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1. Let K be an algebraic number field, let kb be its class number,
and for any integer a of K which i3 neither 0 nor & unit denocte by fla)
the number of factorizations of a into irreducible elements. If & excseds 1,
the funcbion f becomer nontrivial and one ean ask how it behaves. P. Ré-
mond [6] has shown that for x tending to infinity the sum

2> fle)

IN(a)t=z

taken over a set of nonassociated integers a is asymptotically equal to
Czexp {V (loglogw, logloglogs)} where V{u, v} is a polynomial in two
variahles of degree equal to D, the Davenport constant of the class group
of K and the dominant term equals ¢;({loglogs)”., The constants ¢
and O, appearing here are both positive and depend on the field K.

Answering a question of P, Turdn, J. Rosidski and J. Sliwa [7] proved
recently thab f(n), the restriction of f to positive rational integers, does
not bhave a nondecreasing normel order; in [1], {4] it was shown that
for the function g(n), defined as the number of factorizations of » in K
with distinet lengths, a nondeereasing normal order exists and may be
taken to be equal to O.loglogm, where O, is again a positive constant
depending on K.

In this note we utilize the ideas of [1] and [4] to obtain a nondecreasing
normal order, equal to O,loglognlogloglogn, for the function logf(s)
(0 = C4(K)} > 0). In the case of a guadratic £ with & = 2 this result
(with ¥; =1/4) was obtained in [3].

2, Let B, X1y .y X, (m = h—1) be the classes of the class gromp
of the field A, ¥ being the principal class. For any integer o of K let;
a;(a) be the number of prime ideals from X, which divide the ideal gen-
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erated by « and similarly let 2,(a) e the number of those ideals counted
according to their multiplicities. We shall need a property of the restrie-
tions of w;, £; to the set of positive rational integers, which we state &g

Lmmca 1. There ewist positive constants pmi, ..., p, 'such that for
1 =1,2,...,m and for every real { one has

¢
£;:(n}—ploglogn } 1
Hon L w —— Ll =~==lazfolg exp{ —utd
{ Vioglogn - Van ( ( ))_!; 2 b
and
[
[ wy () — uloglogn 1 1
Hn < o Lt =-——1x+oly oxp {— w2 du.
I Vioglogn I Von ( )) f o b

~—0D

Proof. Note that the functions w,(n) are strongly additive, Q,(n)
are completely additive, and 2;(p) = w;(p) < 1, and apply Theorem 4.2
and Lemma 4.1 of I. P, Kubilius [2], ntilizing a recent result of R. W. X,
Odoni [5], which immediately implies '

Z&@fl = (A-+o(1)loglog,
< p

Zfﬂ,ﬂﬁg: (4:-+0(1)loglogw
p<

for i =1,2,...,m 7
CoroLrLAwY. There és a sequence of positive imtegers my < g < ...
of demsity one such that for i =1,2, ..., m one has
Qilm) . elng)
ko loglogny,  roc'logloga,

=,U7‘>0.

A sequence {Y,,..., ¥,> of nonprineipal ideal clagses is called a
complex if the prodmet ¥, ... Y, equals ), the principal class. Two com-
plexes which differ only in the ordering of their elements will be regarded
as identical. A complex is called érreducidle provided it does not contain
& proper subcomplex. Note that a given complex (¥, ..., ¥, is irredue-
ible it and only if the produet PP, .. Py, of prime ideals with P,e ¥;
(¢ =1,2,..., k) is generated by an irreducible integer of K. Observa
also that the number of irreducible complexes is finite, beeause no such
complex can contain more than % elements. (I in a finite abelian group
of » elements one takes a sequence of elements, then it always has a
subsequence with the product equal to the nnit element.) Let {ry, ..., Tx}
be the set of all ireducible complexes and define ay for 4 =1,...,;
j=1,..., magthe number of oceurrences of the class X in the complex ;.

Normal order for a function TH
Moreover put
D, = agly, 4=1,2,..., ¥,

i=1

and for given nonnegative rational integers s, ... » Sy denote by A(sy, ..., s,.)
the set of all nonnegative rational solutions (t;y...,1y) of the system

N
(1) . Nagt, =s;, j=1,2,... m.
i=1

For future reference obgerve that for ¢ = 1, 2,..., N the sum _5_,’ &
. ne j=1
equals at least 2 because the egmality > ay =1 would imply that the
=1
complex 7; consists of a single class X;, which is absurd, as then X, = B.

