An elementary method in prime number theory

by

R. C. VAUGHAN (London)

1. Introduction. In number theory one often desires to estimate sums of the form

\[\sum f(p) \]

(or equivalently \(\sum A(n)f(n) \) with \(A \) von Mangoldt's function) where, for example, \(f(n) \) is an exponential function \(e(P(n)) = e^{i\pi F(n)} \), or a character \(\chi(n) \). The techniques for the estimation of such sums, whether analytic ([1], [3], [6]) or elementary ([7], [8], [9]) invariably relate such sums to bilinear forms of the kind either

(I) \[\sum_{m} \sum_{n} a_{m}f(mn) \]

or

(II) \[\sum_{m} \sum_{n} a_{m}b_{n}f(mn) \].

Suppose that the range for \(n \) in (I) is \([1, X]\), or equivalently that \(f(n) = 0 \) when \(n > X \). Then as a fairly general principle the estimates for (I) are good provided that \(m \ll M \) with \(M \) small compared with \(X \), and those for (II) are good provided that \(m \ll M, n \ll N \) with both \(M \) and \(N \) small compared with \(X \).

One method (I. M. Vinogradov [9]) of carrying out this procedure is to use the sieve of Eratosthenes to write

\[f(1) = \sum_{p \leq X} f(p) = \sum_{m \leq M} \sum_{n \leq N} \mu(m)f(mn), \]

where \(P \) is the product of those prime numbers not exceeding \(\sqrt{X} \). The right hand side of this is of type (I), but has the defect of including \(m \) that are close to \(X \). In order to treat these \(m \), Vinogradov has to introduce a combinatorial argument, which for the sharpest estimates is quite involved, that allows him to relate this portion of the expression to bilinear forms of type (II).
In [7] and [8] an elementary method was introduced and developed which avoids these combinatorial difficulties. Consider the identity
\[
(2) \quad \sum_{n} g(1, n) + \sum_{m \leq n} \sum_{d | m} \mu(d) g(m, n) = \sum_{d | m} \sum_{r} \sum_{n} \mu(d) g(dr, n),
\]
which holds for any double sequence \(g(m, n) \) for which the right hand side converges absolutely, and is an immediate consequence of the relation
\[
\sum_{d | m} \mu(d) = 0 \quad (1 < m \leq n).
\]
Let
\[
g(m, n) = \begin{cases} A(n) f(mn) & (v < n \leq X/n), \\ 0 & \text{otherwise}. \end{cases}
\]
Then, by (2),
\[
(3) \quad \sum_{n \leq X} A(n) f(n) = S_1 - S_2 - S_3,
\]
where
\[
(4) \quad S_1 = \sum_{d | m} \sum_{d | k} \mu(d) (\log k) f(dk),
\]
\[
(5) \quad S_2 = \sum_{r | m} \sum_{r | k} \left(\sum_{d | m} \mu(d) A(n) \right) f(kr),
\]
\[
(6) \quad S_3 = \sum_{n < u \leq X/n} \sum_{d | u} \mu(d) A(n) f(mn).
\]
Now
\[
(7) \quad S_1 \leq \int_{1}^{X} S_1(a) \frac{da}{a}
\]
where
\[
(8) \quad S_1(a) = \sum_{d | m \leq a(X/a)} \sum_{0 < h < d} \mu(d) f(dk).
\]
Clearly both \(S_1(a) \) and \(S_2 \) are of type (I) above, whilst \(S_3 \) is of type (II). Thus suitable choices for \(u \) and \(v \) will often ensure that the corresponding estimates are good. We further remark that on some occasions the sum \(S_1 \) may be more sharply estimated by breaking it into two parts and treating the second part as a type (II) sum.

In [7] and [8] the above method was applied in the case \(f(n) = e(\alpha n) \). The purpose here is to show how the method can be applied to give a proof of the Bombieri–I. I. Vinogradov theorem concerning the average error term in the distribution of prime numbers in arithmetic progressions. Two essential ingredients (see [1], [3] or [6]) in the proof of this theorem are the Siegel–Walfisz theorem and a mean value theorem giving a bound for
\[
(9) \quad T(Y, Q) = \sum_{\psi(q) \leq Y} \frac{q}{\phi(q)} \sum_{\chi \leq Y} \max_{\nu \leq \nu} \psi(X, \chi),
\]
where \(\sum_{\chi} \) denotes summation over the primitive characters \(\chi \) modulo \(q \). The technique described above enables one to give an elementary proof of the following theorem.

Theorem. Suppose that \(q \gg 1 \), \(Y \gg 2 \), \(L = \log X \). Then
\[
T(Y, Q) \ll \varepsilon(Y + \varepsilon^2 + Y^{12} Q^4).
\]

As an easy consequence of this and the Siegel–Walfisz theorem one has the corollary.

Corollary (Bombieri–Vinogradov).
\[
\sum_{\psi(q) \leq Y} \max_{\chi \leq Y} \left| \psi(X, \chi, a) - \frac{X}{\phi(q)} \right| \ll Y (\log Y)^{-d} + Y^{12} Q L^4.
\]

2. Lemmata. The first lemma is an immediate consequence of the large sieve inequality (see, for instance, Gallagher [9] or (1.4) of [4]), the proofs of which are entirely elementary and Cauchy's inequality.

