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go that :
2, f(n28) ~ fn)|* = O(logn), w32,

NER

The outstanding case of Theorem 2 may thuy be deduvced from The

orem 1.
This completes our proof of Theorem 2.
In the latter stages of this proof the influence of Professor Turén’

ideas iy eloarly visible,
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A lower bound for linear forms in logarithms
by

MICHRL WALDSCEMIDT (Parig)
Dedicated to the memory of Panl Turdn

We give an explicit lower bound for a non-homogeneous linear form
in logarithms of algebraic numbers with algebraic coefficients. We pay
& special attention to the dependence on the degree of the algebraic num-
bers, and on the number of terms in the linear form.

1. The main result. We consider a linear form in logarithms of algebraic
numbers

4 = fo-+gloga + ... + i loga,,

where By, 1, ..., B, are algebraic numbers, and a,,..., o, are non-zero
algebraic numbers. Cur aim is to prove & new lower bonnd for |4} assuming
that it does not vanish. For a complete history of this subject, we refer
to [21.

When X is a number field, we denote by Zy the set of thelogarithms
of the elements of K*:

Ze ={lel; dcK).

When 16#x and @ = €', we write | = loga. We use the “absolute log-
arithmic height” k() of Néron and Lang [6] (the definition, and eonnec-
Hons with Mabler's measurs and with the nsual height, are detailed in
§2 below).

Our main result is the following.

TEBOREM. Let K be a number Jield of degree D over Q,1,, ..., I, be
non-zero elements of Lr, and f,, ..., B, be elements of K. Defime a; = d,
A<i<n), and

A = poFpiloga, 4+ ... +gloga,.
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258 M. Waldschmidd im“

Let Viyoooy Vo, W, B be positive veal numbers, satisfying
1DV ... <V,
v, > max{h(q);loge! (D} (1<j<n),
W = max {h(g)},

1< i<n
and
1< B min{e”"r; min 4DV, /[logel}.
1<j<n
Finally, define Vi = max{V,;, 1} for j =n end j = n-—1, with V} =
in the case n =1,
If A 50, then

4] > exp | —0(n) D*V, ... Vn(W+Log(EDV;§))(Log(EDV§_1)) %
x(Log By},
with
O’(n) é 28n+51n2n._
The method of proof is that of Baker’s sharpening ITT [1]; see also
(2], [4], 197, [10], [6]. The firsb pavt iz & transcendence grgument which

deals with the case of strong independence of the a's: we assume that
there exists a prime g such that

[K(aifq: ey ) K] = 7",
where of'? = exp(l;/g). In this case we prove the desired result with
C(n) replaced by O,(n, q), where

Gl (’ﬂ:, q) .€‘ 26n+24,ﬂn+4q3n+2_

{8ee Proposition 3.8 helow.)

In the second part, we remove this assumption, by using the cage
g = 2. Up to now, this reduction (the “final descent” of [6]) was nob
very aeccurate, especially in terms of the degree. For ingtance the only
lower bound which was very precise in this respect was that of [8] (con-

cerning the case n =2, §, = 0), but there the final descent is rather

straightforward. Here we perform this reduction without losing anything
more than 20n°!. To achieve such an estimate, our systematic use of
the absolute logarithmic height is essential (as far as the first part is
concerned, we use the refined arguments of [8]).

Incidentally, our dependence in = improves earlier known results.
In [12], T. N. Shorey wag the first one to give a dependence in # of the
shape n® rather than ¢, He was able to get sueh a sharp result by
using smaller steps than usual in the induection procedure. In [98], Loxton
-and van der Poorten obtained »™+°™ in the cage of strong linear indepen-
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dence. Here, we modify slightly the argument to get our estimate. However
it is likely that the same bound holds with C{n) < O™ for some sbsolute
constant U, and this would be usefnl for applications. We remark that the
method of [4], which avoids the cxtrapolation procedure, would give
egsentially the same bomgd as our theorem, apart from the term »* which
would be replaced by ¢", but on the other hand the absolute congtants
would be slightly smaller; therefore this alternative brocedure iz sharper
for small values of n.

Finally, we develop an idea of Shorey [11], who derived a surpris-
ingly strong result in the special case where gl the numbers ay, ..., a,
are close to 1, by taking a large radiug in the interpolation formula. Here,
we use the parameter ¥ (already introduced in [8]) which enables ug to
improve earlier resnits when the number max loge;| iy small, or even
only bonnded. I<d<n

Al these refinements are wuseful in applications. In a subsequent
paper, (') we derive several results of diophantine approximation (tran-
scendence measures and simultaneous approximations) where the depen-
dence on D and ¥ i3 essential.

2. Preliminary lemmas. Let o be an algebraic nnmber; denote by
n

PIX) = aeXP+ ... +ap =a, [ [ (Xu)

i=1
its minimal polynomial over Z. The “usnal height” of a iz

H{a) =§n?xblaﬂ,

=

and the “measure™ of a (see [7]) is

D 1
M(a) =a, | [ max(1, |g]) = exp f og|P(e ) at.
d=1 1]

Let K he a number field containing a, and let M & be the set of ab-

solute values of X, suitably normalized to satisly the prodncet formula,
Following [6], we define '

Hye(a) = J] max(, ja, /),
t!E.BfK

where n, iz the local degree of v. The “absolute logarithmic height” of &
is the number :

h{a) LogHy(a),

e L
- [E: Q]

(1} J. Austral, Math, Soo. 25(1978), Pp. 445-478.
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which is independent of K, The relation
M{a) == HQ(G)(G)

(seo for instance [3], Lemma 11) shows that
ki) -*—];Lo M{a)
{a) = D g ¥

where D = [Q(0): @]. Further, for any algebraic numbers a, § and any
non-zero rational infteger m,

(2.1) k{a-f) < R(a}+R(f)
and
(2.2) Ma™) = mh(a).

.., a, are any algebraic nambers, then

+A(a,)+Logn.

Furthermore, if a4,
(2.3} Ao+ .0+ a2} <

From the inequality

Rla)+ ..
Ma) < (D+1)H (a)

which is proved in [7], we see thal

ha) < (L0g () + §Tog(D+1).

