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On the coprimality of certain multiplicative functions
by

. J, ScovarmLo (London)

1. Introduction. An intoger-valued multiplicative function f is said
to be polynomial-like if there exists a polynomial W with coetficients in Z
(the set of all integers) such that

{1) flp) = W(p) for all primes p;

it will not be necessary for us to impose any corresponding eondition
on f(p*) for a 3= 2. Obvious examples of functions in this class are Fuler’s
fanction ¢ and the divisor functions

(2) o) =D&
din
for » a non-negative integer.
In an earlier paper [8] we investigated the sum
3) () = 2 1,
gy
(n.Fa)=1
and for f a pblynomml-]ike multiplicative function such that the poly-
nomial Win (1) hag degree I and satisties W(0) # 0, weobtained the asymp-
totic formula
Oz(loglogloga)™ i 1>0,
N ow it 1=
a8 ¥-»00, where 0, 1 are positive constants with 1 rational and A< 1
‘When W (0) == 0, we deduced easily that
| Zy(w) = 0",

and indeed for some f in this category, one can obtain, by a minor adap-
tation of the argument in [8], an agymptotie formula of the type in (4)
but with o replaced by #* for some rational o with 0 <ea< 3. The proof
of (4) is elementary, although complicated, and depends in part on & double
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176 L. J. Scourfield

application of the Sieve of Eratosthenes. The result of (4) is & general-
ization of one obtained earlier by Irdos [2] for the case f == ¢, when 1 =1
and ¢ = ¢~ % In contrast to (4), several authors have esgtablished the
expected regulb

Zi(w) ~ 6

a3 g->oco for certain classes of non-multiplicative funetions f for which
the arithmetic structure of # and Fn) are largely independent, and some
references to this work are given in [8]

Our motivation for writing this paper is provided by the obaervation
that » is itself a polynomial-like multiplicative funefion, and this suggosts
replacing the first » in the condition (n, f(n)) = 1 in (3) by a gencral
integer-valued polynomial-likke multiplicative function g(r). Aun obvious
example arises when we take f = ¢ and ¢ = o = ¢, in tho definition (2)
above, and look at the sum ‘

1;
RED
{@iny, 6lm))e=1

however a snag immediately presents itself, for 2|{p(p), o(p)) = (p ~1,
p+1) for all odd primes p, whence 2|(p(n), o(n)) whenever there is an
0dd prime p with pln. Thus our sum is rather small, for it is bounded
above by a constant multiple.of the number of squarefull integers not
exceeding ¢ (see (23) below and [3]). Fortunately the prime 2 is OXeep-
tional in this respeet, for no odd prime divides (p(p), o(p)) for all buat
& finite number of primes p, and this suggests that we modify our original
sam and consider ingbead ' ‘

Zzp,a(w) = Z 1

. (]
2t{peny, om))yozs

where throughout p will denote a prime; the eage » = 1 of Corollary 1.
below gives quite ¢lose upper and lower bounds for thig sum. Tn general,
for (f, ¢) & pair of polynomial-like multiplicative functions of & suitable
type, we shall estimate from above and below the sum

(8) Tl = Y,
' m“(f(nl)j?ﬁfmwg :
where 8, i8 a certain finite seb of exceptional primes defined in (6).
Before we can state the results obtained, we need some notation.
Let f, g be integer-valned polynomial-like multiplicative functions, so
_that there exist polynomials W,; W, eZ [@]), of degree I,,1,, respect-
Ively, and with positive leading coefficients, such that

o) = Vi), glp) = Wa(p) for all px-imes P.
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Tn order that our problem is non-trivial and does not reduece to one already
considered, woe impose the following conditions on W;, W,:

(i) I, > 0, 1,> 0; _

(i) Wo(0) # 0 and W,(z) == & W) (%) where 0 <’ <1, WI(0) 0,
Wi e Zzl;

(iii) Wy, W, are coprime polynomials.

We obsgerve that if Wy(0) 5 0, then W = W, and in any case Wi
hag positive degroe I} == 1, —1’, and that (iii) would be violated if W,{0)
= 0 = W4(0). Condition (iii) implics that there is a least positive integer ¢
such that there exist polynomialy U, V e Z [2] satisfying

U(@)Wi(n)+ V(@)Wa(w) = e

identically. Hence it p is & prime and there exists a prime ¢ suPh. that
2I(f(a), 9{)) = (WilD), Ws(9)), then ple and so p belongs to a finite or
empiy set. We dofine :

6) - 8y = {p: pl(Wie), Wale)) Vg + p}

where, as usual, p, ¢ denote primes and where, if p e §,, the condition
pI(Wy(p), Wa(p)), Lo, p|(W4(0), W4(0)), may, but need not, hold; then §,
i a finite or empty set such that ple for all p € 8. When f = ¢, ¢ = 0,
we bhave &, == {2}. Cleacly if p €&, then p|(f(n), g(n)] Whenever th?fge
is a prime ¢ s p with g|ln, whence (f(n), g(n)} #1 for all but 0 (")
values of » < @; howover ifl p ¢ 8,, there are infinitely many primes ¢
such that pt (Wy(g), W,(g)), namely all ¢ in at Iea,sfo one residue class
(mod p) coprime to p. Thus the primes in §, are exceptwnal‘m soIne sense;
we tako this set §, to be the one appearing in (5), so 2 ,(@) is now properly
defined. )

W can now ftate the main result of this paper, weaker forms of
which were atated without proof in [9]: o

Tuporum 1. Let f, g be integer-valued polynomial-like multiplwat?ve
functions such that (i), (ii), (iii) above hoid, pm Il =1+1,=2, and d?fme
Z, (@) by (B) amd (6). Then there emist positive constants A, B, A with A
rational and A< 1 such that

Ly (@) N ( Ly () )
T (“1 "(E':W) <240 < 7oy BT eE]

where Ly(w) (b =1,2,8,...) stands fdr the iterated logarithm given by

() IL,(@) = max(l,logw), ILyl») =max(l, log L, (2)] (k>2).

