icm

ACTA ARITHMETICA
XXXVIT (1980)
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Let

Aylla, b5 @) = > g ({na)) —(b—a) ¥

where {na} i3 the fractional part of #a, 0 < a <b <1 and yp,, is the
characteristic funetion of [a, b).

It was proved by Hecke [7] (part of sufficiency) and by Kesten [8]
{the more difficult part of necessity), that A ([, b); o) is bounded in ¥
if and only if

b—aeR(a)= {f: § = {ka} for some nonzero integer k).

Very elegant proofs of this theorem in the framework of ergodic theory
are doe to Furstenberg, Keynes and Shapive [5], Haldsz [6] and Peter-
sen [14]. I is rernarkable, that on the other side this theoremn — and
further properties of Ay — have consequences for ergodic theory.
{See e.g. Herman [9], [10], Deligne [11.)

Here we consider the question of one-sided boundedness. Some
previous results already show the phenomenon, that the irregularity of
the sequence {na} i3 not necessarily a two-sided irregularity: e.g. though

N
D) {na}— 1N = Q(log )

(Ostrowskd [13]) it can be one-sidedly bounded (T. 863 [15]).

It was observed (T. S6s [16], [17], Monteferrante — unpublished)
that analogously, though Ay([e, b); o} is unbounded when b—a ¢ B(a)
yet it can be one-sidedly bounded. More detailed and specified resulfs -

have been proved by Dupain [3], [4], e.g. the following ones:
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1. Suppose the partial quotients (a,) of the irrational a satisfy:

o
1 1
Gy =2 formeN and 2 < o0,

Then Ay{[0, §);0) is bounded from below. 7
2. Supposeahasunbounded partial quotients. Then there exist § ¢ R(q)
for which 4,{[0, 8)) is one-sidedly bounded.

3. For a = [V6—1)/2 and § ¢ R(a) 4,{[0, #)) camnot be bounded
from above.

The following theorem gives a necessary and sufficient condition for
the one-sided boundedness of 4,([0, 8); ¢} in the cage when « has houn-
ded partial quotients. The “suificient” part remains true for arbitrary
irrational a hubt not the “necessary® part. This result includes 1 and 3.

THEOREM A. Supposs the irrational a has bounded pariial gquotients.

Then Ax{[0, B); o) is bounded from above if and only if for some
nonnegative infegers &, n (with the usuwal notation (7)}~(9))

(1) . B = {ka} —r{gyn10} mod 1,

where

) 0 < K < Gonyay

{3) 0<r <1 and ra,, 15 nonnegative integer for v > n. (1)

Analogously, Ay([0,B); o) is bounded from below if and only if for
some nonnegative integers k, n

(4) B = {ka} +r{—gqua} {—gue} =:1)

where '

() 0K k< Gany1s

(8) O0<r<1 and ray, ., 15 nonnegative integer for v > .

TamorEM B. Let « be an arbilrary irrational number and 8 be a number
given by (1)~(3), resp. (4)~[6). Then AN([{), s a) 18 bounded from above,
resp. from below.

Corollaries. Let  be an irrational number, (4,) be the sequence of
the partial quotients of a.

() de. for r = pfg, (9, q) = 1, glas, for v > n.
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1. Suppose
ey cven for 0o =0,1, ...,
resp.
g, even for mo=1,2,...
Then

A0, D5 o), resp. Ay([0;2/2)5a)  and  Ay([8, 1—a/2); q)
is bounded from below, vesp. from above. (See 1.)
1. Suppose

; Y
g.e.d. (Qons Oopngas ey Gapgngy o) =1, (%)
Fesp.
i
ged. (Gyppry ey Oupyopyry «-) =1 Jor wm=1,2,..

Then AN([O, 8); a) is bounded from above, resp. from below if and only if
it is bounded; if and only if B = {ke} with some integer k. (Sea 2.)