But since s4+1<
it follows that

<ot for 222 and h{plg) = LogH(p/g) for plge,

h{a) é%(LogH(a)—i-LogD).

We now give a rather precise version of Siegel’s lemma, then a refined
Liouville inequality (essentially due to N. I. Fel'dman), both results
in terms of the absolute logarithmic height. We then give a consequence
of a classical interpolation formula, a lemma on Fel’dman’s polynomials
4{z; k), & combinatorial lemma, a recent result of Dobrowolski on the
Schinzel-Zassenhaus conjecture, and a rather trivial consequence of (2.3)-
For the next leroma, we denote by L(P) the length of a polynomial P
{i.e. the sum of the absclute values of its coefficients).

Lmyra 21. Let 6y, ..., 8, be algebraic numbers in a number field of
degree &. Let -

PelX;,...,X] (A<ig<n, 1<j<m)
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be polynomials of degree ai most Ny, in X, (for 1<i
1< k<) Define

X = max {(21} 65 )exp(Z.Nf et ( 915))}

lgi<m k=1

= 1<€jgm,

and

Vg =Pii(ly . 0)  I<ign, 1<igm).
If n > md, then there exist rational integers x4, ...,a,, not all zer0, such
that
kg

Z?’f,jmi =0 (A<i<m),

=1
and

mazx |, < 2+ (2.Xy™dn—mad)

Iign

Proof of Lemma 2.1. See [8], Lemma 4.

Lownra 2.2. Let 64, ..., 0, be algebraic numbers in a number field of
degree d. Let P e Z[X,, ..., X,] have degree at most Ny, in X, (1< k< 7).
If P(6,, 6,) # 0, then

\P(8,, ..., 6,}| = L(P)" exp{ Zde (62} -

Proof of Lemma 2.2. See [8], Lemmsa 3.

LEava 2.3. Let f be an analytic function in a disc |2| < R of the complew
plane. Lot & be a finile subsel of the disc |2| <7 with r < B[2, consisting
of 1 poinds which are lying on a straight line and have a mulual distance at
least & with 6 < min(r/2,1). Let t be a positive integer. Then

[} 18 (m)
|f|2r§2|ﬂR(4";'é“) +5( 6:) max fm(!s)

Proof. This is Lemma 2 of [4].

Levuma 2.4, For any positive integer k, let v(k) be the least common
maultiple of 1,2, ..., k. Define, for 2 eC,

Az k) = (#4+1) ... (e=K) k! (ke Z, k1),

and, for 1 and m non-negative integers,

and  d(z;0) =1,

A(z; k3 1; m) =§mﬂv(ﬁ(z; k)

For any integers 1> 0, m = 0, k=20, and any ¢ e C,

m! (ﬂﬂﬂ)kt (gg)kl.

[A(z; k3 3; m)| < %
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Moreover, let q be o posilive inleger, and let & be a rational number such
that gz 48 a positive integer. Then

1
(k)™ — A{@; ks 15 m)

i8 & positive integer, and we have v{k) < 3%,
Pinally, for any positive integers k, K and L with k > R, the polynomials
(dz+7;B))(r =0,1,...,R=1; 1 =1,..., L), are lincarly independens,
Proof. This is Lemmas 3 and 4 of [4] apart from the fact that we

2 1 &
hound (HZI]”]{;J“}“ZL) by (E&%@_—i—_) ¢, and »(k) by 3%

Lzyara 2.5, Let M and T be mon-negative integers, let a, b and B,
(m=0,1,..,M;¢t=0,1,...,T) be compler numbers.

Jor £ =0,1,..., T, then

M H
>y (:) (mb)7H,. == 0

Jor t =0,1,...,T.
Proof. This is Lemma & of [4].

LEMMA 2.6. Let D22 be an integer. There* evists a constant C,(D)
satisfying Co(D) < 6D7(Log D)™ such that &f a iz o non-zero algebraic
imteger of degree <D which i3 not & root of unily, then

Log [a] > 1/Cy(D).

Proot of Lemma 2.6. Thig is the main result of [5]. Notice that
Oo(D) > D[Log2 (cf. [10], Lemma 3). For convenience, we define Cy(1)
= (Log2)~". Therefore (D)< 9D% for all D> 1.

Levwa 2.7. Let 0y, ..., 0, be algebraic numbers, by .vey b, mom-zero

~ rational integers, and d,, ..., d, positive integers. Define

b = >'b,6,/d,
F=1
and ,
B = max {}b], d;}.
I<i<<n
Then . _
h(6) < (n-+1) Log B+ Logn +

3

B(6,).
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Proof of Liemma 2.7. We define

T
d ﬁﬁdk and b = bdd;'  (1<j<n).
k=1
Thus

7
a8 — b0,
j=1

and from (2.3) we deduce

k1
%(a0) < Logn- 3 h(bj0,).
j=1
Now clearly we have
k(d0) = h{0)— Logd,
(bj8)) < h(0)+Log )| (1 <j<n),
and :

< B (1<ji<gn), d<B".

The desired result clearly follows.

3. The conditional imequality. In this section, we assume that the
hypotheses of the theorem arve fulfilled, and we agsume that there in
2 prime number 4 such that the numbers

1
u}fﬂ = exp (—{I log aj) 1<i<gn)
generate o field
Hy =E(a9, ..., ol

over K of degree ¢". We give a lower bound for |4| (see Proposition 3.8
below) which depends explieitly of this prime number g. Later (§5)
we will remove this assumption by using the cage ¢ = 2.