We note that for ecach &> 0,
oxp (B (@) | Ls ()7} < (L ()"
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for all » sufficiently large, and thus the two bounds for X, ()} arc not
too far apart. Both bounds are obtained by umsing a sieve argument, and
the left bound is derived by considering squarefree integers with j prime
factors where j is chogen optimally in terms of @. The upper bound iy
probably nearer the true order of magnitude than the lower bound, hus
it would seem fhat, to obtain an asymptotic formula, additional or dif-
ferent techniques may be required.

When 8, is empty, Theorem 1 estimates the number of positive
integers » << & such that (f(a), g(n)) = L.

If condition (i) is dropped and W, (say) is a congtant (non-zerv)
polynomial, then the problem of estimating X, ,(») s closely allied to
that of estimating

2 L

ot

where ¢ is a given integer, and this problem was one investigated by
Narkiewiez in [7]. Similarly if we relax condition (i) to allow I’ =1,,
then the sum X () is closely related to a swn of the type (3) for which
the estimate (4) holds. Finally if condition (iii) fails to hold, (W, (g), Welq))
has a prime divisor p ¢ 8, for “most” primes g and, whenover g|n for such
a prime ¢, % does not contribute to X, (), which ig thovefore rather
small,

We have already referred to the special cage f =g, g = o, ~hen
8, = {2}, and here we find that | = 2, 2 = 1 in Theorem 1. Thig eximple
is inclnded in the first of the following corollaries to Theorem 1

COROLLARY 1. Lei v be a positive integer with 2|y, and put A - 977,
then there ewist posilive consiants A, B such that ’

» Ly(@) ) 0 Ly(o)
_ A2 ) & ORI —
5@ exp( Tty ) € Fral®) < gmmexp (‘B (J::(w))")

where X, , (@) is defined by (5) with 8, = {2}.

. CorOLLARY 2. Let v, » be positive integers such that ewaotly ong of the
integers v/{(v, ), x|(v, %) is even, suppose that 2|y, 2”1x where g >y, and
put 2 = 27%; then there ewist positive constants A, B such that

i Ly(m) - o 1
x| A e Ly (1)
Ly (@) LXP( (La(fb))"""‘) < Lc,..vu(m) < i) oxp (B Tjs—(.;.)»)ﬁ_)

where X, o (@) 18 defined by (B) with 8, = {2},
It is easy to check that conditions (i),'(ii}, (1if) of Theorem 1 hold

%n both cases z}:nd.that 8y = {2}; the value in these cases of the constant 4
in Theorem_ 1is given by the Corollary of Lemma 1 below, and so 4 == 2-¢
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in both eorollaries above. We observe that in Corollary 2, the condition
on v, » ensures that 8 = o3 if both v/{», #) and =/(», #) are odd, then con-
dition (iii} is violated, for £ 41 is then a common factor of W, (@) = 2"+ 1
and W.(z) = z"41.

The method uxed to prove Theorem 1 can also be used to estimate
the following interesting quantity: Liet Z'(x) denote the nunber of positive
integers # < & with the property that for no odd prime p does » have
a prime divisor from each residuc class (modp) coprime to p. Thus, in
particular, if » contributes to Z(w), either = has no prime divisor
g =1 (mod 3) or # has no prime divisor ¢= 2 (mod 3), and more generally
to each prime p = 3 there corresponds ¢, (depending onn} with 1 < ¢, < p
guch that gt i ¢ == ¢, (mod p}, ¢ prime. We have:

THROREM 2. There ewist positive constomts A, B such that

.

b Lyl @
rr P (A )« S g e g
Notiee that the upper and lower bounds in Theorem 2 take the samie
form, differing only in the values of the constants 4, B, and those implied
by the < sign, and so the result of Theorem 2 is tighter than that of The-
orem 1. It follows that almost all positive integers # have a prime divisor
from every non-zero residue class (rmod p) for gome odd prime p.
Finally, I should like to thank Profegsor Exdds for his interest in the
problem of improving my original lower bound for the sum 2, ,(#) and
for hig helpful comments.

2, Preliminary lemmas. We need some additional notation to that
given in § 1. Throughout p, ¢ (with or without suffices) will denote primes.
With, 8, defined by (6), let

Sy = {p ¢ 8y: 3g with pi(Wy(a), Wa(@))};

then by remarks in § 1, whenever p € 8, we have ple and pt (W,(q), Wa(g)}
for infinitely many primes 4.

