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Quadratic diophantine equations with parameters
by
D. J. Lewis* (Aon Arbor, Mich.) and A. ScHINzer" (Warszawsa)

To the memory of Poul Twrdin

1. In an earlier paper [3] written in collaboration with the late Harold
Davenport we proved:

THEOREM A. Let a(t), b(1) be polynomisls with integral coefficients.
Suppose that every arithmetical progression conlains an infeger = such that
the equation a(t)a®+b(T)y? = 2° has a solution in integers o, Y, 7, not all 0.
Then there emist polynomials »(t), y(8), #(t) in Z[], not all identically 0,
such that a{Dx(D*+b () y () ==(1)? identically in i

From this result we derived:

TueoREM B. Lel F(x,y,1) be a polynomial with integral cocfficients
which is of degree ai most 2 in © and y. Suppose that every arithmetical pro-
gression contains an integer T such that the equation I'(z, Y, ¥) = 0 is soluble
in rational numbers for © and y. Then there exist rational functions w (1), y (1)
in Q) such that Flw(t), y(1), 1} =0 identically in 1. '

Earlier, one of us asked [6] whether a result similar to Theorem B
holds it F(w,y,t) is replaced by any polynomial F (2, ¥, %, ..., t.) and
the stronger assumption is made that for all integral r-tuples #;,..., 7py
the equation F(z,¥, 7, ..., %) = 0 is soluble in the rational numbers
for z and y. The stronger assmuption is needed since the hypothesis anal-
ogons to the one of Theorem B involving arithmetical progressions is not
sufficient already for F(z,y,1) = a®—y*—1. We shall show here that
if F is of degree at most 2 in 2 and ¥ a hypothesis analogous to the one of
Theorem B suffices for any number of parameters ;. 'We shall also in-
dicate an equation of au elliptic eurve over @(#) for which the stronger
assumption involving all integers ¢ does not seem to suffice.

* Thig paper was written while the authors were partially supported by an
NEF grant. ' : .
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Ag for aliowing more variables, we note that in virtue of Gauss’s
theorvem, lor every integer 7, the equation
-yt 42t = 287741
is solable in integers ®, ¥, 2, buf there do not exist rational functions
a(t), ¥(1), #(#) in Q) such that
(1P 4y (1) -2 (8 =28% 41

identically in #, since 28 is not the sum of three rational squares. A. Phister
bhas shown us & more refined example of the equation

a2yt 4e? == BE+13

which for all rational values of  is soluble with #, y, 2 in @, without being
soluble with #, ¥, #z in Q(1). '

We now turn to the crucial lemmsa from which the generalization
of Theorems A and B in the cage of several parameters. will be deduced
in § 3.

?. Levsa, Let a(ly, ... t), b(Fy,....8), e(fy,...,8) =0 be poly-
nominls with integral coefficients. Suppose that for all r-tuples of infegers
Ty ey T SUCH that ¢{1,, ..., 7,) 7 0 the equation

1) : ATy, ooy T)B2 BTy, ..., T,y = 22

has o solulion in integers z, y, 2, not all O, Then there ewist polynomials
@ty oy by Yy, .oy )y 20ty .0up 8,) with integral coefficients, not all
identically 0, such that

@ alty,..

identionlly in 4, ..., 1.

ety G B, R (R, )R =2y, .., )2

Proof. The proof is by induetion on 7. For r = 1 the result follows
?rom Theorem A since clearly every arithmetic progression contains an
mteger = for which ¢(7} 5 0. Alternatively, with the stronger hypothesiz
of our lemma one can give a simpler direct proof for the case # = 1
following the arguments of Theorem A.

Suppose the lemma is troe for fewer than # parametors. We can
o.bviously suppose that neither a(é,, ..., ¢.) nor b(4,, ..., t.) is identically 0,
since otherwise the conclusion follows trivially. Denote the degree of a
polyx_lomial ¢ in %, by [gl. We now proceed by induction on the degree of
b with respect to 1,. If |a|+ [b| = 0, the hypothesis of the lemma holds
for ¢'(ty, .oy fpmi) = 0(tyy o0y ey, ), where = is an integer go chosen
that ¢’ s« 0; and, hence, the lemma is true from our induction assumption.
Suppose 1;:119 result holds for all @, B, ¢ satisfying |&| b <n and ¢ % 0
where 7 is some pogitive integer; we have to prove the result for poly-

-
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nomials @, », ¢ when ja|-+ bl == and ¢ % 0. We can suppose, without
loss of generality, that |a{ > |b], and, so, in particular a| > 0.
Suppose first that a(f,, ..., 1) is not square free as a polynomial in
i, say
@ty ooy B = Ky, ooy 820 (B, o0y B,
where & has integral coefficients and |k| = 1. The hypothesis of the lemma
regarding a, b, ¢ insures that this hypothesis also holds for $he polynomials

@y (hryeeey 8y By oony ) ADE 0 (byyovny t) = BlEyy oees 4)0{0s <ousty).

