%] ¥, Halter-Koeh

In gleicher Weise erhdlt man
, (07 : E*") = (O3 : K7,
und es geniigh nun, Cyp, = Oy (K (w)/E) zu beweisen, denn dann ish
(F: K*™ = [K(w): K], und aus Lemma 7 folgt K (w) = K (C).

Otfensichtlich ist Coyuy S O, (K (w)/K). Sei nun

v & Oy, (K (w)/E) = (K, 0, (K(w)/ K],
@ = aat mit 2 '€ ¥, 0y & Oy (K (w)/K) s O, (LK) = <0, W, NI (Lomma
12(d)), also @ = %, & mit e, £ & WninL. Damit folgt :
2 = ol e (KX, ") < Oy & Oy
da (T:XK*) zu ny prim ist, und ich erhalte
| re (G1HK(w))(n2) = Oy}

also gilt auch O, (E(w)/K) & Uy o
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1. Introduction. An integer in an algebraiec number fiold k is drreducibie
if it is not a product of two other integers of &k neither of which is a unit
{or, equivalently, if it is not a produnet of two integers of smaller norm).
Clearly every integer of & can be expressed as a product of irreducibles,
and it is well known that every integer of % has a unique irredyeible
factorization (apart from the order of the factors and multiplying the
factors by units of k) if and only if the class number % of %k iz 1. This
remains true if we regtrict attention to the irreducible factorization in
L of rational integers only (instead of considering all integers of k). The
number of irredueibleg in such a factorization (counting each as many
times ag it oecurs) is called the length of the factorization, and L. Carlitz
[4] has pointed out the interesting fact that a necessary and sufficient
condition for no integer of & to have irreducible factorizations of differ-
ent lengths i that b < 2. Again, this remains troe if we restrict attention
to the lengths of irredueible factorizations in & of rational integers.

Let f(m) = fi{m) be the number of essentially different irreducible

factorvizations in & of the rational integer m, and let g(m) = g,(m) be

the number of different lengths of irreducible factorizations of m in k.
If p(m) is an arithmetic function then a function y(m) is an average order

for it if
Dlgmy~ 3 pim)

) ) TR MG
and is a normal order for it if, for every positive ¢ and 2,
(L—e)p(m) < p(m) < (14&)p(m)

for all excopt o,(x) of the positive integers less than =, In a convergation
with W. Narkiewicz in 1965 . Turdn asked whother the functions f(m)

* This author was in recoipt of flnsneial support from the Seience Research
Couneil during the poriod in which f$he inilial work for this paper was carried ount.
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and g(m) have inereasing normal orders, and Narkiewicz [7] showed that
if & is a quadratic ficld with h =2 then f(m) has no increasing normal
order but that logf(m) hag %(loglogm) (logloglogm) a3 both & normal
order and an average order. Narkiewicz conjectured thab f{m) nover
has an increasing normal order, and this was recently proved by J. Ro-
sifiski and J. Sliwa [14]. Narkicwicz alse showed in [7] that g(m) has
average and normal order ;loglogm for quadratic tields with b = 3 and

“Hloglogm for quadratic fields with class group %, X Z, (so that b == 4),
and he stated that his method applied to any quadratic field with o given
class group.

Tere we take up the question of the order of g(m). We ghow that
for every algebraic number field % with h > 3 there is a positive constant
O = 0, such that g,(m) has average and normal order O loglogm. (Lhis
has recently been proved independently, for the normal order at Jeast,
by Narkiewicz and Sliwa [11]. More recently still Warkiewicez [107] has
shown that logf(m) has normal order D,loglogmlogloglogm for every
algebraic number field & with k> 2.) We shall deal with the average
and normal orders at the same time by showing that

2 (g2 (m) — Oy loglogm)* = O(zlogloga).

: M R . .
This elearly implies that g(m) has normal order Olog logm, and by Cauchy’s
inequality
3 {g(m) — Cyloglogm| < (& D (g (m)—Oyloglogm)?)"™

m<z msz
_ ) = Oz (loglogz)"?), ‘

50 that g(m) has average order C(loglogm too. Tor given & the congtant
O, can be caleulated in terms of the class group H of & and the dengities
8(X)(X in H) of rational primes with a prime ideal factor in % helonging
to the ideal clags X. (The definition of §(X) will be made precise in the
pext section.) We find C explicitly (in. terms of the J(X)%) when I i
a ¢yclic p-group and when H = %, X Z, ov Z;. We also show that there
is & number C(H), depending only on the class group M, such that
¢, = ¢ (H), with equality when (but not only when) & is normal of prime
degree, and we find C(H) explicitly when # is a homocyelic p-growp
(that is, a direct product of eyelic p-groups of the same order). In addition
we find bounds for 0, and C(H), showing, in particular, that
. 3< O <ilh: Q144 s<CUH) <}
and

| C(H)>} as |
and we caloulate (Z,x Z,) (to show that our treatment of homocyclic
p-groups. does not always work for non-homoeyelic ones).

h—>o0,

icm

Number of different longthe of irreducible factorization 61

A related topic that has received more attention (see, for example,
[9], Chapter IX, [8], [1] and [12]) is the problem of finding asymptotic
formmulae for the number of rational integers less than x, and the number
of integers of & with norm less than x, that have unique tactorization oy
unique length of factorization in %k (or, more generally, that have f, or
¢, below a given bound). ‘ :

We shall assume throughout that %= 8. (We already know that
g(m) = 1 for all m when b = 1 or 2.) All 0-constants depend on the field k.

We are indebted to Dr. R. W. K. Odoni and Prof. W. Narkiewicz
for giving us access to their work before publication and for much helpful
correspondence.

2. The densities 0(X). We now define the densities §(X), explain
why they exist, prove the useful relation §(X ™% == 6(X) and obtain some
inequalities for them.

