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ACTA ARITHMETICA
XXXVI (1080)

On sums of powers and a related problem
by

K. TmANiGASATAM (Monaca, Penn.)

1. Introduction. K. F Roth [6] showed that all sufﬁclently lalge
integers ¥ are representable in the form

(1) N = Zwm _

gm=l

:a’s being non-negative mtegers)
In [7], I improved this to ¥ = Em‘*“

g=1
R. O Vaughan [10] and [11] improved on this furthel y showmg that

(2) N = Z @t
&=1

Torleiy Klgve [9] found Dby “computations for ¥ < 250 000 that
N == st“ {for ¥ < 250 000), and conjectured that for large ¥, N &= Zm‘“' L

g=1 8=1
In this paper, we lmprove further on (2), a.nd prove the following:

TEEOREM 1. All sufficiently large infegers N are representable in the
Jform ' : '

(8) . . N E‘Ts+1

where the @’s are non-negative integers.

The methods used in [6], [7], [10] or [11] ave msuiflment to prove (3),
and g0, we indicate all the necessary changes.

The method in this paper, can also be used to prove ‘

TueoREM 2. Al suffiviently large odd integers Ny, and even mtegem' N »
are representable in the Jforms :

(4} Zpa-l—l N, = Z"pwu | | T

s=I1 g=1

’

where the p’s are primes.
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Theorem 2 ig an improvement on, the corresponding rezult of R. O.
Vanghan [11] and [12] where it is shown that

! 30 31

{b}) Ne mZp‘;‘“, -NI ZZ;PEH'
g=1 Jre=m

9. Preliminary results. Some of the auxiliary results used in the
proofs of Theorems 1 and 2 seem to bo of interest in themselves, and are
more precise than corresponding earlier results. Before formulating these
resultiy, we make the following definitions.

DernTTION A. Given natural nmmbers %y, ..., %, with 2 <k, <...
o < By < by (8= 2) and real numbers Ay, ...y A with 0 < A, L (3 ==1,...
vy 8), the pairs (B, 4)), (kay Aa)y ooy (By A) are said to form admiss-
ible empoments, if for (every) large positive M and cvery &> 0, the
number of solutions of the equation.

. i ley &
(6) A p L Fal =) et
subject to
(1) MV a, < oMY, MRSy L 2MWR (i =1, ..., 8)
is
o §11¢1ki)-ka
(8) < M .

{Note that this is a generalization of the definition in [3].)
DrErFINITION B, With the ¥'s as in Definition A, let U, (%,

Ll

ey Bogs M)

denote the number of distinet integers of the form u = 3/ Zt (the @3

g ]
being non-negative integers), with « < M.
TEROREM 3. Let the natural numbers &y, ..., k, satiafy
AP ‘ D2k <k <. <k < hy,
and 0;, 8; (i =1,..., ) be defined by
i 1 .y
(10) by =0, =1; 0O, = (1-— 7?)0" (1 = 2);
: 4
1 14 8,)0
(11) 8, =83 =0; ~— + 80, = _(.__._..__.._?._)m.".;
. kl ]Ga
and _
8,(14 6 14 \
(12) %E+4) {641 —8:) 0,0 = L hl O (12 3)
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Further let
(13) B = 6,1 +8) and

Then, the pairs (ky, &), ..., (&, A) form admissible exponents.

' [This is an improvement on Theorem 3 of R. C. Vaughan [11] since
when. the 4's are not consecutive integers it is not necessary to take d, = 4,
= ... = 0§; = § (as in [11]). The improvement becomes subgtantial when
the differences between consecutive k’s get large.]

Proof. The proof is similar to that of Theorem 3 of [11] but must
nse the fact that in the equation

A< A<l (iz1).

B b ba® =g g

(subject to (7)), for given @, ¥y, ®ay Y, .-y Ty1, ¥y1» ¥ there are at
most O(M%+1-%P+1) choices for y; (4 =3, ..., 8 —1).