Turthermore for j =1, 2, lot

8 = {p: Ja e Z with p|W,(a)}, -

¢y(p) be the number of solutions of the congruence

(8) W, (u) == 0 (mod p),

g;(p) be the number of yolutions of (8) with (p, u) = 1, and let g(p),
o'(p) be the corresponding functions for the polynomial

W = TV]_ Wg
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of degree I =1+, Thuy
' ) o(p) it  ptw(o),
CP T -1 i pIW(0),

opy<l or elp) =

by Lagrange’s Theorem, and IMOTeOVer ¢ and g’ are multlpllcwtwe Tunctions;
gimilar remarks apply to g, ¢; (j = 1,2). If p €8, then

min. (g} (p), oa(p)) =21
and the left side equals max (o:(p), ea(p)) I pTW(0).

T§ 7 is the number of irredueible components of W (80 + =
W = W, Wy), it iz well known thaf

{9) Tig) = ¥ o(p)p™ = 1Lo(0) + 0+ 0((Ta (@) )
. DR

using (7}, where the constant ¢ a.nd the O-constant may depend on W
and T{z) iy defined by (9). '

Let »(n) denote the number of distinet prime divisors of #.

The notation Ly(a), k=1 (sec (7)), is used throughout this paper.

Luvua 1. There ewist constants D cmd A with 0 <Asland 2 mtwml
such that

= 2 gince

pEE
peS; NSy

3 p = AT )+D+ (2 @)).

Hence in particular 8,08, is infinite.
Proof. Let

8, = 8,U8, = {p: Ja € Z with p|Wy(@Wa(a)}.

By a result due to Schinzel (see Theorem 2 of [81), there exist rational
numbers #; with 0 < 4; < 1 and constants D; such that

e = L@+ D+ 0Ly @)Y () = 1,2,3).
DERL '
psSj
Hence
@) 3 pt= Y Y- g7
pae P il P
pes) NSy PESy ne8y 88y
= (At Ay = 7a) Ly (@) (Dy o+ Dy — Dy) -+ O (L (@)™
where clearly i, + 1, —2; 3 0. Thus the regult of the lemma holds provided

that the sum on the lefs of (10) is divergent ag w— oo, for then A = 4+
~+ A3 —2; > 0. The regult is obvious if 8, or §, congists of alt but a finite
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number of primes, for then 4, or 4, = 1 and 1, = 1; this certainly holds
if 7, or W, has a linear factor, so we may agsume below that neither has.

For § = 1,2, let 0; ¢ O (the set of all rationalg) be & zero of W{u),
and let &k =[0(0,, 6,): Q). With a finite number of exceptions, every
prime p splitting completely in @(f,, #,} satizfies p € 8,n¥,. When p
does split completely in Q(0,, 0,), p = py... P, Where the p; are prime
ideals of the first degree and Np, == p. Since the sum 3/ (Np)™* over all
prime ideals of degree al least two is convergent, we have

3 e oz 3 (@) 40

DR L Np<z

peSinSy
>H D (Np) ' +0{1) = k' Ly(w) +0(1)
Np<z
ag o o0, by well known regults, where Y’ denotes the sum over primes p
splitting completely in @(f,, 6,) and > denotes the sum over prime
ideals p of the first degree. Hence, as required, the sum on the left of (10)
always diverges as s— oo,

COROLLARY. (i) If Wi(u) =u—1, Wy(u) =u" +1 where 2%y, then
M=dy=1 and i =1, = 27%

(i) If Wilw) =w' +1, Wy(w) = w*+1 where 28y, 2%x and B>y,
then g = A =277, A =14, =277,

Proof. If p is an odd prime, ¥’ -+1=0 (mod p) is solvable it and
only # (v,p—1)|4(p —1), whence p=1 (mod 2°*'), The results now
follow. :
< o< t, then

Lovea 2. If (a,8) =1 end 1
D g < () Ly () + Da(e)
Lo B ]
gma (modt)

where the implied constant is independent of the choice of a.
'l‘]u's is provo& in the .zume way as Lemma 2 in Erdos’s paper [2],

]J]‘.M’MA 3. Jjot h b(; an arithmetie meon satzsfymg h(1) =1, 0 < hin)
< 1 for all nzz 1, himn) << k(m)h(n) whenever (m,n) = L. Thm
D7 () < (L)) 140 (g () Ty @) [ | {Z i “)p““}
lengs D amb
where the O-constant does not depend on R,
This is proved by Hall in [5].
Tmyma 4. Lot @ = 1, Q squarefres, (@, Po)= 1= (ay, Py), gipy<p—1

if pt Py, and & = maxp < oxp (Ly (1) Ly (o)), where ay and Py are indepen-
»nl@ .

8 — Acta Arithmetica KEXVIH 2.2
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dent of @ dul Q may depend on x. Then
[{p < 23 p = ag(mod Po), (W(p), Q) =1}
{p(Po) L (@) H (L—e'(p)p—

LY
where the O-conslant depends on the degree 1 of the polynomial W but not
on any other property of W (such as the size of the coeffioients, Jor exampls).
Proof. When @ = 1, this follows from the Prime Number Theorem
for primes in arithmetic progression. When ¢ > 1, an a.pp]icswicm of
Theorem. 2.5° in [4] establishes the Jemma. For, in the notation of Halber-
stam and Richert in that theorem, take

= {W(p): p <@, P = o (0d Po)},

17 L+ 0{{B (@) 7))

= {p: p{@'P,} where @' = [_1 P,
vl
X = lzjp(Py), »#=&+1,
po’(p)ip—1) i pe¥,

2 =1, i opeP

where c is multiplicative on the gquareiree integers; then the conditions

(Qu), (Qal®)), (Ro), (Ryil, a}}, with » =141 (for example), o = }, follow

by routine calculations, and oonscquently 80 does the lemma aubova.
LeMMA 5.