Tot an ideal elass X of & and a rational integer m we denote by £x(m)
the number of prime ideals belonging to the clags X in the prime ideal
factorization of m in &k (counting each ideal as many times a8 it occurs).
Then #(X), the natural asymptotic density of the set of rational primes
(with multiplicities) that arve divisible by a prime ideal of ¥ belonging
to the class X, is '

1 "
jim —2¥ 2 Qx ().
pson

R. W. K. Odoni [12] has pointed out that there is & normal field K such
that rational primes p and g belonging to the same conjugacy clags of
Gal(K Q) have Qy(p) = 2x(q) for every X in H, and hence the densities
(X)) exigt by Uebotarev’s density theorem. We repeat Odoni’s argument
in order to get more information from it (namely, Lemma 1 (i) and Lemma
2), The facts wo use about Frobenius automorphisms and the Hilbert
clags feld ean all De found in [B], Chapter III, §2 and Chapter V, §13.

Tt K De the THilbert elass field of & and K the normal clogure of K
over €. (Thix in not quite the same as the corresponding field used by
Qdoni, but it serves the samae purpose.) Then, the Galois group Gal (K /%)
it isomorphic to the class gronp I of k. Define A = Gal(K/k) and @
= GalL(C)Q), so thati H is a subgronp of & Take a prime P in K that is
wnramitiod over Q and let B, p and p be the primes in K, % and Q that
i divides, If l-j%li] = o & @ then p factorizes

Q,,w_,.._k-.ﬂwj,:.M—:!m?
» » P 0B
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in & Iike the eycle structure of o acting on the cosets of H (or, equivalently,
like the cycle structure of ¢ acting on a set of conjugates of a generator
of & over @). In fact the degree of p is the smallest number £ such that

of e H. Algo
7 7 107
- L

K R

and [H%]f] = (w%f-) (the Artin symbol) doetermines the class of p.
Now take any 7 in ¢ and define (with utter insensitivity to notation)
™ = {EP)nKE and wp = {vP)nk Then [—Jg] = wor~' and hence,

T

[%] = (vor~ ¥ , where zf i3 the smallest number such thatb
(rov™Y7 e H (or, equivalently, such that Hvé” = Hr). Also 7,p = 7,p
if and only if He, = Hr,o® for some 4. [Notice that if % is normal over
QO then so is K, so that K = K and Gal(k/Q) = G/H. In this case the
notation is not an abuse, as wp is the image of p by the restriction of =
to k. Since H is normal in & all the zf’s are equal (for given o) and the
action of an element of Gal(k/Q) on the class group H is the same as the

inner awtomorphism action of an element of the corresponding coset
of H {on H congidered as anormal subgroup of ¢).] Sinee the product of

the primes of k& dividing p is principal, we have, for each ¢ in G,

(T o} e = X,

where Xg.'is the identity element of H and the product is taken over one
representative r from each eycle of cosets {Ave®| b € H, i e Z}. Equivalently,
since there are zf cosets in the cycle containing v,

[ Jerer )

where the product is taken over a set of coset representatives of H in &,

~ When & is normal this becomes [[zX = X, for every X in H, whero

the product i3 over all amtomorphismsz = in Gal(k/Q), and this ean he
' written as norm X = X,.

If ¢ is any rational prime belonging to the conjugacy classy of o (that

is, which ig unramified in K and whose prime factors in K have Frobenius

antomorphism in this conjugacy clasgs) then there is some prime factor

_ _ 7 - L
8 0f g in X with [ i/iQ] = ¢. Write g = Ok and »q = (zQ)N%k. Then

H
re

K

Kl Xo;

- vq gives a one-one correspondence between the primo factors of
p in k and the prime factors of ¢ in %, corresponding factors having the
same degree and belonging to the same ideal class.
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We can now prove
Limvwa 1. (1) For each class X the denstly 6 (X) ewisis and is an integer
multiple of 1/|G. .
() $(XY) = §(X). _
(1) 3 Q5 (m)/6(X) = xloglogz 4 O ().
megx

(iv) 3 (Rx(m)[d(X)—loglogm)? = O(wloglogx).

e

Proof. () We have just seen that for any conjugacy class ¥ of &
the value of 2, (p) is the same, Q2(¥) say, for all rational primes that
belong to it. Also, by the strong (natural density) form of Cebotarev’s
density theorem, the number of primes p < @ that belong to % is
Liw|#!|/|6¢ + 0 (wexp(—clog?x)), for some econstant ¢. (This form of
Cebotarev’s theorem had already been stated by E. Artin as Satz 4 of
[27, where it wag derived from hig reciprocity theorem. The reciprocity
theorem itself was proved later (3] using an idea from Cebotarev’s proof
of his theorem abont Dirichlet densities which had been published in the
meantime.) Hence ’

W > Qule) = (3 @x(#)|%1/161|lic + 0 {sexp(~ologs)),
e %

where the suw on the right rung over all conjugacy classes of & (The

finitely many rational primeg that ramity in K contribute only O(1).)
(i) For p and ¢ as above, if Q iy an unramified prime of K with

[—1-{—_/.2] =g % q =Qnk and o= (r—f;z)nk, then »q has the same

Ly
degree ag Tp butb ig in the ideal class inverse to the class of rp. Since also
710 = Tpq if and only if 7,p = 7,p, we have

Ry = 2x(®),

where %~ is the conjugacy clags consisting of the inverses of the elements
of 7. [oenee

$) = I OACNC 6 = 3 @uea (1G] = D),

w
(iii) From (1} we geot
@) 3888 s ogtoga+0 ),
ik "p

by partial sununation. I m =p{t .., pf¥ then

Qu(m) = a3 Qe (Pa) -+ 4 L (By),
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and consequently

)’ \! & 2x(p) \' Dx(p)
2‘ Lx(m) = _>_, Qx(p) [F:I = WZ*—E—' A+ %“WT" -0 (w)
M= pagx nsr 1;}3

= §(X)xloglogs -+ O(x),

: . A 1 _
gince the second gum on the right is ()(2: E—(zg:ﬁ) = 0(L).
: vl

(iv) This follows from (2) and Lemma 3.1 of [6] (look at the notation
. soetion at the beginning of the book to decipher it), since
%P T XL 1L e
ML Novpy =0 Y4 Vo N

P, & s 2 O 2
Pl P phem F = ? 7 P ¥

= O (loglog )

k-2

and. -
) 2?(loglogm—loglog'm)2 = 0(x),

MmE

a3 can be seen by splitting the sum at #*2, for example. .

Another account of results of this sort can be found in [15] and [161.

