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Tet A = {a;, @, ...} and B = {b;, by, ...} be infinite sequences of
integers such that

(1) 0<ay, < ay<... and O0<b<b<..

Tt » is a non-negative integer, let #(n, A, B) dencte the number of ordered
pairs {i, j) of positive integers such that

&; + bj <N
Hrdds and Puchs have proved in [2] that if «> 0 then
@ v(n, A, 4) = an+olnt(logn) 7

ecannot hold.

Bateman, Kohlbecker and Tull in [1] and Vaughan in [3] have
extended the original result in various directions. In particular, they
have investigated the case where the main term in (2) i8 an arbitrary
“pice” fupetion (in place of om). However, in all these generalizations,
the cage A — B is considered. The aim of this paper is to investigate
the more general case .4 3= B. To simplify the diseussion, we investi-
gate this case here only when the main term (i.e., the function approxi-
mating r(n, 4, 4)) is an. _

Let A and B denote the sequences consisting of the integers of the
form

Zekzﬁk (where & = 0 or 1)
ke
and,

., .
Z .21 (where g, = 0 or 1),
e
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respectively, Then for n =0,1,%2,..., the equation ;b =n hag
exactly one solution; hence

rin, 4, B) =n+1

for all #. Thus an Erdds-Fuchs type £-estimate for #{n, 4, B)—an does
not exigh in this case.

As this example shows, in order fo obfain an Q-estimats for
r{n, A, B) —an, we must have gome restrictions on the sequences 4, B,
saying that thesc sequences are “near” in & certain sense. In fact, we
show that if la,—b,| is small then we havo the same Q-estimate ag in
the theorem of Tirdds and Fuchs:

THROREM. If a>0 and ihe sequences 4 = {G1, @5, ...} ond
B = {by, bs, ...} of non-negative integers satisfy (1) and

(3) a,— by, = o{a}*(loge,) ™Y,
then
(4) - r(n, 4, B) = an+o(n"(logn)~'?

canmot hold.

Proof. Let us assume that the sequences 4 and B satisfy (1 ) and (3}
but (4) holds; we are going to deduce 2 contradiction from this indirect
assumption.

We use the following notations: e = s(e) denotes a small positive
real number whose magnitude depends on a (but it is independent of the
parameter »); n denotes a large positive integer whose magnitnde de-
pends on a and ¢ and we put m == [m”z(log%)“l] We put ¢(f) =%
{for real §), r =1—1/n, 2 = Re§p,

+0 400
Fz) = 2 9, G(z) = Z P
F=1 =1
th =10, 4, B)—an and T(z) = ‘Z' 14
F=0
Then we have
LCLIONIR I &
1—=z 24’(:"’”4 B 2,(‘1»7‘1‘51) = Tr::)_: + 2'(=);
j=0 F=0
hence
(5) F(z)a(2) = Ta_j*'f'(l —) T ()
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We will estimate the integral

1 |2
J = f 1 (2)6(2)] da.
1]
Weo write
-1 m—i—Fk 20
L= S S el = 3 s
F=0 lis=—00
Then 4, 0 for all k (in partievlar, d, = 0 for k| > m); thus
—am |2
1_ p ﬂ‘
1 +4oo
- f Zr“ie a,8) Zwe ~b,B) V’ do(l8) dp
0 F=1 km-«m
—
s Ta"+bjd;c s % ?‘“‘i'l'b“'dk — "a1+[b —a,;)d I
TR 2 e g
ai—bi-;-lcm.n

For large %, a; << # implies by (8) that

1

b=l <5 w(logn) (< m<n).

Thus, writing 4(n) = 3’ 1, wo infer from (6) that for large »

a; =473

(n J= 2 ke min d,

asn 1Bl< —g- 12 (logn) =1
m—=1—k
= ( ) 1) 7" min oo Z i
o Deifenss -;- 2 3 ngn) 1 fpon)
W3l
T hl
> An)r'" min D NEET
Grghan —.j-nfli’-(mm;,y .1 , -
7}'?/"-1;--[‘1
=4 (?’L) ?‘37?’ min ,rﬂm-!-)‘c 1
Uong -;—nlfi(]ugn]—l Jurd
1 a1/
L= .A('Yb) it min prin { (’m:mk)

(B %ﬂlﬂ(logn)”l
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= A(n)yr® ([sn”ﬂ(log%)‘l] —_— n””(logn)*l)