Lemma 1. Suppose that \(a_m (m = 1, \ldots, M) \) and \(b_n (n = 1, \ldots, N) \) are complex numbers. Then
\[
\sum_{\psi(q) \leq Y} \frac{q}{\phi(q)} \sum_{\chi \leq Y} \left| \sum_{m=1}^{M} \sum_{n=1}^{N} a_m b_n \chi(mn) \right| \ll \left(\sum_{M} + Q^2 \right)^{2M} \sum_{M} \left| a_m \right|^2 \sum_{N} \left| b_n \right|^2 12^4.
\]

The proof of the theorem rests on a maximal version of this.

Lemma 2. On the premises of Lemma 1 we have
\[
\sum_{\psi(q) \leq Y} \frac{q}{\phi(q)} \sum_{\chi \leq Y} \max_{X \leq T} \left| \sum_{m=1}^{M} \sum_{n=1}^{N} a_m b_n X(mn) \right| \ll \left(\sum_{M} + Q^2 \right)^{2M} \sum_{M} \left| a_m \right|^2 \sum_{N} \left| b_n \right|^2 12^4 \log YMN.
\]

Proof. Let
\[
C = \int_{-\infty}^{\infty} \frac{\sin \alpha}{\alpha} \, d\alpha,
\]

γ > 0, and δ(β) = 1 when 0 < β < γ, δ(β) = 0 when β > γ. Then C > 0 and it is easily seen that for A ≥ 1, β ≥ 0, β ≠ γ, we have

\[δ(β) = \int \frac{sin(γa)}{a} da + O \left(\frac{1}{A|γ - β|} \right). \]

Let γ = log(\lfloor Y \rfloor + \frac{1}{2}), β = log mn. Thus

\[\sum_{mn \leq X} \sum_{a,b} a^m b^n \chi(mn) \sin(γa) = \int \sum_{m} \sum_{n} a^m b^n \chi(mn) \sin(γa) da + O \left(\frac{X}{A} \sum_{m} \sum_{n} |a^m b^n| \right). \]

The desired conclusion now follows easily from Lemma 1 on taking A = YM N.

3. Proof of the theorem. If Q^2 > Y, then the theorem follows at once from Lemma 2 on taking M = 1, a_1 = b_1 = A(n). Hence it can be assumed that Q^2 ≤ Y.

Let

\[u = v = \min(Q^2, Y^{1/α}, Y^{-1}). \]

By applying Lemma 2 as in the case Q^2 > Y it is easily seen that

\[\sum_{0 < q < \varphi(q)^{1/2}} |\varphi(X, χ)| \leq (u^2Q + uQ^2) L^2. \]

Hence, on writing f(n) = χ(n) in (3), to prove the theorem it suffices, by (9), to show that for j = 1, 2, 3 the sum

\[T_j = \sum_{0 < q < \varphi(q)} \sum_{m < X} \max_{u < x < X} |s_j| \]

satisfies

\[T_j \leq L^2(Y + Y^{1/2}Q + Y^{1/3}Q^2). \]

By (6),

\[T_j \leq \sum_{M \in \mathcal{M}} T_3(M) \]

where

\[\mathcal{M} = \{ k \in \mathbb{N} : k = 0, 1, \ldots, \log Y / log 2 \} \]

and

\[T_3(M) = \sum_{0 < q < \varphi(q)} \sum_{m < X} \max_{u < x < X} \left(\sum_{M < m < M + 1} \sum_{n < Y / M} \left(\sum_{d | n} \mu(d) \right) A(n) \chi(mn) \right). \]

By Lemma 2,

\[T_1(M) \leq \left(\sum_{\varphi(q)} (Y \varphi(q)^{-1} + Q^2) \sum_{m < X} \delta(m)^2 \sum_{n < Y / M} \sum_{d | n} \mu(d) A(n) \chi(mn) \right)^{1/2} \log Y \]

\[\leq \log Y \left(Y + Y^{1/2}M^{-2}Q + Y M^{-1/2}Q + Y^{1/3}Q^2 \right). \]

This easily gives (11) with j = 3.

By (6),

\[T_2 \leq T_2^{1/2} + T_2^{1/2} \]

where

\[T_2 = \sum_{0 < q < \varphi(q)} \sum_{x < X} \max_{u < x < X} \left(\sum_{M < m < M + 1} \sum_{n < Y / M} \mu(d) A(n) \chi(mn) \right). \]

and

\[T_2^{1/2} \leq \sum_{0 < q < \varphi(q)} \max_{x < X} \left(\sum_{M < m < M + 1} \sum_{n < Y / M} \mu(d) A(n) \chi(mn) \right). \]

This is expressed directly via the Pólya-Vinogradov inequality (observe that Schur's proof [5] is elementary). Therefore

\[T_2 \leq \left(Y + Y^{1/2}Q + Y^{1/3}Q^2 \right). \]

The sum T_2 is estimated directly via the Pólya-Vinogradov inequality (observe that Schur's proof [5] is elementary). Therefore

\[T_2 \leq \left(Y + Y^{1/2}Q + Y^{1/3}Q^2 \right). \]

and with (10) and (12) this implies (11) with j = 2.

By (7) and (8) it is easily seen that T_1 can be estimated in the same way as T_2.

References