Lot X be an ideal class of k. Then X can be identified with an auto-
morphism of K over k, and there are exactly [H|/|H| different auto-
morphisms of K over ; that extend X. If ¢ is one of these (in the conju-
gaoy clasy &, say) then the contribution to Q24(%¥) of primes p of the
form Pk, where P has Frobenius automorphism o, is |&{/%||H|, since
there are |G|/|%| v's with 707~ = &, but s in the same coset of A give
rige to the same prime p (and only ¢’z in the same coset, since the eyele
of o containing H has length 1), Hence the contribution of these primes
to 8(X) is (IG1/1€||H|){I1%]/16]) = 1/|H|, and so

#1001
6X R T e TR e,
I E E T

(What we have done here is just to count the primes of & of degroo 1 in
the class X, and in fact the statemont that 6, (X) == 1 [hy whoere 6, (X)
i8 the contribution to §(X) of the primes of degree L in k, 18 nothing but
the prime ideal theorem ([9), Proposition 7.9, Corollary 4).)

The fact that 8(X ) = §(X) will be very useful later, and knowing
that 8(X) = &(¥) for all pairs of ideal clagses X and ¥ for which thero
ig an antomorphism « of H with aX = ¥ would be even more uscful.
- However, Odoni has pointed out to us that this is almost certainly not
troe. If % is & normal field with Galois group Z, generated by the auto-
morphism 7 and p i a prime of & of degrec 2 then p(zp) i principad, and
80 X = X', where X iy the ideal class of p. Hence 72X = X bub *
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is not the identity. For a general cyclic gquartic field one would expect
some classes to be fixed by = and others (automorphic ones even) not.
Any class X not fixed by +? can contain no primes of degree 2, and so
6(X) = 0,(X) =1/h. On the other hand, the primes with Frobenius
automorphism 7* have degree 2, and some ideal class X wmust contain
a positive proportion of these primes. For such an X, 8(X) > 1/h.
The sum 3"6(X), over all ideal classes X except the principal class

Xy, i3 an important constituent of ¢, so it is worth saying something

about its size. A lower bound is given by

D) » Z’aI(X) = 1—1/h.

Moreover if % is normal of prime degree ¢ then every prime in % has degree

- either 1 or ¢, and. the primes of degree ¢ are principal. Consequently this-

lower bound is attained.in this case. The normal fields of prime degree

are almogt certainly not the only fields for which the lower bound iz -

attained. Suppoge, for example, that k is normal with Galois group Z;.,
for some prime ¢, generated by v. Suppose further that the clags group
H of I hag odd order and that X = X* for every X in H. (Since h is
odd this does define an automorphism on H.) The condition normX = X,
becomes in this case

2.1
X1+2+4+...+2(1 _ -Xor .

that is,
XEQEWI = X{n

and this will be satisfied for every X in H provided that H has exponent
dividing 29" ~-1. Since % is normal, K is normal over @ with Galois group
G, say. Suppose, finally, that ¢ = Z:& H, the semidirect product of
Zp and H according to the action of Z,2 on H just describied. (This means
that & = {(+, X)| i e Z, X e H} with multiplication defined by (<!, X) x
x(ry ¥y = (v, X¥ ¥).) The possible degrees of primes of k¥ arve 1, ¢ and
9% and primes of degree ¢ are necessarily principal. Tf p is a prime of
degree g and o is the Frobeniug antomorphism of a prime in K dividing
it, thon ¢% & I, and 80 o = (v%, X) for some X in H, The class of pis
given by '

o s (1, X -s‘-u’l~|-22-’f~|-.-.-n~z(ft“1>€f)
RS A ?

80 if I has exponent dividing 14294, - 2@ 00 < (2‘124—1)/(2’T —1) then

- every prime of degree ¢ is principal and §(X) = 6,{X) = 1/ for all

X other than X,. There seems noe reason why there should not be fields
k fulfilling all these conditions. This cxample can be varied in several
ways, the simplest of which is to take =X to be X” for any fixed intoger
@ (not neecasavily ). -

5 -~ Acls Arlihmetlea XXXV L
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To get an upper bound for 37 8(X) we first find an upper hound
for the density of primes (counted with multiplicition) that are divisible
by primes of k with degree greater Ehzyn 1. Lot & be 't.hu normal closuroe
of & and put n = [k: Q] and 7 == E Q]. Then no prime can have more
than [#/2] prime factors in & of degree greater than 1, and morcover i;h‘e
primes that belong to the identity clement of Chl (& /Q)' h&wquﬂ] their
prime factors of degree 1. Sinee this set of primoes has density 1/# we have

s~ 6.(XK)) = (1 B ;) [2}]

Xell
Henee

- 1 1 . 1

(3) _ P é(X)s;(l_mﬂ)[z]}.l. o

This upper bound probably cannot be improved on. For cxarple,
to return to the situation in the diagram, there seemns no reason why there
should not be normal fields k with ¢ = Gal(K/Q) = Z,,,, the divect
product of » ¢yclic groups of order o5t (p, e 1), and H = Z7,, the dirlect
product of the subgroups of index 2 in each factor of ¢ Then Gal(k/0Q)
= G{H = Z}, and since G is Abelian Gal(k/Q) acts t1;ivia11y on H, Conge-
quently the condition normX = X, reduces to X¥ == Xy, and this is
satisfied for all X in H provided that » 3= s It o is any element of ¢ not
in H then o® ¢ H, ¢® # X, and o acts on the cosety of H as a product of
91 9.cycles (since o has order 2 in G/H but fixes no coset). So primes

o with (ﬂg) not in H factorize into 27! primes of ¥ of degree 2 which
P .
K0

are all non-principal, whereag primes p with (mi«,;»—) in H factorize into
9" primes. of degree 1. Hence (3) holds with equality, where 1 =7 = 2f
and B = 27, When s = 1 here the §(X)s with X s X, are all the same
{equal to 1/2--1/k), but when s > 1 they are not.