11y e <a: Wip)>0 and v(W(p)) > 27 (@)}, < 2(Ly(e)

wheve the <€ constant depends on W and T'{w) is defined in (9).

This is an immediate consequence of the result of (9) and of Theorem 3.4
in [6], for the condition W(n) > 0 for all positive integers n, given in that
theorem, is assumed only for convenjence. The result of Lemma b is strong
enough for our purposes; however sharper results hold. For example,
in 1934 in [1], Erdés proved a result from which it follows that, when
W(p) = p —1, the right side of (11) can be replaced by @/(loge)'™? for
& snitable §> 0.

Lmyma 6. Let @ be a positive integer such that o" (p) < p —1 for all p|@
and v(Q) < JILy(w) where J is a positive integer satisfying J < Lg(w). Then
there exisie a constont Oy > 0 such thai

JTa~ewp—1") =
719

Proof. Lot 1 = (L,(2))%; then for all sufficiently large @, »(Q)
< (La(@))? < =(1), and hence

Nomig Ny b= L)+ 0(1).

e vt -

Ly ()™

0y (-La(m))—z '
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Thus, since ¢'(p) < min{p —2, 1) for all p|Q,
log [[l—e@@—17Y) = ~ Y o)™ + 0(1) > —1L,(z)+0(1)

Fuls] g

and the lemma follows.,

3. Upper bounds in Theorems I and 2. Tet 2 < LP,<Py<... be
a subsequence of the sequence of primes, and let P, = plpg Py
(I., 1,2,..0. To ecach i>1, associate y(p,) distinct residme classes

by (mod p;} with p'by, given by j =1,2,..., p(p,), where 0< n(p,)
< @(p,), and lot

e

=[]t =v@alo(p.).

f=]

(12) @

Liet N{w) denote the number of squ.arafree integers » with L n<a
and with no prime divisor ¢ satistying g= bﬁ(mod ;) for any § with 1 < j
< wip,) and any ¢ with 1<<i<Ek.
Lryma 7. There exists o positive constant O, such that, wniformly in
the choioe of the by and for k with P, < logz,
V(@) < @ (Ls (w)) exp(% (o Lne )+Ls($)))
FProof. If # contributes to N () and g|n but gf P, then the prime ¢
lies in ome of p;—1-—vp(p,) residue classes (mod p,) coprime to p; fox
2 =1,2,..., % s0 g lies in one of

)3

B = oPo =[] (p:~1—p(p)) >0

]

(13)

residue classes (mod P), represented by o, with 1< a; <P, and (ay, Pp)

=1 (j=1,2,..., 6), say. Thus % contributing to N{») has no prime
divigor in @ (Py) — 8, rvesidue classes (mod P;) coprime to P,.
Lieb

1 if p¥(m) =1 and ¢ln = g|P; or ¢ = a; (mod P;) for

hin) == 1<i<h,

0  otherwige.

Then h(p*) = 0 for all a2, and b is multlplma,twe and satisfies the
conditions of Lemma 3. I-Ience

(14) ¥(w) = Zh(«»)gm(zl(m)) {1+0(L,0)/L(@) ) [T +nmp,

ney ez
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and

@) ] L+bimp) =exp () bpp+01)
PRz P
By

k
— o (St 3

=1 i=1

P+ 0()
puaﬁxfowap,,)
i

<exp( Mo+ Y D)

naP, J=1  Pp<peam
e puaf-(modl’;ﬁ)

< exp (L (P3) + Oy ¢4 (L1 (Pr) + L (@) -+ O (1)

by Lemma 2 and. (13), where O, is & positive constant. Since by hypoth-
esin Py << Ly (@), the result of the lernma now follows from (14) and (15)
provided. €, > 0 is guitably chosen.

Proof of the upper bound in Theorem 1. Consider firgt square-
free n < » for which pf ( f(n), g{(n)) for all primes p ¢ S,; then for no primes
g, r dividing # can we have both p|W,(q) and p|W,(r) il p ¢ 8,. Hence
¢tn if ¢ belongs to one of the p;{p) residue clagses a, {mod p) with p|W,(a,)
and pfa,, or rtn if » belongs to one of the g;(p) residue classes a, (mod p)
with plW,(a,) and pta,.

Let

P +0(1))

8= {p: Ja,b e Z with ptab and p|(W,(a), Wa(b)}}.

I W,(0) # 0, 8,n8,\8, is finite but, by Lemma 1, §;n8, is infinite,
and hence 8, is infinite. If W,(0) = 0, then. by condition (ii) of Theorem 1,
Wi(w) = w"Wi{u) where 0 < degW} = I} < degW, = I, and

' Wi(0) =0,
and corresponding to §; we have
8y = {p: Ja e Z with p|W!(a)},
but: 8, is unaltered when W, is replaced by Wi; in this casel
8, = |p: da, b e Z with ptab and p|(W}(a), W,(5))}.

Henee, ag in the case Wy(0) %0, we have 87 nS8,\8, is finite, S*nSy
iy infinite by Lemma 1, and so §, is infinite. Thus in either case, §,\S,
is infinite. Note that 2 ¢ §,\8,.
Leb Py, Doy +ovy Ppy Prq Do the fivst %41 primes in 8,8, where &
is such that pp < $La(#) < P4, 50 that for @ sufficiently large,
P <exp(B(p,) <loga  since  O(p) = 3 logp ~py.