3.1. Statement of the techmnical result. Yot €y Coy 1y Coy € y 6, be posi-
Hive real numbers satisfying the following inegualities

22
(1) 1>20¢7+ (19 +37(2n)" = (Logd)™~! )a;l +

(144200 et (272 + 813 (2n) ! e e 2
il |

+ e, —1 \

33 :
3oy 1 (18 +T5(4n)"t + = (Logz_f_.rnﬂ) 67+
+(18424n Ve P (354 + 483%"‘1)012“22}_

(32) o = 6+2%  6>1; 6<2y
(3.3) o = 08/25 if ¢ =2,

Gty < 2%y o, L 99,
¢, = 43/10 if ¢> 3.
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For instance ¢y =6, = ¢y = ¢, = 2° is a reasonable choice. We shal)
use other values of these parameters in Section 3.8.
We define

F, = min {exp(¢DV,), min {2¢DV [log ;| "}},
JE L)
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V:':—-l = (213"39!2DV:-1E1)n7
W* ma,x{W, nLog (2 ngDV ), 7@% LogEl},
U, = N Drmax (W', T, WV (Log B, Tog By,
Uy = djoidbead™(a—1)am (w) " DY, LV, W (Log V) (Log By

and
U =max{U,, U,}.

ProposiTIoN 3.1. If 8, = —1 and K = Q(ay, ..., Oy By oovey Buci)s
then
4] > ¢V,

3.2. Notations. We assume A<e Y, and we shall eventually
obtain & contradietion. We define non-negative integers 8T, L., L,..
-vvy Loy i the following way:

8 = gle;nDW* (Log E,)™17;
T = [U]og"DW™];

L, =[W*(LogB)™" '}
Ly = {Ulewesd"D(L_y+1)Log Vi _,T;
L; = [Ufeeang" D8V,

The following inequalities will be nsed repeatedly in the sequel.

(L<<j<<n).

(3.4) 8 Y LV, < Ulowo'D;
F=1
(3.5) B8 D Llloga < 2T je,eq";
=1 .
1 T4n
(3.5) B D) . (Tt ) 2 01— ) 5 (757

(notice that T > eehe,g"™'n™(n +1), hence (Tj;n} < T (egm1)™H.
Using_the inequalities ' '

atLogr<<a(l+Logayanm  for a1 and 2>1,
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- we easily deduce

i9 19
(3.7)  LogVr, < - @' DV +ulogB < @DV, Tog By,

i

and

(3.8) W* < max {W, 8gn*DV, % Log E;}-

The following inequalities use (3.2), (3.7), (3.8), and a little computation,,
(3.9) T 6(1-5-21:.—1)7]73_

(3.10) B\gL, < (Vy_ e,

(8.11) (Loy+ 1Ly +1) o Ly +1) D* U < exp (U [2%4"D).

(3.12) (L1 +1)Log Vi, < (38 -+ = )22 E'%‘

(3.13) (Ly+T,) < oliva=hm

{3.14) 12¢"L, By 8 < (L) F1)(VE_ et

We deduce from (3.13)
(3.15) 108 (L + Lne™") < (2 +07Y) U fo,0,4™D.
We define fi, fi, fi, f3, fo fo fi and f; by
Fo == (4207 ) (0060) 7 (L2070 (0000) 7 + (19 470 (2m) Y 272

11
fo = @715 Dm0 2 4 2079 001
+ (38 4+ 40n"1)2-22
Jo=( “1)—1{f1 +fat(20,8)7 (24 n™%) (e05)7 (2 +n T 2744

_l_"n—lz-—zl&t
fi = fibniomE,

Jo = 2741+ (2o,ea) T - (2 0T 2 oy0) " 4 270,
fs =fitfatFat (2000) 7+ (24071 (040) ™ 4 (1 072y 222,
T = 5+ (20000) 7 .
Fr = (o)™ ~ {3 (fi+ 1)+ 4(010) 7 4+ (EH 070 (20,05) " -
+{ogn T L 240722

Therefore (3.1) implies

(3.18) fizf+2 ¥t

We observe also that this inequality implies f, < 1/2.
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We consider the funetions
Ae+iy3 Doy +1344150)  0<i, <Ly, 0K, < L),

From Leroma 2.4 we see that these polynomials ave Iinearly independent
and satisfy

(8.17) |d{g+ 215 L +1;5 A+158)| < exp(f, U/g"D)
for 0 <K< T and fof < 2¢"E, B, 8 (usge (3.9), (8.12) and (3.14)). Moreover,
Tor all rational integers ¢, s with 1< @ <¢L,, s> 1, the numbery
AQ 8425 LT +1; Ay+1; 1)
O<A, <Ly 0<d <Ly 0T

are rational numbers with a common denominator which is at most (by
Lemma 2.4 and by (3.10) and (3.12))

(3-18) (an)E(L_1+l)(L0+1) 3(Lw1+1)52‘ g exp (f2 U/q'nl)) .

To each (2n4 3)-tuple (A_y, ..., 4,, 7, vy Tpeyy ) of non-negative
integers satisfying 0 < LIy (~1<j<n), we associate a polynomial

o

Astey ) = 3 (8 (') A7+ Ay Tatls Aods m—1i x
2

13:0

x [T ot it

r=1
We write A for (2_;,..., ,), 7 for (Toy ery Tyy)y and 7] T for T+ ..
wee Fr s T
Finaily we uze a remark from [8], §4.2: the met
o1k I
a0 fam o g my, By e N, gt ... b B+
+k, < D—1}

i8 a set of generators of X over Q; we choose a subset of free generators
£,y &y, and we write

-1 n

£ = (n ﬂ:"”-“) (Haff’d), 1€d<D.
r=0 F=1

3.3. Construction of the rational integers p,(1).

Lirnaua 3.2, There ewist vational integers Pa(d) (1<d< D, 0 A Ly,
=1 j < »n), wot all of which are zer0, hounded in absolute value by

exp(f U[q"D),
guch that for all (n+1)-tuples {7y, o0y Tpe1r 8) € NV satisfying |7 < T,
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I<s< N end (s,9) =1, the following equation holds:

D
22?@(1) £44(8, 7) ails a:,“s = Q.

A d=1

Preoof of Lemma 3.2. For 0 <i<< T and 0<eC B, let d,, be
a common denominator of the rational numbers '

A(s+aoy; Lo +1; Ag--15 1) O0<i,< L, I<h<
0

Ly,
<V )
therefore, by (3.18),

{3.19) & < exp(f,Ujg"D).