TV e
> A{n) (1 - n_) E—fn”ﬂ (logn)™' > A(n)-

e 4 1l2 1 -
0o (logm)™
gince
i 1 1)"“ 1 - 1
m —_—— = — T e
?u—f—-}oo K gt _].00

(1), (3) and (4) imply that, writing also B(n = 3 1, for large n wo have

bysn
i 7
(8) _g_'% < r{n—-n'?, 4, B) = 1
“ aﬁ-b;gn—nif"’
/ L1 W T _ Y‘l . Z )
<( X a2 a)={ X ) :
ayEn—nl? by=n—nti* ayen—nll aystnl2+{a;—8;)
% |
(301 3] o
s ajEn
hence

A(m) > (a)2) R,
{7) and (8) yield

12
300

In order to give an upper estimate for J, we start from (5) and use

‘Oawchy’s inequality, Parseval’s formula, and algo the indirect asynmps
tion (4):

1
—= B logn)

J> 9 12,202,
@2V 255 3

I~g

n(logn)~".

®)
J=-of1 ez || 225 g
<a0f = :2”“ dﬁ+f 1 (2)1df
R jz;lzl’) a8+ f 'if_"m zdﬂ)( f 11T(z)|2dﬁ)}m
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7)2 -

< fll z}( )2dﬁ+

m—1

+2{(cf D detip) dﬁ)(ijwjejﬂ | dﬁ)}m

k ——-(m 1)

[ ag-+2 (doit,@?“)l’g

J =0

1~

1
= am? J
I
2

1

= 2am® | - :
¢ (1 —rcos2nf)— irgin 2xp|

d8 -+

m—1 -+00

w2 {( D)) ( ) ol aogiy o)

For 0 f
{10)

< 1/2, we have

{1 —reos2rf) — drsin2rg|

= (14 —2?’00527cﬁ )2

= {12+ 20 (1 —cos 2nf)}* =
> fn -m 32

1

(w7 2r-2gin? mf)Mt
(200 = (a7 sy
0 Qﬁ nt

R

>{§ﬁ

Furthermore,

for
for

+eo

> o (logj) ")

=3

(11) =0
ajnlf?
¥ n”") +

L
2 jenlf?

i) ol 3 #(logs)y )

?a1f2<;i

o( Z jllﬂ(lOgnljz)--Iraj)

)zlm{j

=0

”)+0( (ogs)-? Y‘jm ~J)

J

O{n) + o{(logn)™* (1 _..rﬂ)-“-ﬁiﬂJ

== O(n) 4 o((logn) " 'n*?} = o(n**(logn)™Y
since, writing
(1 a)™o “1+2W’

we have ¢, > ¢ for j =1,2, ..

(whero |z| < 1),
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. and for some absolute congtant o.
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By (10) and (11), (9) implies that for large n

. lin m—1

1z
1 1
(12) J«:zamﬂ( f i+ f —2‘-5«515) ~i—2{( > 1) s%m(logn)"‘}lm
i 1/ =0

1

1 i )

< 2ot (1+ Y f "1—3-1"1.6) +2{me2n** (logn) 1}
- I

< 2afen' (logn) (1 + tlogn) + 2{ (en' (logn) ™) e3n*F (logn) =i}
< Zae*n(logn) *logn 4 2 (logn) ™
= (2041 en(logn)”",

(11) and (12) yield
Iz

£
300

< (20 +1}e?,

but this cannot hold for sufficiently small ¢ (depending on a), and this
contradiction proves our theorem.
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"The main object of this nobte is fo show that the remainder term
in #he prime number theorem, assuming the Riemann hypothesis, can
be reduced from

W ) = -0 logy)

to
{2) y(w) = o+ 0" (loglogz)?),

except on a set -of finite logarithmic measure.
We also give short proofs of Cramér’s conditional estimates ({11, [2]).
of the mean value of the remainder term

X

o it
@) | f fpim—aP=t < X,
and
X a
) | to@ ==L ~ ologx.

1

T follows from (3) that for each funetion p = g, for which O +00 1l
& ~> o0, we have

p(@) =m0 (wllgqow)

for almost all @, i.e. except on a set whose intersection with the interval
{1, X7 has measure o(X). The proof that for ¢, = (logloga)? the excep-
tional set has finite logarithmic measure is & combination of the arguments
which prove (1) and (3). A similar method yields a short proof of Selberg’s