Let K, = {9, 11, 16, 17, 20, 23} and K, = {7, 8, 10, 12, 13, 14, 15, 18,
19, 21, 22}. : _

I. Applying Theorem 3 for the elements of K, {i.e. with k; = 23,...
ey g = 9), we see that (ky, 1), ..., (kg 4;) form pairg of admissible ex-
ponents with

A
> 0.375349.

T

(14) ay =

1

II. Similarly with the elements of Kzu{ﬁ} (taking kb =22,..., by
=7,k =5) by Theorem 3, (ky, A4),..., (Bs, Ay form pairs of
admissible exponents with, : .

12

19

A
2~ 0.72579.
k;

“

{15} ay =

\

-

fu

P
=

Now by an argnment similar to0 that of Theorem 1 in [1], we have

III {taking % = 6, h = 2, ¢ = a, in Theorem 3 of [1]) with the &’s
ag i T, (B, A, ...y (B A¢)y (6, 1) form pairs of admissible exponents
where

(16) 1 v A 1 18a, |
== i R T 0.50027
R R P h R A L
and _
{17) 2= BT2iE) (0.8888 > 4 > 0.88879).
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IV (taking &k, =4, # = 2, a = ¢, in Theorem 2 of [1]) with the &’s
a3 in II, (Byy A)y oeey (Bysy Alp)y (4, 1) form pairs of admissible exponents

where
_ A =M (i =1,...,12},
. y
(18)- L ( N’ ) j 120z | I 1
= — — 1 e — e
P . “/“f %y 4 ~[-a,‘l 10°
and
. (19) A= —(ﬁf——]”d—) (0.805197 > 1" > 0.800196).

Por convenience of notation, the conelusions in ITL and IV are stated as
follows:

Lonvinia 1. For 4 < & < 25, there ewz‘st iy, (with O < gy, <5

\‘ fii) > 0.50027;

1) with

‘=,:1' T b )
oMy T Mg L3 0 P t

. id T
kel
(20) 1 b 1
ot NTHEY S O
7 5”’(2 7¢)> FRMETY
kel
such that

A) {ky pp} with ks e K U {6} fm'm pairs of admissible ewpomms,
B) {k, w} with ke K0 {4, 8} form pairs of admissible exponents.

The next two lemmzm can be proved in the same way as Theorem 3
uging

. 1 N !
(1) pag = fay = A gy = A (1~ "2"6") (1--85);  0.0139 > 6, > 0.0138

" (A being defined by (17)).
. Lmwvoaa 2. Letting e =1, the mambew of solulions of the equation

@2)

Ataf{ D at) = ui-tyir( k)
i, ) helly
subject to
(23) MR oy < M, MMy 2 (for each T)
18 < M1 ahere
(24) gy = F+oy (ch (20)).

Lmvma 3. The number of solutions of

i bat+ | Net] = vt oot i)

kelly kelly
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' subjeet to (23) 48

7

19y 2
ot (g Hgte € I

< M

where

oo Mir o Hs 1 Hie
(28) S LT +(24 k)

leelly

3. Noetation. Lot N denotie a large positive integer and § a small positive
constant; u; (4<% << 23) be defined as in § 2, and

(26) Mo = pg = 1.
TRecall that _
(27) Po=t; =1; O0< <l fork=2>5and T<kg23.

For 2 5 k < 23, we define (with ¢ < ¢ and (a, ¢} = 1)
(28) OPj = N, fr=file) = 3 e(ad),
' Prea<iPy

- 1 -:-[-_ q
Te=duB= N Ty e, = Sy(a ) = D elach,

(7, Ic)ké;gzzpk)k Z=1
1 @
T = gnlay a, Q) = ¢ Spla, @y a—~q-

(in the rest of the paper, we often abbreviate for the above funetions by
S Juy Spand gy).