To sum up: :

LEMMA 2. We have 8(X) = 1/h for all clagses X, and of & is normal
of prime degree (and most Tikely for some other fields kb too) S wa L/R
for all X except the principal class X,. Also :

N < (1 ~ -}ﬁ) [Z] 41— 7%-
X X0 '
3. The existence of €. It makes things simpler now if we regard the
. functions g and Q; as ranging over the integers of I (in the obvious way)
insteadl of just the rational integers. We shall denote by @(u) and § the
(h—1)-vectors whose components are Qy(u) and 6(X) for A 54 X, (whore
u 18 any integer of k). ‘
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An obvious necessary and sufficient condition for an integer J of
% to be irreducible is that no proper subproduct of its expression as a prod-
uct of prime ideals of & ig principal. Accordingly we define an #rreducible
type {or & type, for short) of an Abelian group H to be a family of elements
of I (that iy, 5 set with repefitions allowed) whose product iz the identity
but which has no proper subproduct equal to the identity. [These types
are what are called ‘minimal complexes’ in [9], ‘and are virtually the
gaame as the types of [11]. They are not quite the same as the types of
[8], however, which carry more information about the power of each
individual prime in a product.] A family of prime ideals of % has a8 its
product a prineipal idesl generated by an irreducible integer of % if and
only if the corregponding family of ideal classes iz an irreducible type
of the class group H. Consequently an integer x4 of k is a product of »(Z')
irreducibles from cach irreducible type & if and only if

D 2@ = Qx(w)
&

for all X in H, and when these equations are satisfied the length of the
corresponding irredncible factorization of xis 3 v(Z). (Here 24(%) denotes
the number of A'sin &) If 2, is the ‘“trivial'’ type <X,> then the only
eguation containing v (%,) is the one corregponding to X, and this ig

o(%0) = O, (a).

Henee g(g) is equal to the number of different values of Y'v(%) among
the solutions in non-negative integers of the » —1 simultaneous equations

D)0 (F) = 2xlp)

where all sums are over the set of all non-trivial types. These are equa-
tions in the {1 wvariables »(%) (where ? is the total number of types
of H), and ay such they define an affine subspace & (2(p)) of R, which is
a translation of the subspace ¥ = & (0) defined by the associated homo-
goneous equations. The part of ,ff(ﬂ(m) in the wpositive guadrant is
o bounded convex ot (sinee the £2.(#)'s are non-negative) and g(u)
is the number of ditferent values of Y #(#4) at integer points in this part
of 7 {Q(w)). Clearly there are integer points on S{Q{u) (got by factor-
izing p into irreducibles in any manner) and since the 2y (#)’s are inte-
gers & hus o basds congisting of rational veetors, so the integer points
on. & {Q(w) fornm a lathice of the full dimension of % and the lattices
arising in this way from different p’s are congruent to each other. If we

(X # X,),

can find o family of clagses that iz both a union of two irreducible types

and & nnion of three irreducible types, say, then it will follow that the
minimum step length of the linear funetion 3'v(#) on this lattice iz 1.
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T4 there is a class X in H of order ¢ 3> 3 then such a family is given by (1)
<X, X, X eu<X XL X
= <X, XU X, X U< X
(where each uniand is a type). If, on the other hand, overy class except

X, has order 2, then there are distinet classes, X and ¥, of ordoer 2
(since k = 3) and such a family is given Ly

<X, Y, XV U<, Y, XY > <X, XU LY, YU <XV, XY >

Since }'»(#) has step length 1 on &f"(ﬂ(,u)) tho intersection 7
= 7 (Q(p), @) of the subspaces ¥ (Q{u)) and X'v(4) = e contains an
integer point whenever o is an infeger, and sinec these subspaces are
rational the integer points on Z form a latfice of the full dimension of
" (whieh i3 one less than the dimension of %), The lattices corresponding

to different values of ¢ are congruent to each other, so there is a constant -

¢,, independent of &, such that every ball of radivs ¢, in 7 contains an
integer point. '

Now suppose that £2(u) is proportional to J, 2(p) = Ad say, and
let B = B, and b = b, be the maximum and minimum values of 3'¢(%)
(the v(Z)s being real variables here) on the part of & (d) in the positive
- quadrant. Since this part of () is convex, its infersection with the
hyperplane >'v(%) = afd containg a ball of rading ec,min(B—afd,

afd~Db), for some constant ¢,. When Ab+tefe, < a5 AB—efe, this
radius is at least ¢/« and hence & (448) contains an integer point with
2 (%) = a. Consequently .

A(B—b) =20, /e, < g () < A(B—b)+1.

We shall show that 0, = B, b, is the constant we are looking for.
For a general rational integer m we pub

A" == |G min [ Qy (m)/[G]6(X)],
XXy ‘

where G is as in §2, 8o that |G| is a common denominator for the &(X)Ys,
Then A'8(X)<< Qe(m) for all X 5 X, and by multiplying togother
A" 8(X) of the prime ideal factorg of m in the class X, for ench X, we geb
an integer x” of T dividing m with Qy(p’) = ' 3(X) for cach X (The ideal
got in this way is principal because the equations [@|d(X) = 3 Q4 (€)%
show that the class got by multiplying together || 8(X) copies of X,
for each class X, is the same a8 the one got by multiplying together |%|
rational primes belonging to each conjugacy class ¢ of G.) T we take

{(*) We nse < > to indicate a family and {} to indieale a set.
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a fixed irreducible factorization of m/u' of length I, then every factorization
of u' of length I gives rise to a factorization of m of length I+ 1,, and hence
glu') < g(m). In the same way, if we take -1 to be the least multiple
of |&| greater than max £y (m)/é(X) we can find an integer u'’ of & with
Qe(u”) = A"8(X) for all X # X, and g(u'') = gim).