We consider the following system of (T 1’”’) {1_ i) S cquations:
q

I Al
D13 o) D) e oA+ Ay Ty +15 Agb1 wo=) [ [ ] 27 x

1 d=I T’

3=1
n—1 . ¥y n
» m, 2 k
<(JT (T) R e ([ dmina) .
r=g T F=1

Here, 7' stands for (g, ...,7,_;), with 0 < <1, (0<r<n—1). We
have (L_,4+1){(Ly+1) ... (L, +1) unknowns 244} in Z. We use Lemma 2.1
with

n—1

I
X = max{ZEEd,ms[A(s+l_1; Loy +15 A1 ZDMTS)I(H ,‘{;’i—t;f)x
1,8 T

a=1 17/ fe]
n—1 fn—1

(] (2 25) o0 3 (et DM+ 8 (L + D) ()
J=0 7 =

=

S @t 1) oo (L F) DAL+ L) 5D {45 T gD + (T -+ 0D) W 1

+Sj‘Lij+nDVﬂ}
=1

s expile—1){fs—n"'27*) U jg"D},

thanks to (3.4), (3.11), (3.13), {3.17) and (3.19).. Using (3.6) we easily
deduce Lemma 8.2,

3.4. The main nductive argument. Let J De a non-negative integer,
with

JQ[E‘B&TJ&] 1.

Logg

The following claim will be roferred in the sequel as “fhe main induective
argument”.
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There exist rational imtegers PP (1<d<D,0< L <Y, -1
< j< n), not all of which are zero, bounded in absolute value by

exp (f3 U [g" D),

such that for all ve N® with [v| < ¢~7T, the funciion

pr(2) = 5‘ v?&” A bz sz, T)al --°a:1ng

=t
satisfics
(PJJ(S) =0

for 0<s< '8 and (s, q) = 1. Moreover,
I =L, I'=1L, ed I"<q'L; (E<jiga).

This assertion holds for J = 0, with p!¥(4) = p4(4), by Lemma 3.2,
Throughout the present section, we assume that the main industive
argument is correct for some non-negative integer J, with ¢’ < L,, and

we manage to prove it for J 1.
For each A = (A1, ..., A,) with 0 4 < I (—1<j<n), we define

(1) = Z'p A a5

am1
we remark that
(3.20) Loglp (M) < f;U|¢"D.

We congider the functions
fJ,r 2) = Zp('”(i) Az, 1) enfor. all® .., alug®
a

where y; = i+ A.0; (L<<j<n—1).
We need three lemmas. The first one provides a relation between
fr: and gz,
LEvmA 3.3. For |v| < T and |2| < o8,
e (®) —@r-(8)] < e™ U,

Proof of Lemma 3.3. We first remark that
Fral@) = psale) = D 99 (2) As(e, v)alt® ... alns(end 1),
A

By the inequality _
le¥—1] < lwle™  for all weC,
wo have _ |
le*nd2—1} < gL, Alg" S exp (¢"L,,|4]8) < D*T|A].
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Hence, using {3.4), (3.11), (3.15), (3.17) and (3.20), we obtain
177,:(2) = @7 () < DUIAN Ly +1) oo (T 1) (B + L,6P7) T %

xexp (L +£) UIq"D+4"8D 3 I,V))
=1
< |dlesp(£,0).

Pinally we use the fact that (3.16) implies f, < 1/2. This establisher the
result.

The following lemma gives lower bounds for the algebraic numbers
@s.(8) and @, (s/q) with s e Z, when they do not vanigh,

Lumma 3.4. Let v e N® satisfy |oj < T

1. For k and s integers with 0<h<n and 0<s< g'+*S, either

{UJ’.,(S) = O or

(3.21) Loglps.(8)l > —f,Ujg" %,
2. For 0 <8< q’"'8, dither ¢;.(s/g) =0 or

{3.22) Logle, (s/g)l > —fT

Proof of Lemma 3.4. For the proof of (3.21) (resp. of (3.22)),
we define ¢ = ¢ (Tesp. ¢ = ¢/g). The number Pr-{0) I8 in K (resp. in K,).
Leb dryy,.. be a commmon denominator of all the numbers

Mg T o+ —1+}-3 htlit)y, (0<A,< Ty, 0 A< Ly,

<<t 1)
Thus from Lemma 2.4 and (3.18) we deduce

{5.23) 11,50 < exp (T /D).

Thenumberd,,, . o, .(c) is a polynomialin fg, By, ... Byt 80 0y, ...y @,
(resp. and o}, ..., o5y

dJ-l-l,r,a(pJ,"r(o')
Fal o
= 2 D NG s (@ Ay; By b1y ApHl; mo—7l) X
A d=1 1

AT T (3 e o)

The length of thiz polynomial is a,t most

(Lox 1} oon (L +1)D(Ly + L) -exp {( fr +fa+fo) U/ D} -
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We now use Lemma 1.2. Tn the case o = s, we get, from (3.4), (3.8), (3.11),
(3.13), (3.17) and (3.23):

”LOg!dJ-H,r,S(PJ,T(S)E < (D —'1) {I"Gg((L—l +1) e (I/n +1)-D) -+ )
+TLog(Ly+ Ly) + (i -+ fo +13) UjgD} +
+ DIW + Tlereyd™ "' +nD*W +nD2¥,;
using (3.23), once more, we obtain (3.21).
Similarly, in the case ¢ = s/g, we get
—L0g |dg41,0,00%7,:4819)]
< (g"D 1) {Log{(Ly+1) .- (L +1) D) + T Toog (Ly+ L) -

+(fi+fo+ 1) Ul D+ 4" DIW + U jeyey -+ ng" DY (W - 7,,).

Tt i3 now clear that (3.22) holds. This completes the proof of Lemma
3.4.
The next lemnroa is an application of the interpolation formula (Lemma

2.3).
Levwa 3.5. dssume that & is an infeger with 0 <% < n—1 such that
IfJ,'r(S)i &= e_Ulz
for all (n—++1)-tuples (z5y ..., Ty_q, 8) € N satisfying

k
lrlg(l—%)q‘fi’, 0<<s<< g™ and (s,q) =1.