) p‘ﬁ]a
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Fori =1,..., % let £(¢) =1 or 2, so that there are 2* possible k-tuples
(81} 8(2)y..ey ¢(k)), which we assume to be enumerated in some well
defined way, and take w(p,) = gyy(p); them 0 < p(p)<p;—1 since
p; €8, but p, ¢ 8,. Now let by (1 <J < p(p), 1 <1< k) be those residue
clagses (mod p;) coprime to p, satisfying p,|W,; (by), and let N,(zx) be
the number on the left of Lemma 7 associated with the wth K-tuple
((1), ..y &(k))} (w =1,2, ..., 2%, Then by Lemma 7 we have
gk
16) PR RS )

pAny < D) N (o)
4 RS
o1 (fon, aw) ypdsy PR ELORA IR E e

Ume]

3k
<@ (Ly@)" > exp(0a (oL (@) + Ly ()]

Um=1
where u is the Mobiug fanction and by (12)

k

k
A1) e =[] L —dpeiip@) < [[1—ph)

gl f=]

)3
<exp(= 3 p+0@) <exp(— 3 7+0()
] pEpy
,DESth2

since 8, and 87 n9,\ 8, are finite, where 87 = &, if W,(0) 7 0. By Lemma 1,

(18) D P = ALy (py) + D +0{(Ta (22) 7Y
:U‘:*:ﬂk .
peslms’ﬂ

for gome rational 4 (0 < 4 < 1) and some congtant .D. Hence there existy
¢, > 0 such that for each u

(19} O S 04(L1 (?k))—l-

From the definition of % it is easily seen using (18) that for  sufficiently
large, ' '

(20) . >-(La(@))®  and
Henee from. (168) to (20},

(21) >

nm
P, gon)ypéSy

k< (D) < 25/ Ly (2py) < Ly () [ Ly(w).

pa(m) < o{Ly ()12 exp (00, La(0) (L (90)) ™ + Za o))

< @{Ly (@) exp (0, Ly (@) /Ly ())")

for & suitable positive constant C;. _ _
We must how extend the result of (21) to the sum in Theorem 1
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Every positive integer # ean be written nniguely in the form

n =My where  (my,my) =1, wi(n) =1, and pln, = p2ln,.

If pf (f(n), g(n)), then pt(f(n,), g(n,)) but not vice versa. Henee, putting
v = (loge)®* and using (21), we have

(22) 2 1@2@’ >

nr nysw/ng
Py peS, PHIm oY BES)
vz x \\7* © 2\ V' @
SR a2 e 5.2
\Z '"‘2( * g Rl Ry "\ vduyzz My
flgy
o \\=! _ _—
< w(L1 (—J)) exp (C‘EL2 (@) ] (L (@))?) an b 2 Nyt
Ny =Y V< Hg S

since #/v < w/n, < # in the first sum. From a result of Erdss and Sze-
keres [3], it follows that

@ 3 0= ol

NoSx

uging this in (22) we have

(24) > 1

FE(FH (m,;ﬁ):fvp #3,
< O (T (@)) ™ exp (05 Ly (@) Ly (@) (L + O (L (@) /4 (2)) + O (/L ()
< Gy (Ly (@) exp (03 Ly (@) (La)))

for a suitable positive constant (,. This establishes the upper hound in
Theorem 1.

Proof of the upper bonnd in Theorem 2. Wo noed only consider
the squarefree # confributing to the sum Z(w) in Theorem 2, for then we
can appeal to the argument used o deduce (24) from (21) abovo. Let
Z"(w) denote the number of squarefree # contributing to X'(w); for such
an integer n, to each odd prime p there corresponds 0y such that pta,
and gtn for all primes ¢ = ¢p (mod p), The number of possible valnes for 0
depends on both # and p, but is positive and does not excood p(p), Lot
D1y .-y Py e the first & odd primes and write ¢, fox 0y, the ordered k-tuple
(€15 ..., &) can be choren in ¢ (Py) ways, and any n contributing to Z™(m)
in asgociated with one or more such k-tuples. Lot p, be the largost prime
not exceeding %Ly (w)/Ls(2), 50 that for sutficiently large o,

2> {La(@)/Te@), P, < oxp(2py) < exp (Za(0) Ta (@)} < loge,

icm

On the coprimality of certain multiplicative fumctions 187
and
k
o(P) =P [ [(1—p7") ~ 2677 P |Ly(py)
a1
whenece

p(Py) << Cy0xp (L (@) [ Ly (@)} [ Lo ()

for a suitable positive constant C,. . .
Now apply Lemma 7 with w(p) =1 and by =¢ ({ =1,..., k),
go that using (12)

k
g, = [ [[1—p =1 < O/ Zn()

tem

Pt

for some Oy > 0; then we have from our cheice of p, that

E*(@) < ¢(P) 3 (L () exp (Oa(Or0 La(w) (T (2) ™ +Za(a))
< 0Oy (L1(W))aI@XP (0111'2(5”) /I'a(“_’))
where (,, i8 a suitable positive constant. On using the arguments used
to derive (24), the upper bound in Theorem. 2 now follows.

4. Lower bounds in Theorems 1 and 2. We use Lemma 8 below to
establish these lower bounds, and before stating it, we need some further

notation. .
Let 2 be a set of primes, depending on a parameter i, such that

2 = 4, whenever i, << £, and

(23) p <t: p ¢ 2N < HI (1) La(D).