Indeed, if 7y, ..., 7, are integers such that ¢;{(zy, ..., 7,) # 0, then the
hypothesis for a, b, ¢ asserts there are integers z, 4, 2, not all 0, satisfying (1).
But then

@y (tyy ey 1)+ B(Ty, o 7)YR = 2°

has ok(Ty, ..., T,), ¥y % a8 & nontrivial integral solution. Since |a,|-+ib|
< la|-+|b} = n, the inductive hypothesis implies the existence of poly-
nomials @y{f, vy b))y Hallyy --oy b, 2(ts, ..oy ) With integer coefficients
and not all identically 0, such that

PRCTRUE AN (ST ALES TS X AN ALEEN PO A L)
On taking

B{lyy ooey b) =@y {1y -ony i)y

Yty --ny tr) = yl(tlr ey tr)k(i‘lr ey tr)?

Bllyy ooy b)) =&, 0y B R, - G),
we obtain an identical solution of (2). .

Hence we can suppose that a{t;, ..., 1) is square free a8 & polynomial
in ¢, and hence its discriminant D(¢,, ..., t,_;) with respect to ¢, is not-
identicalty 0. Let a@y(ty, .<y 1) Coltyy --+s ;—) be the leading coefficient
of a and ¢ with respeet o f,; taking ¢; = ¢ if J¢| = 0. Liet J be the. get
of points & = {t,, ..., %,_,) in (r—1)-dimensional affine space defined by
the inequality

Goftiy ovny b1 ol ooy ) Dl oy By} F 0,
and let 7 be the set of all integral »—1 tuples © = (T3, ..., T,—1) in the

. set 7. For every z in T the polynomiale,(f,) == ¢(z,1,) # 0. Curhypoth-

esis on @, b, ¢ asserts that for every integer z, such that e.(z,) 5 0 the
eguation

(&(T, Tr)a}z"]fb(r'} Tr)yz == g?
is soluble nontrivially in integers #, ¥, 2. Hence for each v in T, by the
case # = 1 of our theorem, there exist polynomials @ (1), ¥.{t,), #(#,) with
integral coeffielents, not all identically 0, suech that

(3) oz, L), (1) b (7, )y (4)° = 2.(4)°
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identically in 4.. We can suppose that (wr(tr),yt(t-r),z,(t,.)) = 1. Bince
ap(7) D{z) = 0, a{z, {,) has no multiple factors, thus setting
dt‘ (tr) = (CL{T, tr)'.' Y. (tr))

we get suecessively from (3): d (4,)|2, (4.2, d.(%,)z.(%), &) a(z, &) ®,(t, ),
d.(t) e () and hence d,(f,) =1. Therefore, for = in T we have

| % (1)
Y. (t)
whers £, is in Q%) and |6, < la] or 5. = 0.

In order to exploit the congrnence (4} we note that for all nonnegavite
integers b,

(4) bz, 1, :( ) = f.(, ) mod a(z, %),

lal—1
= > ay(hd mod a(t, 1),

=0
. where ay,; () are rational functions oft,, ..., &, with powers of a,() in the
denominator, For z in F we have a,{zr) + 0, hence ay(r) are defined.
Let

lal—1
(8) B.— D &t &eQ.
t=0
From (4) we get for r in T,
lal~1  |al-1
bz, t, Z fh D) E&ey;(r) mod a(z, 1,),
=g 1,i=0
and if
lal
bt 1) = Y b8y,  b(f) in Z[E]
T=0
we get
. le| -1
(6) bi(7) + b (2 () = D) Eifpapga(r)  for i< lal—
4i=0

Let % be a new indeterminate and R (£, ¢,, u) be the resultant of the
gysbem of polynomials

laj—1
(bu(8) + by (Do D}l — ) wi@yons, ) (0<si<al),
(7) lal—1 b=t

Z e L) U

with respect to the wariables x,, ..