‘Write
@9 T =fife B@=5[]H) @600 =neog
. k=7 .
) P = F@F@ =[[2)s Pute) =5 []5).
SACIESAAY FEAR
Relty
1 1 1 1 B
81 = fofulul | [fi = b b=
(51) ¥y(e) fsff(llh]]fz) p=sts It
Tict S
(32) Qo= N, g o= 1ja—25,
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and gubdivide the interval
{83) Q<

a8 follows :

a<1+Q7"

For g< ¥, let M, denote the interval a m%-kﬁ, 18] << (qQ),

and denote the aggregate of all I, s by m. It can be proved in the stan-
dard way. theut any two M, s ave disjoint. Lot 0t denote the complement

.of M in (33). Also denote the complement of I, , in (33) by ml” o (g N7,
Writing .

141
{34) r(N)= [ Fyla)e(—Na)da
Q-—l
= [ Fy(a)e(—Na)da + [ Fua)e(—Na)da,
am ki)

we see that »(N) does not exceed the number of representations of & in
22
the form ¥ = Y #t' (

ganl

o prove Theorem 1, it suffices to show that +(¥) > 0 for large N.
We also denote ‘

85 Aulg = 188

@’s heing non-negative integers); go that in order

Al = D 198,884

[/

2 = zla, a, @) = (fo —g2)fofufs}

(38)  Ay(@) = D0 IRl

(37) 2 = (fa—ga)0efufe; % = (fi—gdatufi; % = (fo— o) 2 gy

4. Some anxiliary lemmas. The next lemma follows from. Lommag 1,
2 and 3 (cf. (20)).

Levma 4.

f Py (a

and

]ada < N"“"{l’ }2, J‘w a)*da < .N b e {13'1(0)}3

affﬁ’s(a)lﬂda < N_gﬂm{l*’s(ﬂ)}“

-The next lemma follows from Lemma 4 in [2] and Hilfssatz 711 in [4 ]
Levwa 5. For kb = 2,3, 4 and 6 (§f |B] < 1/2)
J(B) < min{NVE, NYEL g7y

(38)
giley a, @) < ¢ N min (1, N8
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and

(39) fﬂ‘c

The next lemma ig the main theorern in [B].
Timma G,

—glay ey @) € 4@ g NV 1B < g NH),

>,, (aak) m;mﬁ,,(a q) < ¢,

lmnv&,i’
TaMMA 7, Fork = 2, 8, 4 and 6,
Tola) = glas ay ) < ¢*{max (1, N8}

Proof. This follows by a partial gummation with Lemma 6.
The next lemma: in proved in the same manner as Section 10 of {107.

Tumma 8.

N aslg) <1; 3 Aale) <15 D As{a) <

e aeN* gq=N¥

The next lemma is deduced from Lemmas 5 and 7.
Lemma 9. On M,

2y < NoW gy g N3t NV fmin(L
2y € 0|8, 8, NH Y min (1,
2, < g 88, N min (1, NTHATY)

(ef. {81), (36) and (37)).
Lmymya 10,

MBI A g N
N7

2 f {12112 e (g2 - [2]? - (2]} e € JRumsiiee,
@uNT o ma‘q
Proof. This is deduced in o standard way using Lemmas 8 nad 9.
Tmywma 11, On m, '
f};(ﬂ) < Nh(l—-l,‘rb\-zd).
Proof. Thix is deduced from Weyl’s i:_mqua,lity, and iy ossentially
Lemma 8.2 of [10].

5. Integral over .
Emvma 12,

fjﬁ - Na)da € N~ 1= EF(0)

"

(cf. (30) and (31)).
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Proof. Since F,
fl’z Ye{— Najda < f}ﬁ’

b

= Py [y fy, we have by Sehwars’s inequality,

)y () fy{a)l du

< {max|f3{a

(e

flp( Ik ﬂ‘rz} {fllf‘ () du}w.
Result now follows from Lemmas 4 and 11 (on noting that N7 < f,(0)).
6. Integral over . .
LEava 13, With F(a), G(a, @, q) defined by (29)
)1 b f]lﬂ (e, ay @)2da < N " 0)0,

qzay\”‘ n oy, .