We now have

. L5 (m) ' 25(m)
L 1in —=—= 4+ 0 (1) = < i .
(4} g{;m 3 () + (1)<g(M)<011cn%ag 5 (%) +0(1)
Hence
2
ot —Clogiogn = 0 [max S —toglogn ) +
. Lx(m) :
+O((Xn:£u 5(X) ~—10g10gm))+0(1)
£ (m) :
= 0( (w%&-m u-loglogm) ) +0(1).
zg';ﬂ o)

Summing over m and using Lemma 1(iv) now gives
TarorEM 1. For every algebraic number field % there is a constant
C, such that

Z (g(m)—Ciloglogm)* = O(wxloglogs).

m=<r

We have already seen that this implies that
Z g{m) = Ozloglogx + O(w(loglz‘)gm)”z).

me
When h == 3, however, the error term can be improved to O(z). In this
cage there are only two non-principal classes, ¥ and ¥~ gay, and 2p(u)
= (,-1(p) for every integer of 4. So (4) becomes

and Lemma 1 (i) gives

Z g(m) = C,xloglogae -0 (x).
mesn .
(Narkiewicz [7] has this when h == 3 and k is quadratic.)
Tn [11] Narkiewicz and Sliwa define g (m) and g~ (m) to be the
maximum and minimum lengths of factorizations of m into irreducibles
of %, and they show that these functions have normal orders CTloglogm
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and O~loglogm, where O and ¢ ave constants depending on k. The
argument of, this section can be applied to these funetions too (more cugily
than fo ¢, in fact) and giver O = B §(X,) and O = k-] §(X,). Heneo
Theorem 2 in the next gecfion evaluates OF, for arbitrary &, as
-
b)) S(X) 116Xy

e

Tvaluating ¢~ (and henee ¢ which is ¢/) — ) iz much hareder,

4. Bounds for ¢,. We defined €/ us By, b, whoere B, ad by, are the
maximum and minimum values of 3o (A7)

(5) 2 Qo) (&) = $(X) (X £ X))

amotg solations of

in non-negative veal variables. Adding these equations gives
) ¢
Z Y Q0 (80 (4) Zax
Sinee each non-trivial typo contains at least two clayses,

V0. (#) =2
X '
for all non-trivial &, and sc

. %fuf’f Q%Z (X).

Hence |
B<i ) 8(X

In fact B as can be seen by taking

= }Y'5(X),

3 X) it & =<X, X > for some X with X* o+ X,
O(&) ={40(X) & = <X, X> for some X with X' = X,,
: 0 otherwise, ‘

(Since 4(X) = 6(X!) there is no ambiguity in this definition.) Then

\‘ CSLICARER 109

for all X % X,, and 3'o(4) == -%E’d(XJ-.

Another way of sceing thlb {which is useful in finding & for coertuin
iields too) i to add the equations copr oapondmfr to X and X' Writing
I for the inverse pair {X, X~} (o that I (X) ds q amnlntun when
X* = X,) and putting

O [B(XY R S(XTY) = 26(X)
(Z) XZI @ =\

if, !T] =23 2’
i |7 =1,

icm
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wo gob
" Ay '
- (6) D30 (@)0(@) = 8(I)
x  Xel

for every inverse pair I except the ‘identity pair’ I, = {X,}. Bach type
& =< Xy, Xy, ..., X;>has an inverse bype ! = < X7, X7 ..., X7,
and clearly 2.(7) = Qy-(FYH. Tt we write & = {%, 2"} for an in-
verse pair of types and define ‘

}"! ¥ 2'1

X el Xel

Qo (2

{the number of classes in 4 belonging to the pair I) (8) becomes

(7) D ieyw(r) = oDy,
S

where the gom is over all inverse paivs of non-trivial types and w(#)

= Y o(2). Clearly any solution of (5) gives a solution of (7) with 3'w(#)
X
= qu(.%” and conversely, since 6(X ') == §(X )mnd Qy-a{Z” Y o= 2403,

any solution of (7) gives a solution of {5) by taking

3w (S) if A} = 2,

)
v(#) w{.F) if | #] =1,

and 3w (F) = Yo%

minimurm vahles of >’ w

C‘onsequently B and b are the maximum and
among solutions of (7) in non-negative real

variables. The value of B follows immediately, since 3'2,(#) =2 for
£

all non-trivial # hut for each I = {X, X'} the variablew({< X, X7*>})
hag coefficient 2 in the cquation corregponding to I and coefficient 0 in
all the other egquations. So

B = %2’ B(I) =} 3 5(X)

We now look at b, IL X is an clement of H of order ¢ == ¢(X) then
Ay oo < X(etimes) > s an drvedneible type with 24(#y) = e(X) and
Q{2 =00t ¥V 5 X, So choosing »(# ) = 8(X)fe(X) and »(2) =0
it 4 isnotone of the @ s gives o solntion of (5) with 3o (#) == 3 8{X)/e(X).
Heneoe

b= 2) 8(X) fe(X).

This wpper bound iy attained when H is o eyclic p-group, as it then co-
incides with the lower bound (9) to be proved later. It is not attained when
H is & homocyelie (but not eyclie) p-gronp and % is normal of prime degree,
as then (9) is attained (by Theorem 5) and is different from it.
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A lower bound for b can be got by the same kind of a,mument that
gave an upper bound for B. The Davenport number I) = D(H) of an
Abelian group H is the smallest integer such that every .Lcmuly F ol D

elements of H (counted with multiplicities) has a non-empty subfamily -

(possibly & itself) whose product is the identity, Hquivalently, D(H)
is the length of the longest irveducible type of H: omitiing onoe element
trom an irredueible typo gives a family having no subfamnily with product
the identity, and conversely a family having no subfamily with product
the identity can be enlarged to give an irveducible type. ITence

N ox(#) <D = D), ‘
X

the Davenport number of the class group, for all types &, and adding
the equations (5) leads to

bz X 6(X)/D

Theorems 3 and 5 will show that this lower bound is attained when H
is cyelic of prime order and when H is an elementary p-group and b is
normal of prime degree. It is not attained when H is a non-elementary
p-group, Since them (9) is stronger.

J. E. Olgon [13] has shown that if H is a p-group and H = x2Z® iz
the (essentially unique) decomposition of H into a direct product of

eyclic groups then
H) = (127 —1)+1.

(It has since been shown that D (H) may be larger than this when H is
not a p-group, and is larger when H = Z3 x Z;.) By using a sharper form
of this result (also due to Olson) we can get the improved lower bound
(9) for b when H is a p-group.

