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with b =w, Il =¢r+1°4+2°+ ... +{n—1)" and ¢ =2 For the second
statement one can apply the Corollary of [6], Theorem 3 with a, =N,
by =1, ¢; = & = v+ 2 L+ (1)

Added in proof. A result similar to Theoremn %, bub for the equation ILER
+2% 4 ... 2P+ B(z) = % has been publiched in Aecta Math. 143 (1879), pp. 13,
Here E is a fixed polynomial with rational integer coefficients. The proof in that
paper differa from the proof in this paper. Furthermors, a proof of the result of
Stroeker mentioned in Remark 1 has been published in Nieuw. Arch. Wigkunde 24
{1978), pp. 476-478.
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Small solutions of quadratic congruemces and small fractional
parts of quadratic forms

by

A, SommzeL (Warszawa), H. P. SCHLICKEWET
and W. M. Scmvarpt* (Boulder, Colo.)

1. Intreduction. As for quadratic eongruence, we have

FeeorEM 1. Let Q(x) = Q(zy, ..., m;) be a quadratic form with tndeger
eoefficients in an odd number b of variables. Then for each naiural m there
are infegers @y, ..., &), satisfying

{13 Q@1 ..., 23) =0 (mod m)
and having
() 0 < max{|oyl, ..., o)) < me™,

where elh) = (1/2) 4 (1/2h).

It is clear that the result remains valid for even h, provided we set
e(h) = (1/2)+(1 [2(h—1)} in this case. Clearly e(h) may not be replaced
by & nuomber less than 1/2, but it iz conceivable that the theorem remains
true with the right hand side of (2) replaced by em*® for h > h,.

As for fractional parts, Heilbronn [4] proved that for ¢ > 0, ¥ > or(e)
and arbitrary real o, there exists a natural n < ¥ with

llan?]| < N2t
where |l...}| denotes the distance to the nearest integer. Danicic [2] gener-
alized Heilbronn’s result by showing that for ¢ > 0, ¥ > ¢y (e, 8) and o
quadratic form Qws, ..., w,), there ewist integers ny, ..., n, not all zero,
With |ny,y ...y gl < N and with
1 (1, ..oy )l < (el N)+e,

Cook [1] was able to show that for & > 0, ¥ > o3(e) and erbitrary a,, a,,
there emist integers ny, ne not both zero, having |n|, ., < N and

"alﬂi - sz'”‘gu < N,

* Written while the second author had a research fellowship from the Max
Eade Foundation, New York.
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For s3> 1, let ¢,(%) be the maximum of

. o1 1 4. )—l
(3 +~E+s—‘h—:l

over odd A in i< h < (s4-8)/3. Taking h asymptbotically equal to s/3
we obfain ¢,(s) = 2—(18/s} +0(1/s%).

TaEorEM 2. Let s> 1, &> 0, N > ¢5(¢, 8), and let @y, ..., 5,) be
o quadratic form. Then thew are FIeGers Ny, ..., W, With

(43 ¢ < max([f,], ..., In) K N
having
() 1@ (7 «.ey el << W os0E2,

For & < 5, the result of Danicie is stronger than owrs, for s =6 we
get the same exponent as Danicie, and for s 2> 7 our exponent is beler.
That the constant ¢,(s) may not be replaced by 2 number greater than %
is seen by taking the special quadratic form e(2i+ ... +22) where a
i3 & number with bounded partial denominators in its continued fraction.
However, it is coneeivable that the theorem remains true with ¢, (s) replaced
by 2 {or s > g,. For many special quadratic forms, ¢,(s) may be replaced
by a number much larger than 2 (Schmidt [6]).

We will make nge of Theorem 1 in order to prove Theorem 2. On
-the other hand, given an integral form ¢ (x} = @ (24, ..., #,) and applying
Theorem 2 to @y (x) = m~'Q(x) and N = w4~ we note the existence
of a solution of (1) with ¢ < max(|o,|, ..., 1)) < N, so that Theorem 1
holds with e(h} = 1/[e,{k) — &), provided that m is large. Hence Theorem 1
may be regarded as a discrete version of Theorem 2.