Proof. TFrom (29), (36) a,nd. (37,

_ Fla)—@la,a, q) = 2+ 2,424+ 2,;
&0 that
1 (a}—Gla, a, q)* < e e LA N A
Hence, by Lemma 10, '

2.2 [IFa)

g=NT e By,
LEMaa 14,

>, J e

asNT u My,
Proof. Wnte

(a, 6, g)|2da < N¥-¥10 g N MO (el (31)).

Gla, a, )| [Fy(a)da < N 70 {I,000) (el (29)).

(o) it aed,,,
_ 0 it aem.
i s ] H o 3 TR . . ' . -
.Slnce‘fma,q 8 (for ¢ < N7) are digjoint, zuud their nndon is M, Leioma 13
is equivalent to L

Ala) = —G(a, a,q)

[; a)[tda < N A0

Hence, sinee M iy contained in the wnit interval @ lelasT 10 we
have by Schwars’s inequality,
o Y f [# (@) ~ G, a, )] 1, ()] da
_ GENT o M,

f\/l( W ()] d e l 14

= | a 3 = T N
]| Nda <{ ][14 ) 2da] {w.f, By )|l

1
T 1 (o) o,
4

Now, by (29) and (81), Fy(a) = {fyfufrufun) Fo(a).
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Henee by Lemma 4 and trivial ostimates fox f,, fiy, fig) foss

I

The lemina now follows from Lemma 13, (40) and (41) (since F,(0)
s J(0) 1 (0)).
Tmnvna 15,

SUN [ a0, @l (o)ida < F1H(0).
g NY ﬁj}a_ra .

(4-]) Eada & Nbﬂl 1nﬁ{ﬂ1

Proot, Using Lemma b, i can be ghown in a standard way that

2N | (a6, 9)lda < NI B A,

us,N‘ 7 mturf g=NT

Result now follows from Lemma 8 and. the trivial estimate for Iy () (using
F(0),(0) = Fy(0)).

The next lemma follows from Lemmasg 14 and 1b in a standard
WaY.

LommA 10,

' Y [ Fala)e(-~Nayda—
qENT w My o
EER ALl
- 33 [ 6 a,q)If (a)e( —Na)da < N-1"°F,(0).
rf&]\f" a g1
Tosvinra 17,
- 1+@_l .
r(N)— 3 3 [ Gla, 6, Fy(a)e(~ Na)da < NT0T0(0).

wENT w1
Proof. Follows from Lemmas 12 and 16 (cf. (34)).

21 7
Loovwa 18, Write w == o} +( 3 of) with Py, < 0, < 2P, for each &, and

Fisaa 7
- N' 2 N ity Them, each w satisfies
42) u = o(N),
and
gt ,
@(a, a, )y (a)o{ —~Na)da = {77 8:8,8, Sa}z_, (,( —N'a)p(¥),
Aad _
awhere
1=t
(N = [ TuBW BB Bre(— BB
ot
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Also yw(N') is real, posilive and sotisfies
(43) N-UF(0) < w(N') < N7 #(0)

Proof. Thig iz a standard type of result proved in the usual way.

(¢f. (29)).

7. The singular series. Let
Aln, g) = D {g7*8:8, 8,86 e~ an),
143

e

= Y An, @), G = Eﬂ-(%m%
g Q=1

The treatment of singular geries is essentiaily the sanwe as in [6], bot

differs in some detadls (sinee we replace the bth power in (6] by 6th power).
=23

In place of Lemma 21 in [6], we have the estimate ) |A(n, p')| < p~ %t
Lot

All the other lemmas in the treatment of singular sericg rerusin valid
including the solubility of the congruences

ooy 28 =a(moedp) and  af--@-a o n—1(mod 24

(the second congruence rcgniving a numerical verification). Accovdingly,
corregponding to Lemmas 28 and 29 in [G), we havo

LEMMA 19. S(n) s absolutely convergent and G(n) »
Lemma 20. ZA ) € X%y,

(loglogm) 1.