Then for all n-tuples {(tg, ..., Tooq) € N™ with

w1 2 ooz,
2n

we have

gup lf.f,r(z)l g., exp( —-qu/gﬂ—k—l).
el 415

Proof of Lemma 3.5. Using the differential equations

fi—1

an 4 m! ;
e = > P ( Il (k»gaj-)“,:) Frern

l#]=m g=1

together with the inequality
ama;xT (1+llogay|+ ... +lloga, I\ < exp{TLog (L +aDYV,_,) <,
“m

we deduce from the hypotheses that

an

Eﬁf.}.‘t (6‘) ~Uis

e
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for

0 A _
lrl-‘i(l”“?an_)g T, 0Sm< g 2m, 0<s <M, (s, q) = 1.

We now apply Lemma 2.3 to each function

k41
fJ,n [7f << (1 — —2-;) Q_JT,

with
r=38, B =4Dy, & <={seN; 0<s< VR, (s,9) =1,
t=[T2¢"n]+1, 1= g"*"(l—njl) 8. |
q

From (3.5), we clearly have

R Z‘ I log o] < 2¢" B8 i‘ Lylloga;| < 4¢"+ 1 U fo,009™ .
Therefore = =
Logfs, e < Log((Loy 1) ... (T +1) D) + (i +£2) U gD +
+ TLog (Ly 4 L6y + 4411 T Je,e,q"

U ,
< Wf (fl [2+fi2+(2+ 27 (2e;65) 1 4{e,0,)~t +2—23) -
Further, since

1> g™ (g ~1){esnDW* (Liog Byy~* -1}
and

t> U[20.00g™ " DW* —1/2ng”",
we see that '

(7]
HLogH, > (Q“—-l)g—qﬂq (01_1 - (2010'?,)“-1 - 68(205)._1) .
We conclude that

4r\B
2|flg (F) < 2exp {-— U/401q"_"‘1+

v .
+ e (AR Hea) T (5 +2n“)(4ws)"“+2“”“3"“22"”‘)} .

On the cther hand we have 7/l < g2 {g~1) and

187 1\ . 1
liLog ("aT) < (1 - "q_) ¢ 5 ST Log(9g* (g —1)) +¢"+H1—1/9) 8

9q* )
Log |——
g—1 g(q—-l T g-1 T
2g Log(2q) €y g* eeanDV,
< U[6—TLogh

=
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thanks to {3.3). Thus

( 187 )“ i
b Max —

— S
< .
8l el
st

an
'&;ﬁfJ,r(s)

Leroma 3.5 easily follows.

‘We shall now use the three preceeding lemmas, first to perform an
extrapolation which will extend the range of s (at the eost of diminishing
the range of 7) for which ¢;,(s) = 0, and then for the interpolation pro-
cedure on the multiples of 1/g.

Here is the extrapolation.

Lenma 3.8, Let k be any integer with 6 < k< n—1. For all (n+1)-
1uples {Tgy ey Tyeqy 8) € N such that

< (1—k2n)g T, 0<sgg’™™8, (5,9) =1,
e have
P7,:(8) = 0.
Proof of Lemma 3.6, For & == 0, this asserfion ig our main induetive
hypothesis, We aszsume that Lemma 3.6 holds for some integer %, with
0 k<< n—2, and we prove it for £-+1. We first use Lemma 3.3, and

then Lemmsa 3.5; we get
a8} < exp(~f,U /g7
for 7] << (1— (%-+1)/20) ¢ /T and 0 < ¢ < ¢/ 18, We now use Lemma 3.3:
pae(8) < 67 VR texp(—fU g,

for the same values of 7, s; finally, remma 3.4 and (3.16), (3.21) enable
us to conelude that the considered numbers ¢;.(s) vanish. This proves
the assertion of Lemma 3.6 for Z41. :
We now interpolate our auxiliary functions on the points sjg, s ¢ Z.
LEya 3.7, For all (n-+1)-tuples (v ..., 7yy, 8) € N1 with
PI<g7T  and  O0<s<g™8, (5,0 =1,
¢ have
Pr,:(8/4) = 0.
Proof of Lemmsa 3.7. By Lemmas 3.3 and 3.6, the hypotheses
of Lemma 3.5 hold for % = n—1; hence
(@) < exp(~£, 1)
for Jo} << ¢S and [vf < ¢/'7. Oonsequently
1f7:(8i0)] < exp(—£,0)

for 08 <g'M8 and {v| < ¢ 772, Using Lemma 3.3 and (3.16), (3.22)
once more, we dedunce Lemma 3.7.

to see that the same holds with ) + d,q,
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We now prove the main induetion hypothesis for J L1 (the following
argnments are taken from [4]; see also [2] and [67])
Tsing our assumplion

[If(a%"q, reey af{‘a) 1K} =g,
we express the numbers ¢;.(s/g), given by Lemma 2,6, on the bagis
{(ad .. dlp )y (1, .., 0 e f0,1, ..., g—1}".

We choose (A7, ..., 4), Wwith 0 A< g—1 (1 < j <), in such & way
that at lesst one of the numbers

P(J)(}*—u Aos lg"i‘zl!i" ey A 0)
with

Lgii"n = I‘ml)

O<h <L, ~1 <<,

Lf;”‘l) — I, ana L§J+1) — [_3. (L;_Jl_lg)]

(l<j<n),

is non zero. We denote by "9 (1., 4, ..., 1) the thus obtained numbers,
and by p§+(2) the rational integers defined by

Kl
PNy = Sl e,.
d=1

Hence the numbers
.J' 1 2 7\ [ A o
n 7, T
,21’( ’ )(ﬁ)Z(ri) (—q— + %) R
(a 7=t

n—1
X A(gT T+ Ay Loy 1y Agb1; TU_'TI;)H (R +4g+

el

(A4 2a) ) [ [ ot

i=l
are zero for {z| < ¢77"', and 0 < s < ¢"*8, with (s, q) = 1.