3. We may now obtain the upper and lower hounds for the function

fla}s

Ligsnia 2. Lef a be an inieger of the field K satisfying the inequalities
wla)>h for i =1,2,..., m. Then there exist constanis

O Aifa), ooy Ap(a) < R
such thal

fp(wl(a) —Ag{a)y .oy wm(a)—‘z-m(a)) < fla) < W(‘Ql(a)ﬂ ceey ‘Qm(a)}n

where for given 8;,...,8, €%

Y &l..s !
Yisy, ony8,) = 3 L prh L. DR,

rd
LT v T PR e

Proof. Consider o factorization
{2) g = Ty...7,

into irreducibles and note that every irreducible element determines
an ireducible complex by means of

(7)) =20t ... pls— (class of p,...,class of s, ..., class of p,, .. .,classof p,>

by times by times

If now #; denotes for 7 =1, 2, ..., ¥ the number of irredncibles ocourring
in (2) which determine the irreducible complex z;, then obviously
Cyy ooy B> € A2, (a), 0.y B(0)).

Assame firgt that for 4 =1,2,...,m one has w,a) == Q(a) = 845
i.e. the ideal {a) is not divisible by the squarc of a nonprincipal prime
ideal, and let {&,..., tx> € A(s), ..., 8,,). If we write

(3) (@) =2 plpM L p (P e X,
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then we find that a has

1
8_1!_:_'_'_?11:_1;.1—51 o DN

tl... ty!

distinet factorizations corresponding to the same sequence iy, ...,1y>
€ T'(81; .+vy 8y). Indeed, every such factorization is of the form

(2)

¥ W om 8y
(@ = [T TT{T [Tofc0)
=l §=1 jF=1 r=1
and so induces permutations of each of the sets {1, ..., s;}, {1, ..., &}, ...
vory {1y oouy 8}, giving henece s;ls,!... 8,1 possibilities. However, certain
of those permutations correspond to the same factorization. Indeed,
ingide of each bracket one may permute the prime ideals lying in the same
class, and this gives the factor D% ... DF'¥. One may also, for each
¢ =1,..., N, permute the #; brackets corresponding to the same irredune-
ible complex T;, without affecting the factorization, and gso finally we
arrive at {4).

This proves the lemma in the case where a is not divisible by the
square ¢f a nonprincipal prime ideal, and we see that in this case we may
take 4 (a) =0 for i =1,2,...,m and we do not have to assume that
o;(a) > h holds.

In the general case let I =p,...p, be the product of all distinet
nonprineipal prime ideals dividing (a). Since by our assumption gk,
there iz a prineipal divisor of I, say I, = P+« Py, Which we may choose

m
in such & way that » iy maximal. Obviously, g—r < %, 50 7 > {Zl w;(a) —h,

and if g, is & generator of T,, then by the already proved part of the lemma
we got-

Plw1(ag)y « ey 0pla)) < flag) < fla);
hut

< oy{a) —ofa) < h
80 we may putb

Ale) = w{a)—~w{ay)  (£=1,2,...,m).
Finally, let o; be any integer of K satisfying
Q(ay) = o) = (a) (1=1,2,...,m).
Then by the already proved part of our lemma we get
fla) < flay) < PR (a), -.ny Lolag)
=22 (a),..., Bp(e)). &

Note that in the case w;(a) = 2,(a) we have thus obtained an explicit
formula for f(a).
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4. The last lemma evaluates the function log¥(s,, ..

.3 8,,) under
cerfain conditions:

Lediva 3. Let T, < T, <...be o sequence of positive numbers tend-
ing to infinity, tet s;(T) be integer-valued Functions defined for i =1,2, ...
«vey M 40 SUCh @ way thal the limii

(5) iinls;(T}c)/Tk = 4,

ewisis and is posiiive for § —1, 2, weoy My GRd put
L) = ¥(s,(T), ..., 8, T)}.
Then for k tending to infinily one has
log¥(T}) = {4 +o(1)) T log 7,
with @ ceriain positive A, depending only on Ay ey A, and the cosfficients
a; of (1).
Proof. Write 4(Z) for A{s,(T), ..., 5,(T)) and demote by M
the maximal term in the sum defining W(T), thus
' 8 (M. s, ()1

(&) ML) =~ mex A

Qpoenn s ppded(T)
As the number of elements of A(T}) is O(TY), we obtain
log ¥(T) = log M (1) + O(logTy),

and so it suffices fo prove that log M (T} —= (A +0(1))TlogT,. Now
Btirling’s formula shows that for <, ..., &) e A{T,)

g | 51T 5 (T,)!
Ll ... )

Drh . DFx.