(01, € being posmve congtants.)

8. Proof of Theerem 1.1t U denotes the number of 'y in Lomma 18,
then (ef. (29)) F;(0) < U < ,(0); so that by Lemmas 19, 20 and (438),

Ny s N-1,(0) (loglog ¥)~¢ (et. (30))

and
2, AW QpE) < NAF(OF 4 N7 (0) (0,3 0).
e>NT - .
Thﬁs |
(44) SIS, N p) 5 N1 (0)(loglog N},

u

Also, by Lemma 18,

11
S 3 | @, 0, Fu(a)e( — Noyda = VS, Nyp().
L NT LE Oml t . ’!\!

icm

On sums of powers and a related problem 135

Henee, by Lemma 17 and (44),
r(N) » N7'F,(0)(loglog N)~C
Thus (N} > 0 for large N, proving Tliéorem 1.

9. Outline of proof of Theorem 2. We indieate the main changes
required to be made in [8] in order to prove Theorem 2.
I, Tmmonem A,
1
[ (a2 da < N~ (log N)Is{Fy(0))  (cf. (30))
0
awhere (0, i3 a positive constant.
To prove Theorem A, wo need the following lemma which is similar to
SBatz 3 in [4] but differs in gome details.
Lumma 21, Let Hy = K, u{6} and 8 = > (af

kel

Jor ke, (cf

yEy with

(45) PA'. ‘Eg Wy
Then

<2P,, P,<y,<2P, . {28)).

2, 18D < H* (log )%,

&g

where d(n) denotes the divisor function and of — 2, Ll {cf. (20)).

kehRC 3
Tamma 22, The nwmber of solutions of

(46) i+ 3 ak) = o+ (X v

kelly kely
with the a8, y,'s subject to (45) Jor k & Ky and b = 2 4s
(cf. (24)).

Proof, Writing (46) in the form i —a} = 8, we see that for a given
8 o 0, Iy —ig| i w divisor of |§] for every pair (@, y,) satislying (46).
Henee, it follows from Lemma 21 that the number of solutions of (46)
with, & 50 iy < N*{log V)™,

Also, by TLoemma 1, the uwamber of solutions of (46) with 8 =0,
Ty == Yy 18

< N*2) (log )%

’72‘!“5

2
< Nt NV = N ).

Qe = \ |
< N (sinee g, > 14 108

The lomas follows fromn these (since by (24), 207 = 20, —1),



icm

136 | K. Thanigasalam

Since the mtagral in Theorem A iy the number of solutions of (46),

and N < {F,(0)}* (cf. (30)), Theorem A follows from Lemma 22.
Ay Aw .
II. With the same #'s and A’s ay in (15) {but exeludmtrw’—: =z ; in tho
“'l‘
sun)
1 A
,£ £ i I
L7 - e (1L634305,
{47) oy ’;—>'f . = )
Theorem 2 of [1] with &, == B, b == 3, a == ay gives
‘ 1{7+4 33a3)
£ = e | e | > (.731821,
wn =S
Again taking & =4, b == 2, a = §,, we have
+13 8, .
(19) R e =
Also '
(50) 0.80389 <t A"’ < 0.8039 where A" = "%
b}

Letting K, = K,u{4, 5}, the next lemma follows from (47), (48), (49
Theorem 2 of [17.
‘ Lmmma 23. There emist numbers uy (% e K,) satisfying

J and

Bn <<l o e

t
Y
;= 10"‘

po=1, py=2", 27‘;— =
kekly
suoh that {(k, w)} (& € K,) form pairs of admissible exponents.