0

¢
We use first Lemma 1.5 to see that the same holds with (i"— + A,,)
q

replaced by A9, and then the relations
L
‘H'r -+ Anﬁr = __(”[" (A‘? + "{rq -+ ("v:r); "I'“ ;Lﬂ,q} .Bf - (}“S + lﬁﬁr))

cony Ayt A replaced by A,, ..., A,.
This completes the main induction srgument,.

18 — Acta Arlthmetica XXXVII
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3.5. The contradiction. Following the arguments of [2], we show
that our hypothesis |4] < exp{— U} leads to a contradietion.
LogLn}
Tooa H

Weo write the main induetive argument with J, :{ 3
0gq

clearly we have ¢v > L,, hence Lo = 0, and we get

oo 0 zfh)
;Z (IZ‘ ...12 PYOAY A8 -F Ay By +15 Aot 7) X
“h— 1L —1 -2

ol L, ahet® AR, A{bﬁgz)l,’ge_ql =0
for all (n-++1)}-tuples (74, ..., Ty, 8) With |2 < ¢7707, 0 < 5 < ¢708, with
{8, ¢) = 1. In particular these equations hold for
0T, 0SSP  (Igig<n—1).
Sinece the Vandermonde determinani
. At (0K Aoy T < L&ﬁ’%) ‘
does not vanish, the new sum in parenthesis above is zero. By arguing
n—1 times in the same way, we obtain
L.y Iy
E DYy, Ay,
127=0 dg=o
for 0K A <IPY (L<ig<n~1), and 0 <t 3¢ V0, 0 < 8 < 708, with
(g, ¢) == 1. This implies that each polynomial
Lo Ly
PYO(2) Aot y; Doy 415 4, +150)

2li=e =0

vy ln-l? 0) A(Q_JOS‘E‘}'-J; I-’—l "‘E'li }'D'I"l; t) = {0

(0l < LY, —1 < im)

has at least 1¢~70T -3¢708 zeros; but since these polynomials have degree

at most L_,L,, it follows that
Py oy hy) = 0 for OéleLSJD), —l<ji<a,

contrary to construction. This establishes the desired eontradiction, and
completes the proof of Proposition 3.1.

3.6. Conclusion.

FropostrIoN 3.8. With the notations of the theorem, we assume that
there ewists & prime number g such that the field K (al'?, ..., o) has degree
q* over K. Then

|| > exp{—Cy(n, ) D"V, ... ValW +Log (DY} B)){Log (EDV._,)) x
| ' X (LogB)™"""},
where Op{n, q) < 2SnHiiphtigints
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Proof of Proposition 3.8. We first remark that the lower bound
is weaker when D is large; therefore there is no loss of generality to assume
K = Q(alr ceey Opy 130? LERS ﬂ-n) In the case ﬁ?‘b == "—1, we can write

max{W*, Vi, W'V (Log Bh)™", Log B}
< (W™ Log0:) (Vi + Log By) (Log By)~!
< gL DYWLV (WE - Log B) (Log B,)™"

consequently, i W* = TLogB, and 2% < d'o00h00,, then U, < U,. Iu
Proposition 3.1, we bound W by (ﬂLOg(Z“gﬂﬂ))('W-{-.ng(EDV;l;)) and
Tog V_y by (nLog(2%gn)) Log(BDV;,).

Now we remove tho hypothosis 8, = -1 : there is no loss of gener-
ality to assume f, = 0, therefore we ean multiply through by Bz and
use the following congeqnence of Lemma 2.2:

16211 = exp(— Dh(8,)) = exp(—DW).

Sines A(8.A7") < 2W, we geb the same bound for " Therefore, we can
agsume f, = —1, provided that we replace ¢, by, say, 6 = ej-+-2-°
= g,--27°% Consequently we geb

(824 Giln, 9) S eyendfe,e,g™ (g~ 1w (1) (Log (2ng?)){Log (2%ng?)) .
In the case n =1, we ¢hooso ¢, = 2, ¢, = 2% ¢, = 0, = 2%, and we bound
(L+27°)(1.076)(g—1)(Log (2"%¢"))* by 2% This yields
0.(1, @) < 2%,
In the case n = 2, we choose ¢, = 3110, ¢, = 2% ¢, = ¢, = 9% and we
bound (3.1-+27°)(L.076) (g —1){Log (2°)){Log (27g)) by 2°¢*. Therefore
0.(2, g < 2Y¢". '
In the case n =3, we chonge g, = 3, ¢, = 25, ¢, = 0, == 2% and wo hound
(3+27°)(1.073) (¢—1) 8% (Log (2¥3¢)) by 28¢%. Henco
(1(3, @) = 27",
Finally, in the cuse =4, wo choose o == 5, 0, = 2%7% ¢y = g, = 27,
and we hound (B--27°) (1.075) (¢—1)n™(n!) ' "{Log (2" ) by 2*ng’.
This completes the proof of Proposition 3.8,
_ The preceding proof can be used o show that there exists an effco-
tively computable absoluto constant », 3> 1 such that
(3.20) Ui(n, 2) < (438n)"

For the proof of {3.25), we remark that 20627 < 4835, and we choose
¢ = 10 +435/16¢; we take ¢, ¢, ¢, sufficiently large. Since (3.2) is not

for all n 2 n,.
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satisfied, we replace the numbers 2'% 211, 2% in the definition of V2_,,
W*, U, respectively, by very large constants.

4. Linear depemdence of logarithms of algebraic nwmbers, In thig
gection, we prove two auxiliary results which are needed for the final
descent. We first prove that if I,, ..., 1, ave logarithms of algebraic num-
bers, and are -linearly dependent, then they satisfy a linear dependence
relation with rather small coefficients. This result, which improves
Theorem 1 of [16] and is proved in & very similar way, shows that the
proof of onur theorem cau be reduced to the case of linearly independent
logarithms. :

Limyva 4.1, Let K be o number field of degree D over @, and 1y, ...,
linearly dependent elements of L. Define o = exp(l) (L <j < m)

Then there exist rational integers 4y, ..., 1, not all zero, such that

tlll+ e "f‘“tn‘Zm == 0

b

and
[l < (9 —D) DIV, VLV (A< h << m),
where
1 ,
Vy = ma.x{h(aj), EII}I} (L<j<gm).