Lenma 3. If H @s o p-group, & 18 ¢ non-trivial wrreducibio fype of H
and v = (X)) = V(for any eement X + X, of H) iz the largest power
of p for whioh X 18 the v-th power of an ele'mmt of H, then

8) D #(X) Qx() < D(H).
Proof. Theorem 2 of [13] says that if # ix a family of elements of
H such that 2 v(X) = D(H) then ["[ (Xy—2X) = 0 (mofl p) (where the
XeF

product is in the group ring Z {E[]) (Jonﬁldemn,fx the coefliciont of X,
then shows (as in the remark following the statemont of Theorem 1 of
[13]) that at’ least one non-empty subfumily of # has product, X,. Let
% be a non-trivial irreducible type of H. If »(¥) = 1 for some Y in &

then
2 Qx(@) = 3 vX) =1+
- Xed KeN\ (T}

v(X}.
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But &\{TY} is a family of clements such that no non-empty subfamily _
hag product X;, and so the sum on the right is less than D(H). Hence
S'v(X) (%) < D(H). T, on the other hand, »(.X) > 1 for all X in &
we work in the subgroup H* of »th powers in H, where » iy the smallest
value of »(X) for X in &. Bvery X in & is in H’, and v/ (X) = »(X)/»
for X in H', where + is defined on H” in the same way a3 » is on H. Also
it = x2Z% where the Z(’”s are cyclic, then |Z% > » for at least
one ¢ (since & = {X,}).

( IZ“’I

D(HEY = --7;—-1)+1 <——(2(|Z""l ~1)+1) == %—D(H)-

(0 5y

Hence

ST nX)2x(®) = » 3v(X) 0x() <

We can think of no plausible generalization of this ineguality to
groups that are not p-groups.

To deduce a lower bound for b when H is a p- group we multiply (5)
by .#{X) and sum over X to get :

- (2 rme)ee Z‘ 2)8(3),

and now Lemma 3.shows that

1 *
(9) b33 D w(X)8(X),

with equality if and only if (5) is soluble with »(%) = 0 for all types &
that do not give equality in (8). This is bigger than our previous lower
bound when H is non-cyclic, and in Theorem 5 we shall show that it is
attained whenever H is homoeyclic and % is normal of prime degree.
Collecting these results: :
Tuxorws 2. (1) For any algebraic number field o with dlass group H

B, = %2 8(X)

vD(H*) < D(H).

and

Heneoe
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(i) If k is @ power of o prime p then
1 v "
b2 e m— ¥ p(X)§(X)
_ B DY L (x4
and hence )

oo NT(L_ 2D
B2 \e T o

Combining (i) with Lemma 2 gives

1 1 1 sy 1 N 1.)[(_ 1)[”] L)
e e SDAINE L ) N (RS B3 b e | Qb Y
% 2k vh}; e(x) " ‘(2 DIV alLe. hi

The lower bound here is attained when H ig o eyelic p-group atud £ is normal
of prime degree g, say, (where p and g may or may not be cqual). The
upper bound seems unlikely to be attained cxactly sinoe the only obvious
case of equality for tlie upper bound in (i) is when H iy cyclie of prime
order, whereas our example of equality for the upper bound in Lemma 2
had IT a direct product of at least two factors. However, for that example
we do have 8(X) == 277%(214+1) for all X of exponent 2" in H, so that

‘ 2 T WO & T T Y, W o
R, IR (52 Ll D T g | g i)
6z ) (2 B(X))é(XW(g 29) G )

' 1 1 1
Thus, there are almost certainly fields % of large degree for whieh ¢ is
very close to its upper bound, and, in particular, for which €, > Pl
“From this lower bound we can derive an absolute lower bound for .
If we write the lower bound as

)-\) 5(X).

LH'—l'-ull 1
=7 2 (3= 37m)
X

then L{H) is an increaging function of H in the sense that if 1y == H[H,
is a quotient of H then L(H,) = L{H). In fact e(X):» e (X), for X in
H, where &, (X) is the ovrder of X in H/H,, s on letting ¥ run throngh
H, and Z through s set of coset raprosentatives of Hyin H we have

1 s vl 1 1 \;v 1 I
ﬁ%%HW%yMQBMM

| 1'(1 1 ) . “‘1’({ 1 )
T 4o \2 T ey ] T £ A2 oY)

i

L)

|H|

= L(H)+ ~o D{H) > L),

icm
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Thore is equality here only when L(H,) = 0 and 6(&) = ¢ (X) for all
A not in My, and this can happen only when I, == {4} (the trivial subgroup
of H) or when H is o Z-group and M, is un elementary 3-group. Sinece
thera is o snbgroup I, of {f isomorphie to Iy, with H/H, isomorphic to
Hyy wo also have )

LY o LIy | IT,).

1 I
1, -

I0 178 nob o d-group then it has a subgroup Z, for some odd prime

P, -and xo
1 _ :
S ('[ e l.) (1_ o 2') 1 R
= P /o9

It 1iff in o non-elomentary d-group then it has a subgroup Z,, and L(H)
2 L(Zy) =< L8 U H s an clementary 2-group then L(H) = 0, but
Theorem, & will show thab '

s 1 Ly
Gf.' o (2 - , :i_‘l) ("} - 2?)

when If = Z5, and sinee # 2= 2 (heeause k> 3) the right hand side here
I8 22 18, Tenee € = 1/9 for all &, and equality is possible only when
Boe= 3,

VUSIER AV S

5. (), when Il js a cyelic p-group.
o Tmwownw 3. If H s eyelic of prime power order p* and i3 generated
by Y then

o
Doy,

Jimad pi‘j

#
O 4‘2(;_;)
71 _
where the inner swm is over a reduced set of residuss mod p', ;
Proof, Whon I iy eyelic of ovder p* wo have D{H) == p* and »(X)
= P e (X)) tor all X in #, and go the lower bound for 7 in (i) of Theorem
208 the e an the upper hound in (i), The value of ¢, stated in the
theorem ean then be gob by colleceting togother ferms corresponding to
A8 of the kanie order in the sum reprerenting the conmon value of these
two bounds. (The fuet that a¢ v e f) 5(')?“’""”‘) meang that the
inner sum s really only half as long as it looks.) R
6. The munber (/(//) and its evaluation for homocyclic p-groups.
THRornM A, For every Abelian group I there i3 a number C(H) such

that C{H) < €y for every field I with dass group H and C(H) = O, when-
ever & is moval of prime degree, '
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Proof. By Lemma 2, 8(:X) = 1/h for all X # X, when % is normat
of prime degree, so we detine U(H) to be B(H )= b{H), where B(H) and
b{H) are the maximum and minimum values of Myp(&) among solutions of

(10) Sox@Ew(@) =1h (X #X)

in non—negsutive real wvariables,
Also by Lemma 2, for general k 4{(X) > Lk for all X. Take any

fixed solution in non-negative real numbers of

N 0.(&)0(F) = 3(X)~1/h.
x

(For exarple, v(%y) = (6(X)—1/h)/e(X) and (&) =0 if & is not an
Iy would do.) Then adding this solution to each of two non-negative
golutions of (10) with their values of 3'v(#) differing by C(H) gives
two non-negative solutions of (b) with their values of 2% differing
by CO(H). Hence C,, = C(H).