.y Tjq- We shall prove that E(#, ¢, )
# 0.
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By a known property of resultants (see [4], p. 13} the coecfficient of
in E is the resulbant 72, of the system obtained from (7} by substita-
‘blon #q = 0. If By were 0, the system of homogeneous equations

2]

tHal-1

(8) 2 E?‘E;‘ai+j,l(t) ={
£,J=0

would have nontrivial solutions & in the algebraic elosuve of G(f). Fow-
ever, it then follows from (4), (5),(6), and (8) that

lai—1

(9) 0={> i mod aft, 1,).
==

Since «(f,,) is square free, (8) implies

leel—1

D g1 =0moda(t,1,);
i=0
whieh is impossible since |a(2,t)] = lal.

Therefore By ¢ 0 and moreover B, e @(f). Let m be chosen so that
G2, %, v) = a (8" R(E, %, u) c Z[E, £, u].
Then a,{#)"&,(%) I8 the leading coefficient of G with respect to .

Let
g
) [ ] 6., )

g==1

G(E; 4, u) = go(i

where g, & Z[t],G, € Z[¢, t,, v] and &, are irreducible over @ of positive
degree and with leading coefficient g,(f) with respeet to 4. We can order

@, so that &, is of degree 1 in u for p < p and of degree at least 2 for o > p.
If for all o < » we have

Hy{t,t) = G(t, 1, 00 —b(£,1,)g,(f) = Omodal(l, t,)

then let the leqdmg cocificient of the remainder from division of H, by
@(%, 1) in the ring @(#)[t,] be f,(F)ay(8) ™, where f.eZ[t]. By Hllbert’
irreducibility theorem there exist integers %,..., 7., such that the po-
lynomials @,(2%, 1., u) are irreducible and

B q

g (29 €0 (291 .0 {2") f— Tl t"}H‘qe(‘rO

g=1 o=0

Cleatly «° is in 7. It follows frem (B) and (6) that for & = 2%, u = B.(¢.)
the gystem of polynomials (7) has a eommon zero

£ E 3
(€03 +-r3 Sigg—is £
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Since this zero is non-frivial we gebt successively
R(tor tﬂ ﬂro(ta')) = 07 G(TD) 'tr: ﬂto(if')) = O

and G,{t", t,, fro(t,)) = 0 for a certain g < ¢. Since &, (2,1, %) i3 irreduc-
ible of degree at least 2 in % for o > p we get oL p

go(fo)ﬁo(tr)‘i‘ge("u: Iy 0) = 0.
Hence by (4)

golt")®b(e", 1) —

and f,(7%) = 0 contrary to the choice of <.
shows that for a cerfain o< p

g.(Ey2e(t, t,) —G,(,1,, 0)° = O0moda(t,t,).
Redueing Gg(t,i,, 0)g,(£)™* modulo a(t,t,) in the ring Q(f)[1,] we find

@,(7", 1,, 0 = Omoda(z®, i,)

The obtained contradiction

a A, 1) e B(E)[#,] suck that

(10) b(¢,1,) =p(2,4)* mod a(t, 1)
and

(11) Bl < laf or B =0.
We write

B2(,1,) —B{E, 1,) = h2(E)a(t, 1) A{E, 1,)

Whﬂre R{T) eZ{t] and 4 ¢ Z[f,]. In particular A(£)f(%,4) = Z[L, 4]
A(%,t) =0 identically, we ean satisfy (2) by taking

a(f, 4) =0, y(& ) =h(E), 284} =Ar{E)EE).

If 4%, t,) is not identically 0, we have by {11) that |4] < |a]. We now
drove the hypotheses of the lemma are satisfied for the polynomials

Aty 4), b, 4), O, 4) = alt, 1)k(e(t, 1) A(E, 1,).