Suappose (a,, Py) = 1, where ay, P, are fixed, and let

(26) B ={pel p= g (mod Py)}-

We ghall define sets &(t) (§=1,2,...) of positi've integers inductively.

We shall agsume that, once &_,(t) has be_m} defined, then }30 each ;nfj._,.

eS_y(f) there are assigned a 'uniqu.e pogitive sagareﬁree mjo}glgerde éﬂf

and & nnique polypomial w_;, with integer cogﬂlclen'ts (pcl);rm yP )p— "

ding on my..,) and of fixed pogitive degree I, which satisfy (M;_,, o) =

and the following conditions: :
(i) There existy & positive integer & such that

v( M) < K Le(8);

L i lote consfant;
(i) max p < max({(my_), 0,;) where Oy i3 an abso 3
DI
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(iif) ¢j_,(p) <p—1 for all p{P, {and so for all p[¥,, and for all
p & 2), where g;,(p) is the number of solutions of w,_,(¥)= 0 (mod p)
with pfu.

Tn our applications, (i) follows from our definition of 2;, and by well
known results, g;_,(p) < I whenever (iii) holds.

Let &, (t) = 4}; suppose that ., (f) has been defined for gome j = 2,
and suppose furthermore that &; (4} « & ;(f) whenever &, <%, and
that gimy_, € (1) = g € 2;. Then we define &4(¢) to be the set of all
positive integers my = my_,§; such that

@7)  my_, eFall), gedy  ¢>muxg, (w0y-1 (@), Myes) == 1.

almy—y
T6 is easily seen that if my; e &(t), then w(my) =j, p*(my)==1, ¢ 2§
Y glmy, and F(ty) = &5(t.) whenever 4, < ¢, (since 2 < %, and Sy, (i)
< Fy (b)) Now define

8;(z, 1) = |{my € F4(t): my<atl, Sy =8,s.

Our next aim is to establish & lower boand for §;(w).
Luvwa 8. There exist positive constants Oy, Oy, G suoch that for all
i=1 and all o sobisfying

(28) FAFT < O Ly () Ly (w),
we have
(29) 8,(@) = Crg (0 L)

TR Lu(w) (G- (@)U

Notes: (1) Clearly 8j(z) =0 if @ < 2-3-... -p; == exp(f(p,)); sinco
B(p;) ~p, ~jlogj, (28) certainly ensures that &> exp(f(p;) for each
j =1, provided Oy, is suitably chosen. '

(2) The right side of (29) starts decreasing when § increases from
Oy L (@) /(L {@))'; we utilize this in our applications, but we prove Liemma 8
for the larger range (28).

(3) Since the sequence ((1-+j~")) incroases and converges to ¢, we have

(30) 2 < 2 <JL+57Y < o
hence (28) implies that
(31) i< %UlaLz(m)/La(m)y
and conversely if ' '
7 < 7 0 Iy (@) 1L, (),

then (28) follows.
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(4) From (28) and (30),

(82) Ly () { Ly () 2= 2C1a;

henee wo can always choose Oy, small enough so that each of a finite num-
her of statements true for all sufficiently large  holds. We shall assume
in the proof that this has been done, and we note that such & condition
on ¢ below will always be independent of the value of j. ' We begin by
assuming that ¢y < 1 and that » is snfficiently large for I, (z) > 1.

Proof of Lemina 8. Oonsider fivst the case j = 1, and suppose that
(28) with j =- 1, L.e. (32), holds. Now

Sy(@) = Hg<e: ge2)
== m{®; Py, “n}"\‘O(mel(m)Lz(m))
= {1+ 0((Ze (@) ) fp (Po) L (@)

on using (25), (26) and the Prime Number Theorem for primes in arithmetie
progresgion; we recall that P, iz fixed. If we take 0y to be a constant
satistying 0 < Oy, < {¢(Po)) ™ < 1 and choose O); small enough, we have

8y () = Oy [Ly (@) 2 < Oy Ly () [ Ly ()

which establishes the ease § = 1 of the lemma. From now on, O, is fixed
and we may nob increase Oy; decreasing Uy will have the effect of in-

creasing the lower bound for o in (32). _
Suppose next that the lemma holds for 8;_,(f) for some §=2, and

aggume that (28) is satisfied. Define y and v; by

Iuy) = L) (Tal@))t,  Tulty) = [Tyl

whenever

(33) (4= 2)

then for sufficiently large #, 1 <o, <y < & and L,(v;) > 1. Furthermore

from (28) and (33), we have for j = 2
(84) (=L L+G—17PT <AV E—IT

< (157" CraLa(@) Ly (@) < CraLn () Lu(2y)
which is (28) with j, » replaced by i—1, o resbectively. Hence by our
induction hypothesis, whenever o <t <@,

i (O L (t))?
840> Ou gy G T

(38)

Now consider

8y(@) = |{my & Fy(@): my < )]y
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and recall that the clements my == my_,qy of &(w) sobisfy (27). lonely

;7 o
(36) O D!
i1 =Y gy
my—1€F;_1(@)  gymey(mod )
@56l
(0 1 @ By =1
U2 el 3
> X X ol )
Y _ 1Y /a7 ﬁwfm,f 1 qyg_jm/mjml
my—y65y_1(x) quag(modl’oj s

(wf_.l(q,) Mj.._]_)ml
since ¢ ¢ 2, = ¢ ¢ 2y, , by the definition of 2,, and further by (25),
the error term is for 1 LMy Y
{37) Ly fmyy)) < (fm;_q) [{ L (@) Loy ().