No analogous results are known for forms of degres greater than 2.
But for diagonal forms, sec Schlickewei [5].

2. Congruences

Levoaa 1. Tt G(m) = Q(%y, ..., @) be a guadratic form with coef-
ficients in the finite field ' with g elements. Then @ vanishes on a certuin
subspace 8 (of h-dimmwional space F) of dimension [(h—1)/2] (where [...]
denotes the integer pari).

. Proof. Much more was shown by Scgre [7T]. A simple proof is as
follows. We may suppose that 2 = 3, th‘nt I is odd fmd that ¢ iz non-
gingular,

Suppose af first that ¢ is odd. Then ¢ is equivalent to a form

YiYatYs¥at ove - Ynoalisoy +ayl,

and we may take 9 to be the subspace with ¢, =y, = .., = Yis = Uy = 0.
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On the other hand, if ¢ is even, the form may be scen to be equivalent
to a form
L O R A S v P SIS NS MY YA

In this cage we define § by oy, + ... +ofy, =0 and y, =y, = ...

.= Y = 0.

Proof of Theorem 1. Wm = whn; and i y,, ..., y, satisfy @(y4, ...

vy Ya) =0 (mod my) and € < max(|yyl, ..., |7,l) < P then @, = uy,, ...

., @y = uy, will satisfy (1) and (2). Hence we may suppose m to be
square free. Of course we may suppose that m > 1 and k> 1. Observe
that kb is 0dd by hypothesis, and put d = (h~1)/2.
' For every prime p dividing m, there are by Lemma 1 integer points
€1y ++-y Upg Which arve linearly independent modulo p and such thab
@(x) =0 (mod p) for each combination @ = 6, w,;+ ... +om,; with
integer coefficients. By the Chinese Remainder Theorem there are integer
vectors vy, ..., ¥g having v; = v, (mod p) for each prime factor p of m.
Write #; = (9, .., ¥3). We have ¢{x) =0 (mod m) for

(8) T = o+ ... ety me

with integers ¢;,...,¢; and with 2 = (2, ..., %) integral. According to
Minkowski’s Linear Forms Theorem, there are integers ¢, ..., ¢y 21y« y Tps
net all zero, with

lgl<<m (2 =1,...,d),
le@y+ ... +opytmeyl < m~ = ge® (5 1, R).

The vector & = (@, ..., ¥4} given by (6) satisfies (1) and max(|z,f, ..., |a))

<m™. M ¢ =...=0;,=0, then alse 2, =... =z, =0, which is
imposgible. T, say, ¢; # §, then by (7) there iz a prime factor p of m with

¢; 2 0 (mod p). In view of the linear independence of »,, ..., v; modulo p,
we have ® = @ (mod p), whence @ == 0. :

3. An Altermative Lemma. We now #urn to Theorem 2. So lef
Q@) = Qlmr, -y 1) = D) gy
(%]

be a quadratie form with real coefficients. The matrix (4;) may be sup-
posed to be symmetric, We have

Q@) = oLy (@) + ... + 2L, {x)
where Ly(®) = Ao+ ... FA,m E=13,...,8h

The symbol {...} will denote fractional parts: {#} = »— [o].

Lmwga 2 (Alternative Lemma). Let >0, s> 1, N = (e, s) and
N-ealte < T < 1. Then either
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(i) for each inierval I of length I contained in 0 <o < 1, there are
INTegers Moy ...y 1y With (4) and with

{Q(ﬂﬂ) ey ﬂ’s)} ES

or
(ii) there is « natural

(8) m < TN

and for each h in 1< h (s+5),’3 there ave b linearly independent integer

VOCEOTS ¥y = Ty oony Pe) (=1, ..., ) with

(9 el < I‘('""S*"*”)N""* A<u<gh, 1<i<s)

and

(10) Iy ()| < I-Cle—mFE-2 = p <R, 1<F<5).

We proceed to deduce Theorem 2. Tiet T = N—0@®+e Tf the firgh

alternative helds, then there are ny, ..., n, with (4) and 0 < {@ (ng, ...