We define (for e K,)

\ ) - . N"Ik
{52) v, =vla) = N e(aaf)  with 2P, = N,

30 that by (28), v,(a) = fy(a) (since py = puy = 1);

[[7e(0) =fuaos (@) ( [Toul@l);  Fala) = fa(a) Byl

hekg foekhln
Then, by Lemma 23,

(33)  Pela) =

1
(54)  [1Fy(a)*de < NPs** < N-Pto(P (00} (sinoe N™ < 1,(0)).
8
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Tororem B.
1

frF7(a)|2da < N-YF,(0))2

Proof. With @ defined by (32), we make the same subdivision of the

interval Q7' = a <10 (into M and m) as in the proof of Theorem 1,
and show that \
LER

[ 1P da < ¥ (o,

(=1
wvhich i1 equivalent to Theorem B,
Anin the proof of Lemma 12, we have from Lemma, 11, (49) and (53)

L

"k

1
(55) a)*du € WA [0 0) P
] )

< NTHRE(0) < N7HPL(0)  (since V2 < f3(0)).
LeMMA 24. On I, ,, v5(a) € g”mN“:"

Proof. If Wa, e, q) iz the approximating funection correspondlng
1o v (a), we hsuve (sorresy pondmg to Lemmas b and 7),

vs{a) —Wila, ¢, ¢) < ¢"* max (1, N“"'iﬁ{)

and

Wila, ayg) < 58" min(1, 75|82,

“The lemma is dednced from these together with (50) and (B1).
The next lemma is deduced from Lemmag 5 and 7.

Luaua 25. On M, ,,
Jo—ge « TG gy € NV S, imin (L, N |BY)
R A R e R A A L

Lmma 26, On M, ,,

3 in 4§ - @ :,;15 ; -
(fifigighyt < g N (@, 4 o,

(b =3, 4);

'+ @8 ""I‘ djd. ’|'d)5):

where _
Dy == [fy—gallgal 19,* <€ NHATHD g Wmin (1, F-11817Ye;
By == | fy— gy Walflmﬂ!ﬁ% < Nm_l_IMHQ—m]Ssli .
g[)ﬂ = {fa—gsl lgal2q PN < N|2(1f3+1;‘+]g—lslﬁnlin(l, N”_llﬁfql)gi

Dy = | fy = grg] (g AN g2 g NS 18 g6
Dy o= [fy gl |fat gl lgsl? < NJ(I/‘IHM)Q—H 18y Pmin (1, N1 gz,

B — Acta Arthmetica XXXVIE

E
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Proof. This is deduced in a standard way from Lemmas 24 and 25,
The next lemma ig proved in the same way a3 Lemina 8. :

LemMma 27,
2 quls—wﬂﬂa\ < 1; Z Eq—*a-wzn.;‘m 18,08 < 15
awNT @ l g=NY
3 RIS, RIS < 1.
e N o
Lumwa 28.
(56) 2 Z fifgfa. gssu)vﬁ [do < NP
R e=lN* a My,
and

(67) Z 2{ f [Q'Jﬂ'ej.”slda < Na?,
. e<NT o My .

where ¢ =13 -+1/4 /5.
Proof. (56) follows in a standard way from Lemmas 26 and 27, (57) is

again deduced in a standard way from Lemmas 24, 25, and 27 using the
extimate

gagivs < ¢ N* _4-“"”8 [*i8, |2 min (1, N—liﬁl—]