We know that for all integers 7, ..., v, such that Oz, -c‘,,) 7= 0,
eguation (1) has a solution in integers x, y, 2, not all 0. Taking

X =a(r,v)e, ¥ =hit)[z—y(z, ), Z = h(x)(b(z, )y —B(*, 7,)%)
we obtain
Aty 1) X+ b(r, 1) T —Z* = B(c)*{B(x, 7,)°

Also X, ¥, Z are integers not all 0, since a(r, 7,)(1).4(z, z,) # 0. The
inductive hypothesis applies to the polynomials

A, 1), b4, O 4) [4]+1b] < ||+ [b] = .
Hence there exist poiynomials X(%,t,), ¥(§,1,), Z(f,

the

—b(e, %)) (w4 by =2} = 0.

since

t.) with infegral
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coctficients and not all identically zero, such thab
At )X (¢, 4,
identically in £,1,.

bt 4) Y (3,1, =Z(E, )2
Putting

w(t, 1) = A(E, 1) X(E, 1),

y{t,1,) = h(E) (,B(t, t) Y%, 1)+ 2(E, t,)),
2(E,4,) = B(E(B(E, L)X (E, 1)+ B(E, 1,2 (£, 1,)

we obtain (2). Further (%, 1,), ¥(£, £,), 2(£, 1.} do not all vanish identically
since neither A(#,7,) nor b(f, ¢,)—§%(£, 1,) vanish identically.

Remark. The argument following formula (11) is implicit in
Bkolem’s paper [8].

3. THEOREM 1. Lei alty, ..., 4,), b(ty, ..., t,) be polynomiale with imiegral
coefficients. Suppose that for all r-tuples of cmthmetw progressions Py, ..., P,
there exist integers =, € P; such that the equation (1) has o solwiion in mtegem
@, Y, % not all 0. Then there emist polymomials x(ty, ..., %), ¥, ...y 1),

#(1y ..y b} with dnlegral coefficients, not oll identically 0O, such that (2)
holds @dmtwall Y i by, ...t

Proof. It is enough o show that the assumptlon of the theorem im-
plies the assumption of the lemma. Now take any r-tuple of integers
Tiy +wey Ty 80 arbifrary prime p and a positive integer m. By the as-
sumption of the theorem the arithmetic progressions p™i-41,, ..., p™-- Ty
contain integers 7, ..., 7} respectively such that the equation

a(t], ..., )a+b(z), ..., D)y? =22

has a solution in integers not all 0. Hence it has a solution @, 4,5, 2, With
{#05 Yoy %) =1 and we get

(11, -, Tr)mg"g'b('rl: ey TG Ezg(madpm)-

By Tneorem 2 of §5 of [1] it follows that (1) is soluble nontrivially in the
field of p-adic nwuhers, By Lemms 2 in §7 ibidem it follows that (1) is
soluble nontrivially also in real numbers, hence by Theorem 1 of §7
ibidem it is soluble nontrivially in infegers.

Added in prooif. Slightly different proof of Theorem 1 valid for
arbitrary number fields will appear in a forthcoming book [7] of the se-
cond author.

THROREM 2. Lot F(w,y,t,...,t) be any polynomial with integral
coefficients which is of degree at most 2 in o and y. Suppose that Jor all
r-tuples of arithmetic progressions Py, ..., P, there ewist intogers 7, €P,;
such that the equation

F (@)Y, 71,000 7,) =0



140 D, J. Lewis and A, Schinzel

s soluble in rationals #, y. Then there emist vationel functions »(t,, ..., 1),
Y{by, ooy b)) with rational coefficients such thal

F(m(tls vy B}y Yl e k), tl:-'-rtr) =0
identically in 4y, ..., 1.

“Proof. Theorem 2 follows from Theorem 1 for +> 1 in exactly the
same way a8 Theorem B was derived from Theorem A (see [3]). In the
argument (page 357) where the Corollary to Theorem 1 of [2] is used,
one hag ingtead to apply Theorem 2 of [6].

M. Fried has obscrved that Theorem B implies an analogous result
for curves of genus 0 defined over @(#) . The vemark applies, mutatis
mutandis, to Theorem 2.

One ean moreover extend it to equations that define a finibe uwnien
of curved of genus 0 over the algebraic closure of (f). As to the curves
of genus 1 it follows from the so-called Selmer’s conjecture in the theory
of rational pointy on such curves that for every integer ¢ there ig a rational
solution of the equation '

(12) ot — (B2 +BY =9

‘(see [9]). On the other hand, suppose that rational funetions (), ¥()
in Q) satisfy (12). There exist infinitely many integer pairs {#, v ) such
that Swt+8v% is & prime p. Take w, v such that for v = Bu/8v, z(z), yiz)
are defined. The cqnation (12) gives

(4va())* ~100p° = (160°y(x))*.
But, by a theorem of Nagell [5] the diophantine equation

X2100p* = ¥ (p prime = 1mod4)

has no rational solution.
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