To the main inner sum of (36) we apply Lemma 4; our conditions (i)

< (wfmy_;)/ (Ll(m/mj-l

and (iif) ensure that gj_,{q) < g—1 for ¢{P,, and that # = max p <
PIMy..
max{(m,_,), Cig) < ¢ for o sufficiently large, and go for 1< my_, S\.’: j,

Ly(2) < 1Ly () /[T (@))® < Ly(ofy) (Lol y) < Dnfefmy_y) [ Lale [my_y)
since L {e/y}/Ls(wfy) ~ Ly(2)/Ly(z) by (33). Henee by Lemma 4,

{38) 1
U<(ijﬂ]walj5])_
=y (med Py
(wi_yiap, My_y)=1
___olm, thoa(p) )
T (Po) Iy (wmy_y) ” (1"— p—1 ){1+0((L2(m/m;lm1)) 1)} + Ofm(y))

PG

where the first 0-constant depends on the fixed degree I but not on the
coefficients of w,_,, and ay in (37) for my_; < ¥ we have

0((Z(wfmy—)) ™) = O{(Zu(w))™).

Binee j = o(Ly(w)) by (BL), »(My_,) < kjLy(w) by condition (i), and g}..,(p)
< p~1for all plM,_, by (ifi), we have by Lemma 6

”[] (L~ gjy (B)(p ~1)™Y) 2 Oy f(Ty (@)
PlMYy
Substituting this in (38) and then nsing (36) and (37), we have

@) Se)> 7o | ) (10 (B )+
Yol 3 e+ 0 (L)
ny_ sy

mj_le?j_.i(m}
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for sufficiently large @, 8o that the expression { ..} it positive, and by (33)
the lagt error term iy certainly O(a'?).

Finally we must consider the sum, and for that we use (34) and our
induction hypothesis (35) and the fact that #; ,(t) = &;_,(#) for t <2
whence 8,_, (¢, @) = 8;_,(f). By partial snummation, we have since 1 < oy

<y<w
\ ] -
Z (my—y) !

Mg Y
mj...l e&";u_l(m)

(40)

[ v
= By, 9y [ Sl ata > [ 8 mea
1 .

- 01,(Cys)
G2 [T (@)

v
5 | L (o) a
ki

014(0151—‘2(“’))#“1 1 Le(w) it Ly () -t
Z =D () (G 1{(172(:::)) "(La(m)) }
By (33)
{41) (La(wy)/ L,, o)t = (L—fY <d forall j22

ginee (1—~j")""! deereases as j increases from 2 (and converges to ¢7').
For 0 < i < 4, (1—#)~! > exp(~2t(j —1)); hence if » is sufficiently large
for 0 < 2L, (@) [ Ly(w) < 4, we have by (31) and (33) that

= (1 —2L, (m)/La(m))j_l
—4(j —1) Ly (%) [ Ly ()
> exp(—2C5) > 3/4

(42) (Zs (9) [ Log ()

> exp

if Oy is chosen small enough. Hence by (41) and (42},

(43)  (Laly) Loy ()= —

From. (40) and (43), it follows that

) - O (015 Ls (@) B
L2 M G @015) 3

mjmla.?’j...l(m)

(La(’”j)fl}n(m))jwl > exp(—20p)—% > -

and substituting this in (39) we have, when (28) and the result of the
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lemms, for j—1 hold, that
Ou (015 Lo (@) y
In(m) (—1)!{Ly(a))H
X {01(49" (Pg)Cys) ™'+ 0 ((L,1 (@)} 1.y (m))} + 0 (@)
o {Oys Lg(m))
> 0y Lo (@) (5 —1) H{Zy(w) T

8;(w) =

for a guitable choice of ¢, and for all sufficiently large . Whis completos
the proof by induction of the lemma.

Proof of the lower bound in Theorern 1. Wo shall apply the
previous lemma to suitable sets &(t), and to do 80 woe need gome defi-
nitiong, Pirst we define a,, Py. Lt p, be the leagt primo exceeding
W

max(l—l—l, We(0), max p, max p, max p
peﬁauﬁ"; Wy(p)<o  Wp{p)<o
(.a.- valid definition by our assumpbions), and put Py == [ p. I p e 8y,

DTy
let @, be the least positive integer such that p+{W,(a,), Wg(ap)); sitce
P ¢ 8y, a, with 1< a, < p exists. It p|P; but p ¢ 8, lob @, = L. Then
we define a, (L < ay < Py, (@, Py) = 1) to be the simultaneous solution
of all the congruences of the form
= a,(mod p),  piPy.
‘We note that _
@ =1 i &, =0 (the empty set);
ot {Walao), Walao)) for all p satistying PP, and p ¢ 8y
¢ =ay(mod P;) and g prime = ¢ P;

2tPo=p2p, o@)<Ii<p—1, plelp), W(p) >0,
and  pt{f{g), ¢(¢)) for all primes g,

where ¢f(p) was defined at the beginning of § 2,

Now let 2, = {g: v(W(g)) < 20(t)}; then (25) holds by Lemma B,
fox W(p) > 0 for all butb a finite number of primes p, and cleazly 2, = 9,
if 3, < ;. We now define 2 by (26).