D74 pit]

" N i
R 1
- (} A,.) T log T, — 5? ;logt, +0(T)
i=1 i
.

as 34 = O(Ty). Write
=1

N

2tlogt = 3 glogh- D flogl = 8,4 8,.
j=1 7 . J'Tk
Wiy, iR
Clearly, §, < ¥-— % logT, — O(T" d L oy —or
early, O; % { TogT, 0gly = 0(T}) and ag log 7, <t = 0(T})

implies
llog T, —logt;| = O(loglogT,),

8 — Acta Arithmelica XXEVIL
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we get ¥
8, = ( Z tj) logT, +0 ((; tj) IoglogT;c)
ir,
Hg']>13§Fk

=(§tj) long-I-O(Tkloglong)-!—O(( 2 tj) Iong)

= t-]<3 k
l-? Tlog T

= (5‘ t;} log T+ O (Tyloglog Ty),
=1

which leads to
() log M(Ty)
m N

- (Z Ai) T logT,— ( min

=1 dppeensbppedTy) 721

1) log T, + 0 (T, loglog T,).

To evaluate the minimnm appearing ir the last formula note first
that if AA(T) denotes the set of all real nonnegative golutions of (1) with
8 = S{(T), then (Gf. [1])

N N
min By == min th-}-()(l),
e rstdediZ} 527 ypendpprediTyi=1
and secondly, that if T is chosen sufficiently large then
N

A= min Dy
Qhgye-roEaped(Tg}i=1
is positive and, as In [1], one arrives at
N

i
nin t = (A+o(1)) 55
Ays et e A (T} <=4 ’

s0 that {7} implies

= )
log M(T,) = (E A F) T log T +o0(Tplog Ty

=1 ¢

m
and it remains to show that 3 4;> /7.
§=1

)

nh N A 7 have
Bvidently 34,2 A/T, and a8 > ayt, = (4;-+0(1)) T}, we hav
J=1 i=1 .
N

ki mn

D 3wy =D A5 +0 (1)) Ty

=1 =1 i=

XNormal erder for a function 83
hence the equality
DAy =,
i=1

would imply that for some choice of (1, ..., tyy € A(T,) we would have

N E 2
=2 o) T,
i=1 i=1
thus
N n R
gti (5;: a:i-,-——lj = o(T)

R m
but we have seen already that 3 @y = 2, and so0 the sum Y, would be
i=1 i=1

e{T.}, which is clearly impessible.

Now we prove our madin resulb:

THEOREM. If K is an algebraic number field with class number h # 1,
and if f{n) denoles the number of factorizations of n into irreducible inteqers
of K, then, with a certain constani G depending on the field K, the function
Cloglognlogloglogn, is a nondecreasing order for loegf(n).

Proof. Let {n.} be the sequence given by the coroliary to Lemma 1,
let T), = loglogn,, and let s,(1}) = Q;(ny)fori =1, 2,..., m. By Lemmas 2
and 3 we infer that

log fmg) < (A (s ooy ) + 0 (1)} loglogn,Jogloglogm,
and similarly, with s(Ty) = () —4(m) for i =1,2,...,m, we get

log fm) = (A py, ..., i)+ 0(1))Ioglogn,logloglogn, .
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On the distribution function of certain sequences (mod 1)*
by

A, M. OsTROWSEI (Basel)

To the memory of P. Turdn

§ 1. Introduction.

1. This paper arose from the consideration of the expression

(1.1)
with

Ro(n)i=R{g12p(1~p)n +-pu)+R{HVep(l—p)n —pn)

b<p<<l, #>0, =n-oo,

where K(z) denotes gemerally the fractional part of #, Iying in <0, 1)
The expression (1.1} occurs in the Probability Caleulus. Namely, a3 has
been shown by Uspensky [7] and Ostrowski [3], the sum

S)ra-—pr (r—pmi<nvinpa—p)

e}

ean be expressed in the form

2 : 1—Z
= fe—ﬁdw+g—v‘m%ﬂ__ o(i) (n — o)
¥r Yomp (1 —p)n %

where R, I8 given by (1.1).

As a matter of fact o similar formula was firet given by Laplace.
However, the term £, (%) was missing in Laplace’s deduction. The formula
a8 it had been written down by Laplace was repeatedly used until the
first quarier of this eentury. It wus therefore of importance, that B, (%)
does not tend with n— oo to 0 but is everyuwhere dense in the interval
between 0 and 2. This was annonced in [3] and proved in [4].

2, Bince, however, very often the seguences in such connection are,
not only everywhere dense, but also wniformly disiribuied that is have
a constant densiby in every point in the eorresponding interval, it appears
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