It now follows from Lemma 28 th&t

(38) [1fifivdlda < N7 {£,(0)fi(0)v,(0)}2
m

since N® < £3,(0)f,(0) (0},
. Now, using the trivial estimate
[Toe) < [Tou(0)  (ct. (83)),
 helly ek,
we have from (58)
(59) L [IP(e)rde < NTEL(0))
: _ it
Theorem B now follows from (55) and (39).
ITE, Let
(60) 2P, = N, g = Pk if s ==2,3,4,24 or & Ny,
P, it kel

where Py, P}, are defined bjr (28} and (52).
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‘Write
(61) fi =fil@) = 3 e(ap?) for2<k<24,
) Qp<p=<20y
and (with the ¢, occurring in Theorem A)
0 .
(62) O = 2‘, Op = 250, +28); I =1logN, F*(a ”fk

=2
Subdivide the interval

(63) NI a1+ N I0%
into bagic intervaly mj, for ¢ < L% with a = afg-- ﬂ, 18] < g * N1 L%

and denote the union of m} s (these being disjoint) by m*; the supplemen-
tary intervals m* denotes the complement of m* in (63).

Let
14N 06
(64) r*(N) = (a)e(—-Na)da
N-—-l C'(;
= [F*(a)e(—Na) da«-l— j F*(a ~Na)da.

mH

As in Lemma 7 and its corollary in [8] (wﬂ:h glight modifications), we
have on m*,

(65) Fola) € NI G52,

Replacmg (33) and (34) in [8] by Theorems A and B, and arguing as
in § 8 of [8], we have from (62) and (65)

(86) [ \F* (@)l da < N-2(Fy (0

m

Also, by (28), (52) and (60),

L% < (logQ,)% < L% and N-'L% < @;"(logQ,)%s
Hence, we have by Lemma 8 of [8], oh m¥,

(67)  fifa) (Cy > 0)

where gj is the approximating fanetion corresponding to f! given by

(%4, 0,9) m{wq)}*{z%(azk)}{ S oy e(ﬁy)}

{@a)=1 Qki'U‘(ng)k

I, (00} L%,

for 2< k< 24,

—gta, @, @) € No~C7%F for 2. <l << 24

Also y ag defined in § 9 of [8] is equal to 1 for each prime p if we take
by =2, k, =3,..., kg = 24. Hence if My (p, N) > 0 for each prime p
(noting that the premises of Lommas 16, 19, 20 in [8] are satisfied), it
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icm

would follow as in [8] that
(68) Re( [F*(a

m*

Na)a:a)>N-T{E* VI (0L
Then, from (64), (66) and (68) we have ¢*(¥)> 0 for large N provided
Mg, N) = My(p, N) > 0 for each prime p.
IV. The argument is completed ag follows: Let N boodd. M(p, N)
denotes the nwmber of solutions of the congruence
24
(69) (Dal) =Nmod p), O<m<p for 2=k 24,
o k=1
p [
= B) Dog o
(b, p—~1) J)
distinet residue clagses modp (2 <k < 24). IHence, applying Hilssatz
8.7 of [4] repeatedly (22 1]11119‘5) we see that the number n(p) of dmtmct

By Hilfssabz 8.4 of [4], for each prime p,a} (0 <

regidue classes modp of { Zm (0 < x, < ) bamsﬁes

k=2
| jﬁ p—1 l
(10) n(jp)};min( {M__*:m_ 9 )
- - ,Z (p—1y) ¥
Now
' 24
p-i p—-1 SR
(kyp—1) 7 & and _Z_fc-')”‘j“'

Hence, from (70),
(71)  n(p)>min ..‘3._.._2_].

Algo §(p —1)—22>p if p3>17; so that by (71),
(72) Mip,N)y>0 for p=17,

For p =2,3,8,7, 11 13 it is an cagy verification (by wse of Tilfsuitzo
8.4 and 8.7 af [4]) that M (p, N) > 0 (N being odd).
Thu_s, sufficiently large odd integers N, are reprosentable in the form

Zp"” (p’s being primes), (and¥, (oven) == Z'p"”
P L=l .. oy

completmg the proof of Theorem 2.

Acknowledgement, I am indebted to the referee for making many

suggestions whlch were helpful in sujtably condensing the original manu-
script,
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