1. Supposs a has bounded portial quotients. Then the set of all the
#'e with one-sidedly bounded Ay([0, B); o} 45 a countable sel, (%)

Notations and some previeus results. Let a =[0, a4, 0y ...] Dbe
the eontinued fraction expansion of a. We shall nse the notations and
CONSEYUENCRS ¢

o P
{“’) E'n' = [07 Dy anny an—l]s Gpy1 = anQn‘E"ﬁ'n—lr Py = aﬂ?n+Pn—17
n
Bn = 0 —Pp,y 6n+1 = &':,,‘6"4— 61z.~1)
{8) }'n = Jﬁnl = (”1)n‘£-zﬂnr
E“}c+zv9k+zv = —b, k=1,... (8= -1),
=0

n
Z%qul':a-zv =Gy~ g1 F=1,... (g =0},
==
It is well known that each positive integer N can be uniquely rep-
resented in the form

m
(10) N = ;;*Z: dedle
where
(1) 0<d <a—1, 0<d,<a, for k=2,
(12) dy =0 I iy = Gy

(%) g.0.d. (6, ...) denotes the greatest common divisor of (615 ++ 1)
. {*) However, it could be shown that for a with unbounded partial quotients
it can be a set of power of continmum.
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Tt also is known (Descombes [2], Sdés [18], Lesca [11], (127) that
each g with —a < f < 1—a can be uniquely represented in the form

(13) B = Db,
k=1
‘where
(i) 0 <, —1, 0K, for Ekz2,
(15) by =0 i by = Gy,

{16} bypi1 ¥ Qo for infinitely many positive integer k.

Conversely, every sequence which satisfies (14)-(18) by (13) deter
wines 8 fel—a,l—a). The following simple properties of the abow
expansions hold:

an N=3dg> =)dg,
iff for soms k

b, =b, ifv>k and b, > b,

(18) ~17 no=1,... (& =1),
(19) IZb,q,I< Qur1y P =1,...,
r=1
(20) b, =0 for k> ky(f) iff § = {ka} mod 1 with some nonnegativ
integer %,
by = agy, for k> ko(f) it § = {—ko} mod 1 with some positiv
integer %.

From the above propositions it follows easily that £ satisfies (1), (¢
and (3), Tesp. (4), (5) and (6) iff (using the representation (13)-(16))

g = f: 5,0, (mod 1),
where "
(21) byt =0 and b, =ra, for > n(B),
TEED. :
(22) bz, =0 and by, =ra,, for  w>a(f) or

by =@y, for. v n(f).
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In the proofs of our theorems we shall consider instead of (8)—(6)
(resp. (6)-(8)) the egquivalent (21), resp. (22).

The expansion above turned out to be useful for different type of
investigations in diophantine approximation. Gur proof will be based
on the observation that it iz possible to handle the discrepancy-function.
Ay by this.

Let

Ap(8) = AN([O! £); a)
aud also
AN(ﬁ) = AN([0:1+ﬁ)5a) for —a< <0,

We ghall nse with the notation of (10) and (13) the “explicit” formula.
for Apn(B) (see V. T. 8B6s [17]):

(23)  dx(B)
m
= 2( 1)"+1mm(bk,dk) —dk (gk Z b Gv e 6:..2 vav) +Eaki
Rzl w=J4-1 k=1
where
[ k—1 k-1
Ii it % odd, [t > & and Y dg,> Db,
[ =41 =]
(24} 5].: — ) k=1 k-1
—1 if % even, b, < d; and 2 d,g,gZ b,4,,
pr=] r=1
0 otherwise.

We shall algo use the following corollaries of (23):
(25) az)'s+1 =0 if bapsr = 0, O =0 if dy, = 0.

(28} Suppose for the expansions (10) and (13) that

{==] . E
g = szyazn N = Zdzv-{—IQZw—}-l' *

p=1 p=={

Then

An(B) = D dusndyy (B)-

k=0

(*) When we write f= Y06, N = Sdugs it means the expansions (10)» (13}
under the conditions (11)-(12), resp. (14}-(16).
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Put .
Dy = (1) *min (b, G)—dy (g, ) 0,0,+ 0 3 b.g,),
>k p=1
27) g

I
By = (—1)""'min(by, &) — by (¢ ), 4.0, 6 > dg,).
1

v y=
Then (by (18), (19) and (7)~(8)) (D4l < @y, 1Byl < oy
(28) {4g,(B) <2.

Now we give the proof of the theorems for the case of boundedness
from above. For the other one the proof runs analogously.
Proof of Theorem A iz based on the following lemmata.

Learua 1. Let
JB == vaﬁ” ﬁ‘ = Zb;evi
r=1 r=1
where
b, =0b, for > .

Then Ap(B)— Ay(f)) is bounded, more exactly
lAy(B)— A (B < D) 2(a,+2).