Proof of Lemma 4.1, We assume, a3 we may without loss of gener-
ality, that m > 2, and that any m—1 of 1, ..., I, are linearly independent.
Thus there exists a unique (up to a factor +1) set of relatively prime
integers 4, ..., %, such thab

tL+ ... 1,0, =0.

Let % bo an integer, 1 <<k < m. We intend to bound |¢,] {the idea of
bounding each 4] rather than max [f;| is due to Maurice Mignotte).

1<i<m
We define :
¢y (D) = max{N > 1; p(N) < D},

where ¢ is Euler function; therefore
e (D) <20 and g, (D)< 4DLogLog(6D).

We choose positive real numbers e,,...,¢, in the following way. For
§ #h let(*) |

o' = (m—1)-max{(Log2) *Log | Ny g (s denay)l,

. oy
Cu(D)Logmax (|a;], [ oY)

b 5z e-a (DI

(*} Asusuasl, ]FI denotes the maximum of the absolute values of the conjugates of a.
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where Cy(D) is the constant of Lemma 2.6. Further let

e -1
o= [] "
l<i<m
ik

Since ¢ ... 0, = 1, Minkowski's linear form theorem (e.g. [10], Lemma B)
showa that we can find integers s, ..., s,, not all zero, such that

g —sdsflil <o (1isim, § #F),

and
|81 << 6.

(o] = “jHPep'j
P

be the ideal factorization of ¢;, where %; is a unit in X, ¢,;c 2, and p
runs nominally through all prime ideals of K. Tt i3 readily verified that

For 1<j<m, let

leg,s < (Liog |V g (a;denay)l) [Log 2,

b/ "m
jg"p.ﬁj{ = |;§€p.f(34”3ktjﬂk)l< D) el <1

Igjism
¥k

and

for all p, and therefore the number
a=ajl,., amn

i8 & unit in K. Similarly, for all embeddings o: & — C,

| 2 s Loglagl|< D' ¢lToglal]| < 1/0,(D),
= e

8¢ by definition of Cy(I}), a is a root of unity. Let N he its order; then
N<Lo (D), and
mn
NE SJZ} 62'0‘:7'52. :

F=1
We observe that

128f3f|< 2 ol < 2rfp_y (D),
FEDY

l<ism
frk
thus
byl
F=1
In particolar ¢, is a multiple of #,, and therefore [t] < ¢;. Bince

[e|dena< M(a) and M(a) = M(a™)
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for all non zero algebraic numbers o, we have

o< (m—1y""" [ [ maz{C,(D)Log M{ey), p_1(D)Y]/2m].
1<ism
Tk
This completes the proof of Lemma 4.1.
We deduce from Lemma 4.1 the following corcllary (compare with
[8], Lemmsa C).
Lemra 4.2, Let K be ¢ number field of degree D, and let o be o non
zero element of I. We choose @ non zero delermination loga of the logarithm

1
of a. Lel m be a positive integer such that the number exp {ﬁ_n: log a} belongs

to K. Then
m < 9D max{k(a), logal/D}.

Proof of Lemma 4.2. Let I; =loge, I, == ;/m. By Lemma 4.1,
we have #5410, =0, with rational integers ?;,?, not both zero, and
[, sabisfies the desired bound. Sinee I, # 8, i, iz & multiple of m, and the
result follows. o _

Remark. The preceding proofs show that, more precisely,

(a) if = i3 2 root of unity, then |m|< p_;(D)|loga|/2;

(b) if @ is aunit, but not aroot of unity, then |m| € 0,(D)Logmazx {la,

a5 |

(¢) if ais not a unit, Im| < (Log2) " Log| Ny (adena)).

The following result is a refined version of [4], Proposition 2, and [6],
Iast chapter, Lemma 5.1. The main feature is that we do not assume that
1, iz a rational multiple of 4w, and nevertheless we never have to consider
linear forms in w41 logarithms.

Prorosrrion 4.3. Let K be o number field of degree D, and ly, ..., 1,
be linearly independent elements of L. Define o; = exp(ly) (L<j< n),
ond let V, <. .. <V, satisfy

V;>max{h(a), BID}  (1<j<n).

Then there ewist clements 1;, vioy by Of Py together with rational integers
M (L<<e<<n, 0<]<<s), such that
(a) Por L <5< n,

s .
My gl = Zm'm-t; and  m,, > 0.
Fael

, {b) For ?aeh jarims 7 such that K contwins the 'p—th roots of umity, the
Jield Elexp (B[p), .=, exp (L, [p)} has degree p™ over K.
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{c}) For 155 n,
max {i(e®), LI/D} K Vy+ ... +7,.
(d) For 1<<s<<n,
max m, ;| < (9D s 1(VF)°.
0<ICE

Remark. The inequality (¢) explains why we loose #! in the final
descent, and, essentially, nothing more. It does not seem straightforward
to replace it by V,< ¢V, with an absolute constant e.

Proof of Proposition 4.3. Let M be the Z-module generated
by by ooy by, and let M be the set of [ eZy such that 1,1, ..., 1, are
iinearly dependent. Let I e M’; Lemmg 4.1 shows that there exigtsa ke Z
gnch that ke M and

1<k (D)"Y, ... V,,.

Therefore M is of finite index, say », in M, For 1< s < n there exist
integers ko 1y ..oy Koy With %, > 0, such that

]
SNk 1 oeuld.

2 i
j=t

Let k., denote the smallest positive integer for which gueh a relation
holds (therefore 1 <k, , < u). After dividing by %, we may assume
O0<k,<u-1 A<gesn, L<jg<s—1). Let us define I, ..., 1, by

8
Dy =l (1<s<n).
=1

It is easily checked that I;, ..., 1, is a basis of the Z-modnle M’ (¥t is
easier to work additively with logarithms, as here, rather than mulbipli-

catively with I£¥, because of the torsion; here, M and M’ are free Z-modu-
les)

Tt is readily verified that
Gl <l e il (L2 < n),
Similarly, using (2.1) and (2.2) we deduce
Mag) < hlay) + .o +hie) (I<s<n),

where a; = exp (%), This proves (e).

