L(mod 4) we must continue.
Now let g = p and (16) implies

o1

(18) P

wt 1 = 29y, =Py, Y =P Ya-

Since z and ¢ must both be odd, we must have

{19) p o= 1 (mod8)

and, specifically, p = 17. For each such prime p, there is an odd g sueh that

(20) 1<g<p, (i’—)= -1,

P
that is, ¢ is an odd, positive, quadratic nonresidue of p that is less than p.

Since (g, p) = 1, if we iterate the even quotient division algorithm (17}, '
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we obtain a chain of positive integers 7;:

p =2kqtr, 0<r<g,

g =2k r+ry, 0<r, <7,

r :2]527"1:!:7‘2, O<'F2<'I"1,
(21) 1y = iy, =7y, 0 <75 < 7y,

Yooz = 2kry_ &7, O<r, < Fgm1)
Ys—1 = ks+1“’a

and must have

(22) 7, = 1.

The proof now is & modification of Chao Ko’s proof [4] that ™ +1 = 2
hag no non-trivial solutions for » > 2. Put

n—
(23) W —at, By =L
% —1
where » is an odd, positive integer. Then u = —1(mod8), B, > ¢ and

B, =1(mod8). If m and » in (17) are both odd, then soisr. ¥ m = 2kn +7,
we have
{24) B, =8, ,4v+F.
Ifm = 2fm —r, we have
(25) Eyn =B, v+ E,.

Since —u = E,, = 1(mod8), both (24) and (25) yield

(26) (ffg) - (_E_) _ (E)
B, z, B,
the last equation following from the Jacobi reciprocity law.
Let us apply (26) to (18) and the first equation in (21). Then

P =2hgtr,

(2] =) = (z)

Further, since @?-+1 = 2p47,

py: = By,
gives us

—1
w] = g(modp),

and

% = 1{modp)
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and we may continue:

3)-{2)-19) -~

Therefore, (18) leads to
E, _
S
4

But now apply (26) to the chain of »; in (21), That gives

B, (Jﬂ,, (Eml) | ( B, . (” )
=) -(2) - () ) )

But r, =1 and B, = 1. Therefore
E
(28) _ (_._’Z.) = 41,

and the confradiction shows that there are mo solutions of (18). That
compietes the proof of Theorem 8.

Now we can complete the proof of Theorem 2. 'With Theorems 7 and 8
we have shown that if a symplectic group has & square order it is ,(4, .P)
with P an odd prime that satisfies

Pyl = 90,

Thus
P20 = —1,

and if ¢ is the fundamental unit of Q()/é—), we therefore have

.P'{‘Q,/-—‘a- = g2+l . (1+1/§)2m+1

and P = s,,,,,. That completes the proof of Theorem 2,

3. The elementary propertics of g,,,,. We have

THEOREM 3. If 8y, 18 @ prime, then 2m-1-1 = p iz also a prime.

THEOREM 4. If p s an odd prime, ol positive divisors d of 8, Sabisfy

d =1(mod2p), d =z 4+1(mod8).

TrmoreM 8. If p and q are distinei odd primes, s, and 8, are prime to
each other. .

TEROREM 6. If p == 3(mod4) is prime and q = 2p -1 is also prime,
then q divides s,,. .

Sinee s; = 2t; —1, any prime divisor of 8, must have 2 as a quadratio
residue and therefore must be of the form 8%+ 1, Evorything else in these
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four theorcms is merely a refleetion of Lucas’s laws of apparition and
repetition (see, for example, Carmichael [3]) as applied to the particular
Lueas functions generated by

P2 200 1 = ),

The rooty of this guadratic are wunits in Q(l@ ) and lead 10 8y, and 1y, ;.
Wao have already soen how Q(V2) enters into Theorems 1 and 2.

4. The primality of s,. To determine which P = 8, arc prime we
Lirst uxe Permat’s theorem (for the hase 13):

(29) 13571 = 1{mod P).

Any P failing (29) is composite, and that eliminates ail pin 50 < p < 1000
except those listed in (60). The six P = g, from (6a) are now “13-psendo-
pritmes” and are therefore very likely primes. But to prove them prime
requires considerable computation since, as we mentioned above, we now
have no amalogue of the Tmeas-Lehmer test thab is so effieient for the M.

As an cxample, considler P == sy,;, a number of 359 decimal digits.
We will prove P prime by using the Combined Theorem of [2]. We give
the exact eriterion presently, but in brief this states that if we have facto-
red P —1 and P--1 to o sufficient extent, and if their remaining unfactored
factors have no prime divisors < a sufficiently large bound B and if all
factors obtained pass certain specific auxiliary tests, then P is prime.
Now, for a 359 digit prime P chosen at random (and there must be ab
leagt 3 wuch P by Lemma 1), thig is an impossible prescription since it is
generally not feasible to “sufficiently factor” P41 for numbers that
large. .
But our 8,,,, are the binomials given by (1) and they have many
algebraic factors. Specifically,

Spmpa F (=1 = 28,81,

4

Spgpay — (=LY = At
Samgn = (mmnm "‘1) (292m~\-1“|‘ 1):
by == 28,00
Further, t,1t, it mn and s,,|s, if m|n and if n/m is odd. Therefore, for the
P = gy, above we have

P A1 = 28348005
(30)
B L = 160 (203, — 1) (20130 + L) by 8107
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By trial division with all primes << B = b -10% into the several factors

of (30), we obtain, first, the complete factorizations of

by, = 5-197-389-33461-4605197 -1,
Syy = T-79-199-313 5994447 - 514814088137 - I,
9, —1 = 3%-73-467 -937 - 1091 - 421122307 -2736707 -1,

Here, the large factors

P, == 36478521704768205001827T88804,
P, = 15773798044873548843, Py = 17808101706838268049

are themgelves proven prime by first passing (29) an then with the uge of
the Combined Theorem. For numbers that size the latber is both feasible
and efficient. Note that gome of the pmall factory above are algebraie. Since
117 =913, 8y = 7-199, 8, = 79599, f, = 5-197, and ?, = 33461 all
appear as factors.

