List of works of Paul Turán

5. Über die arithmetische Mittel der Fourierreihen, ibid. 10 (1935), pp. 277–280.
80. (with J. Surányi) Notes on interpolation I. On some interpolatorical properties of the ultraspHERical polynomials, ibid., pp. 67–78.
83. On the distribution of the digits in Cantor-systems (in Hungarian), Mat. Lapok 7 (1956), pp. 97–70.
87. Über eine neue Methode der Analyse und ihre Anwendungen (book; appeared in Hungarian and German), Akadémiai Kiadó, Budapest 1953.
89. On some point of contact of function theory and the theory of series (in Hungarian), Annual Book of Univ. of Budapest, Faculty of Science, 1952–53, pp. 5–13.
96. The life and mathematical work of Géza Grünwald (in Hungarian), Mat. Lapok 6 (1955), pp. 6–27.

142. The work of P. Erdős (in Hungarian), Mat. Lapok 14 (1963), pp. 1–98.

182. Translations from H. Cremer’s “Carminia Mathematica” (in Hungarian), Mat. Lapok 19 (1968), pp. 373–375.

192. The life and mathematical work of Catherine Rényi (in Hungarian), ibid., pp. 219–229.

224. Remark to a theorem of N. Wiener, Papers dedicated to Prof. L. Ilieff's 60th anniversary, Sofia 1975, pp. 479–483.
230. (with S. Knapowski) On the sign changes of \(\pi(n) - \log n \), II, Monatsh. Math. 82 (1976), pp. 163–175.
234. (with M. Szalay) On some problems of the statistical theory of partitions with application to characters of symmetric group, II, ibid., pp. 381–392.
On sets characterizing additive arithmetical functions, II

by

ROBERT FREUD (Budapest)

To the memory of Professor Paul Turán

As in [1], \(f \) denotes an additive arithmetical function, \(A \) and \(B \) are subsequences of the natural numbers, consisting of the elements \(a_1 < a_2 < a_3 < \ldots \) and \(b_1 < b_2 < b_3 < \ldots \), respectively. \(A \) is called a \(U \)-set, if

\[
\left((a_k) = 0, \ h = 1, 2, \ldots, \right) \ \text{imply} \ f = 0.
\]

In [1] we proved the following assertions:

I. Let \(A \) be a \(U \)-set. Then

\[
\liminf \frac{a_{k+1}}{a_k} < 1,
\]

moreover, if we put \(\frac{a_{k+1}}{a_k} = e_k \), then

(1) \[
\liminf (e_1 \cdots e_k) = 0 \quad (\text{Theorem 2/I}).
\]

In fact, if \(A \) does not satisfy (1), then we can construct an additive \(f \), which is "arbitrarily strongly" unbounded, though \(f(a_k) = 0 \) for all \(k \) (Theorem 4).

II. Let \(a_k \) be an arbitrary sequence of positive numbers satisfying

\[
\liminf (a_1 \cdots a_k) = 0 \quad \text{and} \quad a_k \geq 2^{-k}.
\]

Then there exists an \(A \), for which

\[
\frac{a_{k+1}}{a_k} > a_k
\]

holds, and \(A \) is a \(U \)-set, moreover, if

(2) \[
\sum_{k=1}^{\infty} f(a_k) \text{ is convergent},
\]

then \(f = 0 \) (Theorem 2/II).