Sinee 1,, I, ..., I; are linearly dependent, Lemma 4.1 gives

g
Mg ,ols = st_:,l} (L s<<n,
i=1
with i, > 0, and max I, ;| satigfying (d).

PSS Ef]
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Let p be a prime such that K contains the pth roots of unity. Assume
that the field K({a))"", ..., (a,)"") has degree < p™ over K. Then by
Kummer's theory [6] we have a relation

280 M. Waldsehmidt

(@)t .. (@)™ = 7P

for some 7 € K* and non negative rational integers ry, ..., r,, with
1< max < p—1.
1gi<n

Let logy be any determination of the logarithm of . We iind a rational
integer »; such that

Lid
D) i —plogy +2inr, = 0.

j=1

Let us consider the number A = logwn—2imr,/p. Since X contains the
pth roots of unity, A e £, Moreover pi s M’, hence 1 € ', Thus there
exist rational integers a), ..., a, such that

A=ali+ ... tagl,.
From the relations
L PpA = ijlj = Epaj
J=1

we deduce v; = pa; (1<<j<n), which contradicts 1<

Thig proves (b), and Proposition 4.3 follows.

max #; S<p—1
lefan

5. Proof of the theorem. We distingnish three cases.

Case a. The field K(ay, ..., a,) has degree 2" over K. As already seen
in the proof of Proposition 3.8, we deduce the desired result from Prop-
osition 3.1, provided that we replace, firstly O(n) by O4(n), with

Ci(n) < ey'eyefee,28mn® ™ (n )L,

secondly W-+Log(EDV,) by

- 2
ma,x{W; %Log(2"f:zDV:)_;-—1;LogE ,
and thirdly Log(EDV,_)) by
Log(zlsnDV:{ ).

Case b. The numbers 1, ..., 1, are linearly mdepmdem (over Z). We
first wse Proposition 4.3 with g = 2; we get

My oly _Zmﬂl

j=1

L<s <),
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with

max [m,,l < (9D (Vi

D j=C8

lss<n
and o )

max {hla), [LI/DI< V; =3V, (1<j<n).
Substituting, we get
n
A = py+ jj Blis
where
[
ﬁ:; = Zma,jﬁa/ms,n 1< J = ).

a=j
Trom Lemma 2.7 we deduce

max {h(8)} < nW-+-0*(n+1)Log (D* VY 4-x,,

1gj<n
with

%y, = 0 (n+1)Log(9n) +n(n+1)Logn'+ Logn.
Moreover, since

1175 < max Il [V <

<ty

max [[]fV, < < 4D/H,
1ty

we obtain

B < min {¢”7, 41) mm Vj,’]Z,I}

Therefore, nsing the case a, we obtain the desn'ed bound, with 0{n) replaced
by Os(n),
Oy{n) < Oy (n)n!{l -+ Log(2%n%),

provided that we replace W --Log(EDV;]) by
max {WW +0? (0 +1)Log (DPVF) -+ 5, ; nLog (2¥n* DV ); %— LogFE } .

Case o. The numbers 1, ...,1, are linearly de;pendent There is no
loss of generality to assume n > 2 Ameong b, ..., I, we seleet 1, ..., %
which are @-linearly independent, such that, :Eor 1<ign,

bj,olj = ij‘slg,
L

with rational integers b,, > 0, b1y -0y bjp. Moreover, by Lemma 4.1,
we can choose
max (b, <

[ T
1jaCn

B(n—1) DY (Vi
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Plainly, we have
*
4 = fo+ 3 B,
8=1

where
B
0= 3 Bbialbss  (1<s<7).
=1

Lemma 2.7 shows that

max (82 < nW-ta(n® —1)Log (D*V]) 4,

1ar
with

#y < n(n* —1) Log(9 (n —1)) - Logn.
Let us define V3 = V,_, . (1 < s< 7). From the case b (with » replaced
by » < n—1) we see that the conclusion of the theorem holds with ((n)
replaced by U, (n),
Oy (n} < Oy(n) (832%2)"I7

provided that we replace the facter W--Log(BDV])) by
max{{(#n—1wW +n(n—1) (n+2)Log (D V) +(n—1) sy, #p_1 3
nLog(2Y¥#*DV}); Log B},

Conelusion of the proof. Because of the small value of C,(n),
there is no loss of generality to assume that we are in case b. Binee
nLog(218n2} < nt{n+1) for n2> 2 and 3ni(n-+1)<wx, for n=2, we
plainly have 0(1) < 13 (Log2)C, (1), and C(n) < #,0s(n) for n = 2. We use
the values of ¢, 61, 65, ¢, Indicated in the proof of Propogition 3.8, and
¢; = 08/25. Turther we nse the following bounds:

1420 13 (Log2)(1-+15Tiog2) < 27,

100
{24Log3 +19Log2)(1 417 Liog 2 51 +-5-8 %8 < 2t
goTLILog e 100 7
. ' - 98 10 29
{12Log2+121T0g3) (1415 Log2 - 2 Log3)(3 42 )3663 < 2%,
and
) g 98 15,.2 4 .n N3l
{B.1) (B8-+2 )m(H-Log(z 1} nin, 2" < "2,
Therefore

0 <, oEI<2®, 0(8) <2,
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and
5 .
: C(n) < 2 0™ for >4,

This completes the proof of the theorem.
Final remark. I wo replace (5.1) by
68
(5—|-2‘E‘)~-~«—100 (L-FLog(2¥n*)ln'x, < 62" (resp. < ghan+isy,
we gee that for all =1,
G(??:) < 2911.4-39')‘&2:@ and G(’)?;) < 2101!4—33n2ﬂ-

Finally, since 43b < 161e, we easily deduce from (3.25) that there exists
an absolute constant n, = 1 such that

C{n) < (13%)™  for all %= n,.
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