We saw in §2 that it is likely that there are fields % with

(11) ' J(X) =1/

that are not cyclic of prime degree, and 0, = C(H) for these fields too.
It is also possible that €, = C(H) for some fields % that do not satisfy
{11). For example, suppose that % is a normal quartic field with class
group Z, generated by ¥ and that the group & of § 2 is the direet product
of the class group with Gal(%/Q). Then t¥ == ¥ for every = in Gal(k/Q)
and norm X = X* = X, for every class X. It iz easy to check that every
prime in. ¥ or Y® has degree 1 and that 8(¥) = §(¥") = 1/4 but 4(¥?)
=1/2 if Gal(k/Q) =2, and 8(¥% =1 if Gal(k/Q) = Z]. However,
§(¥?) has coefficient zero in the expression for ¢, given by Theorem 3,
and so 0, = C(H) = 1/8. This example asks rather a lot of the field k,
though, and we do not know whether there are any such fields.

We now evaluate C(H) when H is a homocyclic p-grouwp. (A group
is homoeyclic if it is a direct product of cy~lic groups of the same order.)

By an automorphism class 4 of H (an arbiteary Abelian group for
the moment) we shall mean an orbit of H under the action of ity group
of antomorphisms. So X and Y are in the same automorphism clags if
and only if ¥ = oX for some automorphism a of H. X & = <X, Xy, ...
.y Xy s an irreducible type and a is an automorphism of H we write

o = <aX;, aXy, ..., aX;>.

whenever X £ X,

This gives an action of the group of automorphisms of H on the set of
types, and consequently the types too fall into automorphism classes .
We shall say that two objects (group clements or types) are automorphic
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to each other if they belong to the same a,utomorj}hism claggs. For any
automorphism o we have 2.¢(a%) = 24(%), and econsequently, for each
clags X,

(12) Y o) = Y 2.

Fes/ Xess

If A is an antomorphism class of  and & i the a,ﬁtomorphism clags of
types automorphic to a given type & we define

Qu(st) = Y Qx(%).
Xed

Then £2,(«) iy the number of elements of the automorphism class A
in & (with multiplicifies) and is clearly independent of which # in -«
is chosen. Also we have

: 1 < L 14|
(1) Qulat) = 3] 3 Q) = T X (),

Ned e | M' Best

. by (12), where X iy any element of 4. Adding together the equations

in (5) corresponding to A's in the same automorphism class now gives

(14) D 0 (aw(st) = 5(4)
7
for each automorphism class A except the ‘identity’ 4, = {X,}, where

$A) = M 3X), w() = Duv(%)

: Xed ’ Fesd
and the sumis over all antomorphism clagses of types exeept <Z,>. Thus
each non-negative solution of (f} gives rise to & non-negative solution of
(14) with 3w(&f) = >'u(&). Conversely, it 8(X) = 6(¥) whenever X
and ¥ are asutomorphie, then, in view of (13), every non-negative solution
of (14) givey rise to o non-negative solution of (B) by taking »{%)
= w( &)/l f] Tor & in o, and D'o(&) = Jw(ar). If, in addition, H is
a p-group, thon

a v 3 s

by (9), where »(4) I8 the common value of »(X) for X in 4, and there
is squality here if wo can find a set of &% wuch that each Q( ) (the vector
with components 2, (&7)) lies on the hyperplane

(16) D)@, (st) =D
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and 4 (the vector with components 8(4)) is o linear combination of
these @(o#)s with non-negative coefficients. This reduces the original
(h—1)-dimensional problem to ene of lower dimension.

From now on we take H to be the homoeyclic p-group Zj« with
generators X,,..., X, each of order p®. Then the :uﬂ‘.ulnm{plL}sllL classey
are precisely the classes of elements of oqual order. Indeed ift X hu.uys ()v‘l‘d‘.lzl"
»° then X = [[X{% where a;, say, iy not divisible by p, and aXJ- mr X,
aX, =X, (¢ #j) defines an automorphism e« of I that takes X, to X.
Olearly the generators X, are ull fmtmnorphie, any permubation of than
defining an automorphism, If A has order P (t <2 ¢) thon X s tho p""‘f.h
power of some clement of order p* and so is automorphic to Xe" L (The
property that elements of the same order are autowmerphic is lrue of
homocyelic groups generally, in fact, since cvery homoeyelic group is
the direct product of one homoeyelie p-group for each p dividing its
order. Conversely, it is eclear that every finite Abelian group with thiy
property is a direet product of homoeyclic p-groups for distinet primes
p — but such a group need not be howmoeyelic.)

Now assume that the 8(X)s with X = X, are all aqual, with common,
value 8, say. The number of elements of order p*~* in H is (p*)"— (p" &1y
= P01 —p~"), 50 4 = (|4])§ is proportional to (p", p*, ..., p™), where
we have arranged the asubomorphism classes in order of ineroasing order.
For each ¢ with 0 << 3—1

< X X XL L Xy, Xy X X

pi— b p¥-iog ;u -1 Bl p=1 1

is clearly an irreducible type, where the numbers underneath are multi-
plicities. {To get tho exponent of one X; up to p* the last element mmst
be used, and consequently the exponents of all the X,’s will have to be p”,
which can only be done by using every term.) The vector Q(o) eorve-
gponding to this type is '

{0, Oa r{p*t—1),
if ¢ 30 and (0, y O, r(p®—1)H1) it = 0, and these vectors satisly
(16) ginee B3 (H) == 7 (p w1} 1. Binee thiy set of vectory (ford =« s —1,...,0)
_is in cchelon form and for each of them the ratio of ('S(IIlH(‘«("llfiiV(a NON=ZOT0
termy is 2= 7 (in fact all bub the last of these vatios is - 1, and the Tnst
is = 1/2) the vector (p', p*, ..., p™) can be (wpr(wwl af o linear combi-
nation of them with non-negative cocfficients, Tlence

b. '—ﬁ%—E’ﬂA)a(ﬂ.) B e Mw)—l Pt bp’(" ’)( )

ap“(l —p ) —p Y
(r(p* —1) +1} (1 ~p==7)

PP —1), ... 7P

i1 tdmes

—1), #(p~1) +1)
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(where (L—p~~")/(1—p % ig to be interpreted as s when # = )
When 6 =1/ (= p™") this gives
TunoREM b.
o i 1 (L=p " (1L—p Vo)
o "1)'-‘) e T o ; I
2 " (' -1+ —P )

H

with the gloss Jjust described.