By %by

Proof. It i3 enough to prove that in case

b, =0, i vn
we have
(29) | 4y(8)— Ax(B") < 20, + 4.
By (28)
Ay(B)—Ax(f) = D (D, —Diy+ D (6~ &)
k=1 fe=1
= D (Bim B+ D) (e 8) = By—B,+ D (5= 8).
k=1 k=1 k=1

By (24) it iz easy to ses that
5, — 8 i
where 1 is defined by
b=, =4, if n<r<l,
by = b; = .
Thus by this and by (25) we have (29).

v#hn  and v #EI,
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LevMA 2. Let a be an irrational number with bounded partial quotients ;
a,< A and

el

B = Db,

L ]
for which by, 5% 0 holds for infinilely many nonnegative integer k. Then
Ayip) is unbounded from above.

Proof. From the assumption and (16) it follows that at least one
of the following two conditiong

{a) bupr = Oaxr1y  byys =0,
{b) bz!.:+1 < ypa
holds for infinitely many #.
Suppose (a). Then
21 w0
Au2k+142k+1(ﬁ) = Gyjpa (1““6%4—12 b, — Gorsn 2 bvey)
y=1 y=25+42

Z Gy (Lo Dogyollon o — Aop s allop 1)

1
== g )l-q s - c :/} )
a1 (Rapgs — Zopr )} ok s 4(441)

Secondly suppose (b). Then

2641 o
Abzk+1qzk+1(ﬁ) = b;’.]c-H (1_021:4-12 bvﬂu“gﬂml_ Z b,ﬂ,,)
pe=1 P=2542
= bﬁ.k-}-l(l —Aypa (bypy1+1) Don+1— Fopyr }*zk—i-z)
1
2 by i dopraon 2> m
Lete——l' 1 d 2k +1 < 28,1 1 indi
=3 Ay an L +1 < 28,41 < ... be all the indices for
which ‘
Ab‘.‘kﬂ-lqﬂk‘+l (#)>c¢
holds. Put

n
vl =szk,-+1(12kf+1-
i=1

By (23) and (24) we have

3

45 (B) >E by 100,21 {B) > me.

g=1
By Lemma 1 and Lemma 2 to finish the proof of the necessity of the
conditions (1)~(3) ((21)) we may suppose that by, = 0for & =0,1,...

24 — Acta Arithmetica XXX VIL
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LrvaaA 3. Lei
8= D bob.
r=1
If with a positive constant ¢ we have
IAq2k+1(ﬁ)E > ¢
for infinitely many k, then Ay(B) is unbounded from above.
Proof. When '
A“:Hc-i—l(ﬁ) ¢
holds for infinitely many %, then by the same argument as in Lemma 2
it iy obvions that sup Ay (f) = + oo.
N
Now suppose thab
A02k+1(‘8) < =0
holds and consequently
7 A“215+‘.lq2k+1('3 )< —e

holds for infinitely many &; for 0 <k <y <<... let K = {f;, %, ...},
Paut

o
N = Za’2k¢+142k,-+1 (k; #0).

Fual

Then
Axpld) < —mne.
Now let
N' = 2 Sagey ¥y —
E<hy,
BeE
Since

N+ N = fop, 121 = (@ —1) 1 + Z Gopr1Tom41

k=1

by {23), (28) and (28) we have

mﬂxkﬂﬂ_li' = ]AN(ﬁ) + AN'(ﬁ)[ < |Aﬂzkn+zl+1 <3
Henee '

Ay(B) = ne—3.

LEMIA 4. Let o be an irrational number with bounded partial quotients;
a, << A and
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Iy
b b
(30) ¥ == lim 2 # lim
Pruryoy a’zn T-+00 aZ'n

w(B) is unbounded from above.

Proof. Since by the assumption the range of Fop, = by /ey, s finite,
by Lemms 1 we may suppose, that

ro=lim 2% o i 2
sree Ggp Qg
(30) inplies that for infinitely many & we have with some m = m (k) > &
(31) Top >y, Ty =1 for kF+l<r<m, Tapps > 7.

By (23) we have, using b,, = r,a,, and (31)