)} < N0+ and we are done. So we may assume the second alter-

na,twe to hoid. Plck hodd in 1< % < (s4B)/3 such that (3) is maximized.
Put

Ty =Py %, (1<Ki<s)
with @y, ..., #, yeb to be determined. Write

8 k2 ]
Py =M Z 2 Aili iy = Z ¥, L {1,)
f=1

Fe=l =1

A< u,»<h).

We bhave
(11) Hﬂvm” = [gv,uv';_'bpvl (1 g ,uJ 14 "g. h)
with certain integers b,, (1< u, » < h). By Theorem 1, there are integers

@1y ...y &, nob all L zero, with lmi[ <m™ (¢ =1,..., k) and
Ao h

(12) | 2 3 buu,e, =0 (mod m).

g=1y=]
Since the wveetors vy, ..., 75, are linearly independent, we have (g «eny M)
#(0,...,0}, and from (8), (9) we get for sufficiently large NV that
i, < hm®™ max 7] <5 T~ 8= /(a~h+1)) prep2
lﬁﬂﬂh

&

(s)—s
< w0k + i+ ) TSN 1<i<s).
On the other hand, by (11)
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h h
SIS
1 k i -
HH Zaﬂ,ym = 3 N o pall-

a=] p=l U=1 #¥=1

From (12), (), (10) and since || < m*® (1< u< k), we get
HG Ry v s el S g2 1 (T~ RNa—R4D)) Jyeity = (ails—Rtly) i) =2y
By virtue of (8) and of 2¢(h)—1 = 1/h, this is
< 831‘—(”?1)-—(4/(3-—?11‘-1))N(SE,’c})-—2’
and for large IV it is
< _N(%(SJ—&)((IM)'P(4,'(8'-7l+1)))Ns-vi’- < Jy-eale)+

4. Davenport’s Lemma
LA 3. Let Ly, ...y L; be real linear forms tn & = (2, ..., 2,) and
with a symmetric coefficient matric. Let N 2= 1 and let M,, ..., M, be the
first & successive minime of ithe convem bedy described by ‘
g {@) — 055l < F7 "
’533'[ < N
with respect to the laltice of integer points im 2s-dimensional space. Then
the number of ineger points & = (@, ..., x,) salisfying the simultaneous
inequalitics
Wy@)l <t
(J=1,...,9
o] < N
is < (B,- ... M)
Here and in the sequel the constant implied by < depends only
on & or ¢n & and s
This is Lemmsa 3 of Davenport [3]. Put

8E = D o{bQ(ny, ..., n),

where ¢(z) = ¢, I is natural and R is the set given by (4).
Lemua 4 (Davenport’s Alternative Lemma). Suppose that 1 < h <s
and :

{13) Z = e (s) NB—2R
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Then etther
(1) the estimale
1B(1)1* < 0y(8) 2* " H° 7 (log N)®
holds or
(ii) there ewist b lincarly independent infeger vectors v, = (r py ey Tou)
(o =1,..., 0) with

2RI, () < Z7IN"

ol (T<jse I<u<h)
in .

Thig lemma was shown in the case 2 =5 by Davenport [3], The
proof for general k follows along the same lines as that of Davenport.
Prooi. Let M, ..., M, be the first & successive minima of the eonvex
body described by
12hL; (@) —w, | < N

(14)
g < W

(G=1,...,8)

with respect to the lattice 2%, where m = (€1y «.., 3,). Suppose at first
that M, < Z7, Then there exist % linearly independent integer poinfs
B, = (Tiay ceny ¥o5,) (w0 =1, ..., h) with

2L (105 v o0y ) —Fopgul < ZTINT

(1)
10l < Z7IN.

(1<j<8,1<ush)

‘We are going to show that the regulbing s-dimensional vectors Ll

ey ¥y (=1,..., k) are also linearty independent. Suppose this were
not true. Then there would be integers u,, ..., u, with

(16) 'Nfl‘ra"— s "l"'uh?'{h =0 (’l-' = 1, veoy 3)

and (%1, ..y %) #(0,...,0). By considering certain determinants of
order h~—1, and in view of {(15), we may assume that

(A7) lu,] < (Z7 NP1
On the other hand (16) implies

(i =1,..., h).