We mugt define M,ml and w;._., before we can constirnet inductively
the gets (1) by the method deseribed earlier. For my., & &,.,(1), lot

My, = H »

Py
pifimy)elny..y)
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and let w;_,; always be the polynomial W; then we must check that our
conditions (i), (ii), (i) all hold. Since ¢ € 2§ ¥ ¢m,_, and urmy_,) =1,
w(imyy) =j—1,

@ M) <o( [] W) <2-0T0) =26 —1) (zLy(t)+0(1)

qlmgy

< Ieg Ly (2)
for & suitable positive integer &, since v is additive and (9) holds;
(i) max p<<  max p<(my.,) for all but a finite
Pty DI eimsy number of m;_,
since W is reducible and of degree I;
(iii) g'(py<p—1 for ptP,

by a remark above. Thus we can define the sets 5;(f) and the gquantities
8;(z, 1), 8;(x) a8 above and estimate S;(x) by Lemma 8.

‘We ghow next that for this particular choice of the sets #;(%)
(41=1,2,...),
(44) Y (flmy), g(m;)) Vo ¢ 8,  whenever m; e 5(f).
This clearly holds when j==1 since m; = ¢ = a,(mod P,). Assume it

holds for j—1>1 and consider m; € &;(t); then my; = m_,,_lQ, = My_, §
where (27) holds and thus since {W(g), Mj ) =1

Y (Flmy_1), g(my_ ) (F(@), 9(@) V2 ¢ 8,
F’[’(f(g g(q) :f(mf—l)g(mj—l))v.p'r-‘?o;

moreover pt (f(g), g(my_))(f(m;_1), g(g)) for p|P, but p¢8, since
a prime r|gm,_, satisfies v = a,(mod P,) and we can then use a remark
above. Since gfm;_, and f, g are multiplicative, it is easily seen that these
relations imply (44).

We can now. deduce our regult. For
(43)  Zy,()

= |{n< e wp(n) =1,v(n) =3, pn=p e 2y, pt(f(n), g(n)) Vp ¢ S}
¢ (O L ()" @
= (0 e T

R AT NP o R AT R

pay, provided that (28) holds. Our aim now is to choose j in terms of x
to make the magnitude of the right side a3 large as possible, and we utilize
the remark in notie (2) that the right side starty decreasing when j in-
creases beyond Cy;L, () [(Ly (w)). Hence we take

Jj= [015 Ly () /(La (m))z] .

= 8;(») >
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Then by Stirling’s formula

(46) B(@) = exp{(j—1){Ls(w)+log Oss —1L, (@) —(§ —$)logj+j -+ O(1)}
05 Lo (i2) Ly (@) )
= exXp {W(Ifa @7 +0 (La(w))} = exp (015 _——_“(La @7
for Gy < Oy and @ sufficiently large. Hence the lower bound in Theorem 1
follows from (45) and (46).

Proof of the lower bound in Theorem 2. We again reduce the
problem to an application of Lemma 8. Let Py =2, ay =1, and take 2,
to be the get of all primes (80 that the parameter ¢ is redundant here).
Then 8 (®) = n(z)—1.

Let p, denote the ith odd prime. We ghow that wo can define the
sets &; = &4(1) (j > 1) in snch a way that if m; e &, then to each odd
prime p, there corresponds ¢, coprime to p, such that ¢ s& ¢;,(mod p,)
for all primes g|m,; this iz certainly true when j = 1. Note thatif ¢ 2§ > 1,
then since p; = 2i+-1, @(p;) =20 > 2§ > j, and hence there are more
regidue classes (mod p,) coprime to p, than primes dividing my, =0 in this
case o; exists trivially. Suppose that &;_, has been defined for gome j 2 2
to satisfy the above property. Then to each my_, € &y, wo ean find a,_,
such that (@j.y, 2 --.P~1) =1, 1<t <Py Pyy, and ¢ = ay,
(mod p, ... p;_,) for all primes glm,_,, for let a,_; = o;(mod p,) (£ == 1, ...
s §—1). We define

My, =01 P51y Wi () = v—ay_y,

and then econditions (i), (ii), (iii) at the beginning of § 4 ave all satistied,
for since »(M;.;) =j—1and ¢;,(p} <1 = < p—1L for all odd primes p,
(1) and. (ifi) hold trivially and (ii) holds since

MaxX P = Ph.y S AT P K My

DIMy_ pltiy..g
with striet inequality except when § = 2 and m, = 3. Hence if we define &
to be the set of all pogitive integers my == my_, ¢; katistying (27), we see
that since (g; —@z.1, Py ... Py-1) = 1, gy and all the primes dividing my..,
avoid the residue class ¢;(mod p,) for 4 == 1, ..., j 1 and moreover, by
a remark above, for each ¢ > j there i3 a residuc class (mod p,) coprime to p;
containing no prime dividing m,._, g;. Hence &; has been defined so thut
it has the required property as well as conforming to the gencral defi-
nition given earlier. -

It is now clear that by Leruma 8 (gince I == 1 here)

01 LE 9“"1
2w = 8(w) = Oy .L::w) (j.(..;)!(éa:g))’_l
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provided (28) holds. Now choose

J = [C15 Lo (@) [ Ly ()]
and then it follows, ag in the proof of Theorem 1, that

I@)> 03—% exp (0, Ly (@) /Lo ()

for Cy; < Uy and o sutficiently large.
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