AQ’gm_,_I = om+1 2‘ byoday — Ay sy 2 .
e
. k
= ﬂﬂm-{-l + Gomst Z (g0 — 7} Cigohy, — 12m+1 2 (g — ) Gapdy,
y>m ¥=1
and '
&
Ang+1 = Qoj41 2 b2v22v— 12k+1 Z (Tzv_r) a’2v2'2v
L 13 =1
: E
= rhypp1+ Q2k+1 Z (o —7) Baylyy ~ Agpe sy 2 (Y0 —1) Bay Ay
M =i
Thus

r>m

Az 1 — dasgpyq = *(Aamir—Aog1) + Gomar — Gapyn) 2 (”’zr.—‘ ) Gyph, +

&

+ (Aggr1— 2oms1) Z (o =¥} By o

Pr:l
2 {Gom1 — Borg1) (Pamar — 1) Y P
F (Aoeqr ™ Aamr) (T — T Oz ~— Aop g

Since
i1 Gogr 2 tamlams Aok Zampn = Gogpadergs
and
i"2m+2“"’7'2’_“"":Lﬁ_‘: Top— 7 > L ’
Lot 2fom Byplhy,

we eagily get
1
VEETR

1
Aﬂzm+1 - Aﬂzk-!-l = Z
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, 1 1
Hence, with ¢ = gm

mas (| Ao (Y gy, (M) > ¢ B B> .

Thus by Lemma 3 we get that under the condition (30)

sup Ay (f) = +oo.
N

Now by the above lemmata we know that when 4y,(f) is bounded
from above, then in the expansion

B = Db,

k=1
we have
bypyr =0 for k>k
and
by, =ray, for k> K.

But this meang that, with some 7,

fig—1

B =2 b0+ 2 Oy By
=1

2k>ng

This proves the “necessiby” part of Theorem A.
Proof of Theorem A will be finished, when we prove the “gnfficient”
part by the more general Theorem B.

Proof]offTheorem B. The proof will follow by the following
.gimple
ILmvvia 5. Let with 0 <r <1

ﬁ=21}2,92, and by, =ra, for w=1,...,

Yl

=)

N =Zm:d, , and Nt =N— N,

Then _
(32) A+ (B) 2 Ay(B).
Prooi. By (23) and (25)

Ay+(B)— An(B) = — D) Dy (¥).
) k
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But
] k
—Dyy, = 1in (Byy,, dyy) — Aoy, [Qm'c Z Byys, + Aoy, sza!lzy]
p=k+1 vr=I
= N (Pllygy Aop) — Tlly, [Qortor1 T Aog (Forqs —1)]
2 I (# gy Ay} — 7y, = 0
which proves {(32).
Now let N* be the set of integers ¥, for which in their expsansion
{with respect to «)

m
N=>3dg, d, =0 foralnw

v=1

To finigh the proof of the theorem by Lemma 1 and Lemma 5 it is
enough to prove that if

8= Zbu@zvr by = rahy,, v =1,2,...
then
sup dy(B) < co.
NeNt

Using (9) and (26) we get
An(B) = Dy A1 (6)

m E
= —2 d2k+1[§lzk+1zbngzv+ 6z.rc+12 bzv%:-]
k=1 5 p=1

= 2 Aogonn [Fop 119 Ao — Aoppr? (Gopg d —1)]
= Z Gopprhogy < 1.

Remark. It could be shown, that the conclugion in Lemma 3 remaing
true without the assumption « has bounded partial quotients.

Also the conclusion in Lemma 5 remains true with the weaker assurp-
tion. (a,,) is bounded. This means, that the conclusion of Theorem A remains
true when we suppose only the boundedness of (a,,) (for the boundedness
of Ay (f) from above) resp. the boundedness of @y, (for the boundedness
of 4y(B) from below). :
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An exponential pelynomial formed with the Legendre symbaol
by
Huer L. MoNTGOMERY (Ann Avber, Mich,)

Dedicated to the memory of Paul Turdn

We investigate the behavior of the sum
p—1

7
@ 8(0) = 8500 = ) (%) ena)
which is 2 particular example of an exponential polynomial of the sorh
N
@) S(a,5) = 3 e,(na)

=1
with ¢, — 41. Among such polynomials, 8(a) has the unusual property
that
(3) Slap)l =Vp (I<a<p—1),
and 8(0) = 0. It is difficnit to exhibit a choice of & for which |8{a, &)]

< CVN for all a. The example known was found by H. 8. Shapire [B]
and W. RBudin [4]; a nice account of this and related problems was given
by Littlewood {3], pp. 25-32. In view of (3), we ask whether the sum §(a)

also satisties the bound S{a) < 1/15 Indeed, from Bernstein’s inequality
ittollows that if X > — I then

N\t
max |8{a, &)| < (1 ——«) max|8(a/K, &)|;
a ZK [+

thug the points a/p are nearly dense enough for us to deduce from (3)
that 8(a) < p’”. Henece it is surprising that this estimate is false for all
large primes p.

TazorEM. For p > 2, 8(a) < p**logp, and for all large p,

4) max |8 (a)} > —g-p”?loglogp .
T

o