_ ULy (ry)-f ... ULy (1) =0
8o that by (15) and (17)
Merforsn + oo F P 0] < 27N Z NP

J=1,...,8

(§=1,...,8).

I the constant ¢,(s) in (13) iz small enough this implies

Uarsah oos T =0 (f=1,...,4

icm
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which confradicts the linear independence of B, ..., B;. Asa CONBeguence,
we obtain alternative (ii).

Now suppose that M, > Z~". Let.t" be henumber of integer solutions
{2y, -0, &) of the simulteneous inequalities

I25L; (2, ...y @) < N7
loyt < N
It is well known that
(18) I8 (k}2 < 4N (logN)®
(cf. Davenport [3], p. 117). By Lemma 3 we have

(19) N (M- MY

Notice that B, > N~'; this follows from the definition of the convex
body (14). With (18) and M, > Z7, we infer that

A < I\]‘k—lzs—h-l-l_
By virtue of (18), this imples (i).

5. Preof of the Alternative Lemma. Suppose that the first alternative
in Lemma 2 does not hold. There is an interval J of length ¥, such that
{@(ny, ...y me)} €3 for s-tuples (m,,...,n,) in the set N given by (4).
Choose » > 1+10:7's. By a lemma of Vinogradov ([8], Lemmsa 12; or
see [6], § 3), there is a funetion y(w), periodic with period 1, having » (@) = 0
unless # lies in an integer translate of J, and having a Fourier expansion

p(@) = 31+ 2, o0lgw),
q= U

where
log] < Imin {1, (gI)™").

2

(Rgee--smig) e R

We have |
(@ Ny, .0y 1)) = 0.
The Fourier expansion of p yields

20) 2. leJ18(@)] < L.

Setting K = [I7'N*] we obtain

2 lel 8@ < ¥ ¥l < F°L 3 ()"
lgl=E igl=K g= I

< NS(IE)].—)’ £ Ns—(s{l())(r—l}« 1 == O(NBI),
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by our choice of #. Thus from {20), and sinee |¢,| < I and |§( —g)| = 18(q)l,

we have

K
2 I8(@) > ¥
=1

Henee there is a ¢, 1 < o K K< TN with
(21) 18(qo)l® » NPE~*.

Now let & be odd with 1 <k < (s--5)/3. Then by the lower bound for I
in the hypothesis of Lemma 2, the inequality (13) holds for

7 — Nl—(ul(4(s—-]1.+1)))12[(3-»h+1]‘
With this choice of Z we have
Z.ﬂ—h-{-le+h—1(10gN)s gN:!a«(E,M)Ing/zu — Nﬂsh(ujs)l'% \<__.N2HK_2,

by the definition of K, if ¥ ig large enough. Henece by (21) the second
alternatix_re of Lemma 4 holds with & = g,. This implies the second alterna-
tive of Lemma 2 with m == 2¢, = 2k for ¥ large enough,
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On the differences of additive fumetions, II
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P.D.T. A, Erriorr* (Boulder, Colo.)

In memory of Professor P. Turdn

An arithmetic function f(n} is said to be additive if it satisfies the
relation f{ab) = f(a)+f(b) whenever a and b are coprime {positive) integers.
Conecerning real-valued additive functions we have:

TEROREM 1. Lt o be o positive integer. Then the following three con-
ditions are equivalent:

(i) There is a constant B so that the inequality

2 fin+a)—f(n)* < Ba

N=L

holds for all @ > 2;
(i1} Theve s o constant O so that the inequality

Z w7 fin+-a)—f(n)]’ < Clogw

n<T
kolds for all 2= 2;
(i) There is a consiant A so that the series

2 D 7Hf(ph —AlogpF
p k=1
BONVErES.
 As a companion to this result we have
- THEOREM 2. Let 4 and @ be real numbers, A+p % 0. Let o and b be
integers. Then the following thres conditions are equivalent:
(i) There is a constant B so that the inegualily

2, 1Wn+a)+uf(n+b)* < Bu

nsn

mr.

holds forgall @ = 2;

* Bupported by N. 8. I. contract number MCS 75-08233.