For the remaining factors in (30¢) we obtain

Sag0 = 239488047 - H,,
S35 = 17-1009 -1153-1249 18731623089 P, - H,,
fieo = 132-4280 - H,,
Ay, +1 = 11-179-66923-H,,

where P, = 8y, /s, = 2359609608747761281 was proven prime as before,
while the large

Hy o~ 1.59-10",  Hy~ 4.14-10M°,
Hy ~ 16210,  H, ~ 3.27-10%
rempain unfactored. '

S0 we have

(31) P—1 =T HH, P+l =FHMH,,

where Fy > 4.31-10"% and ¥, > 3.48-10% are completely factored and
where the H; have no prime factors lesy than B == 6 10% Therefore,

(32) P < 2.29-10°% < 4.05-10'° < 1FIP, B°,

By o criterion in the Combined Theoxem, P is thuy proven prime sinco the
factors found also pass the required auxiliary testa.

The observant reader will notice that we were lucky with sg,. As B
ig increased from 4-10° to 5-10° we pick up 4605197 and 4088137 as factors
of #,; and ¢;,; and thereby also find the large prime factors P, and P,.
Absent these, the product } F;¥,B* on the right of (32) would be much
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too swall to satisfy that ceriterion. With s,,, we were not that lucky and
much more computation was needed. The fact that the “unfactored?”

H,H, and H,H,

nonetheless are here factored algebraically into two factors was not used
above. 14 eonld be used, with a slightly more complicated eriterion.

Other sequences generated by binomial exponentials similar $o (1)
can obviously be treated similarly to our treatment of s, above. One such
is the famour Fibonaeel sequence, and John Brillhart has, in fact, proven
some large Fibonacei nombers prime by similar methods.

3. Going beyond. In the introduction, we asked: “(0) Are all special
groups symplectic?” We have not found a single special group aside from
those given by Theorem 1. HMowever, we have notsystematically exam-
ined all other known simple groups and proved that none is special.
Tven if e had done s0, it would remain pointless to conjecture that the
answer to () iy “yes” sinee there would remain all of the sporadic simple
groups yet to be discovered.

IE the announced program of D, Gorenstein (zee the New York Times,
May 1%, 1977} to characterize and genorate all simple groups is successful,
It may then be possible to settle question (0). If so, that would be another
break in our analogy sinee we see no prospoct at all that question (G,)
{about pertoct numbers) will be settled in the near future.

In contrast, the heuristie arguments for questions (D) and (E) are
quite convineing and we do conjecture:

(D) There ave infinitely many prime ¢, and thercfore infinitely many
gpecial groups, '

(1) There are infinitely many composite s,,.

We alsoe applied the 13-pseudoprime test (29) to all P = s, in therange
1000 < p < 2000 and found that
(33) 83 ANA S
alone pasd the tost, They ave alinost certainly primes but we have not
proven them to be primes.

We munt leave (33) as & challenge problem: Devise o more efficient
privmality tont for &, than that given above and prove that g,y and s,
are primes,
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On Waring’s problem
by

K. THANIGABALAM (Monaca, Pa.)

L. Introduction. Among the various estimates known for G(%) in
Waring’s problem, the wmost significant (for large &) are the following:

(1) G(k) << k(2logk--4loglogk--2logloglogk +13)  for %= 170000
and :
{2) G(k) < k(3loghk--5.2) for k=15,

Thege are due to Vinogradov [12] and Chen [1] respectively. Although (1)
is better than (2) for suificiently large %, for a large number of values of %,
(2) I8 a better estimato than (1).

In this paper, we improve on. (2) and prove the following:

Tunorom L, F(k) = k(8logk+logl08) < k(3logk+ 4£.7). (The improve-
ment being by essentially %j2.)

For gpecial (sinall) values of & Theorem 1 can be improved by mod-
ifying the method. For k « 10, H. Davenport [3], [4] and V. Narasimha-
wurti [10] obtained improvements on the estimates given by T. Estermann
[7]. R. J. Cook [2] later showed that

(3) FO) <9 and  G(10) <121,

Theorem 2 is an huprovement on (3). The paper of R. 0. Vaughan [11]
contuining the following reguliy appeared since the regults of this paper
were obbained. A briel comparison of the methods is made towards the
ond of the paper.

(4)  G(9) = 01, G(10) =107, G(11) <122, G(12) <137, G(18) < 153,

G(L4) =5 168,  G(16) <184, G(18)< 200, G(17) < 216.

In this paper, we prove the following:
TimoruM 2. ¢(9) < 90, G(10) < 106,