Huving all the 6(X)'s equal for X X, is not a vital part of the
proof that b = 3"»(X)#(X). Thinking of our vectors as homogencous
coordinates of points in (h—2)-dimensional space, all that is needed is
that § iy in the convex hull of those 2(%)'s that give equality in (8).
A small change in the (X)’s does not affect this, and there is plenty of
leeway when H is homoceyelic. For a general p-group b = DX (X))
if and only if the types & that give equality in (8) are widely enough
spread for the corresponding points (%) to have § in their convex hull.

- We shall see in the next section that for the smallest non-homocyclic

group, Z,x Z,, these Q(F)s all liec in a proper snbspace and b <
M'9(X)8(X) when the o(X)s with non-prineipal X are all equal. .
When H is not a p-group we do not even have a target to aim at. What
is needed is a vector v guch that v-Q(2) attains its maximum value for
a wide variety of types & :

We end this section by proving

TurornM 6. O(H)—~% as b co.

‘Proof. Bvery large finite Abelian group has a large homoeyclic
p-subgroup, for some p, so this theorenr would follow from the previous
one it we conld show that C(H) was an increasing function of H, We
have not been able to. do this. We do know that the lower bound I (H)
for C(H) is an increasing function of H, but L(H) does not tend to 1/2
as k tends to infinity (L(H) < 1/2—1/pfor every elementary p-group,
for example). Taking an intermediate eourse, we shall define an auxiliary
function €, (H) that is a lower bound for € (), that is close to ((H)
whon H iy 4 hiomooeyelie pogronp and that I8 an increasing funetion of
H in the sense (weaker than before) that €, (H,) < Oy (Hy % H,). This
funetion §s defined in the same way as C(H) except that only types of
aven length are vwsed, 8o O (1) 1s the difference botween the maximum
and minimunvvalues of 3's (@) (By(H) and b, (H), say) among solutions
of (10} in non-negative real vaviables o(@) with «(2) = 0 for all types
& of odd length. Clearly O, (H) = O(H) for overy H. Algo B,(H) = B(H),
since types <X, ' > only, of length 2, were usged to achieve Y '»(%
= § 38X} == B at tho beginning of §4. (This also shows that C,(H)
exists for non-trivial H.) For homoeyclie p-groups the proof of Theorem
b can be modified to show that Cy(H)> C(H)~{D(H)}™". The types
of odd length that arve used in the proof can be made one element shorter
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by replacing the last two clements by their product. The new types are
gtill jrreducible and the corresponding vectors () are still in echelon
form and have the ratio of consecutive non-zero terms = p~". (The only
one of these ratios that can decrease is the next to last when X is a cyclie
2-group, and it then beecomes 1/2.) For the altered types wo have

(17) Z’v{X)Q_;‘;(f’f)?»D(H)”‘I:

and ¢o the proof of Theorem. 6 shows that (10) can bo satisfied with
»(F) # 0 only for types 4 of even length that satisfy (17). Multiplying
(10) by »(X) and summing over X (a8 in the proof of Theorem 2 (if)) now
" shows that

(D(E)~1}bo(H) < 3 #(X) /1 = DE)b(H).

Hence .
. D{H) i i .
G,(H) = B(H)fﬁaﬁ:-ib(.ﬂ) =(C(H)— B b(H)= CH) ik
since 5(H) =< 1/2 and D{H) = 2 for non-trivial H.

We now show that C,(H,) < C.(Hyx H,) for any finite Abelian
groups H, and H,. To avoid the argument’s splitting into several cases
it is convenient to consider the subgroup of the automorphism group
of H, x H, generated by the inversion automorphizms od the individual
factors H, and H,. We shall call the orbits of H, x H, anhd its set of types
under the action of this subgroup awtomorphism classes (each one has
at most four elements). These restricted auvtomorphism classes can be
~ used to reduce the number of variables and equations in (5) in the same

“way that the full autemorphism clagses can, There iz & one-one gorre-
spondence between automorphizm. classes of elements of H,xH,; and
pairs {I0 I®) of inverse pairs of elements of H, and H, given by

(I, 163 = {{Y, ¥, {7, Zwl}}HI(l)I@) = {YZ, Yz, Y"'Z, X177},
and, '
0T |_J_"(1)HI(2)‘.

Let #U be any inverse pair of types of even length of H, and J® =
{Z, 27} any inverse pair of elements of H,. I£<¥,,..., ¥y>~isone
of the types in SV (with its elements arranged in some arbitrarily de-
termined order) then< ¥,Z,..., ¥,2, ¥, .27, ..., ¥,;Z"" > is an ive-
ducible type of H, x H, belonging to an automorphism clags «f, say,
and @, (o) 18 Qup(sY) if 4 = IVI® for some inverse -pair I of
H, and is zero otherwise. Hence any solution of

SV 0) Qo (£ = IO (I 2 I,

A0
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using types of even length only, gives rise to a solution of

(18) le(&{)!) (,ﬁ) - IA|/|H1><HP.[ if A = Jfure Wit}l Im ?EIS])’
“’ ‘ 0 i A =IPfe,
by taking
_ [-Al |H,| ,I(Z)l )
= ) = g

where s is obtained from S and I® as above (and all other variables .
zero). Also, since H, is a subgroup of H, x Hy, every irreducible type

" of Hy i an irreducible type of H, XH,, and 2,(5) is Qun (@)

if A =IPI® (=I%) and is zero otherwise. Hence any solution of

D wu(#) Q) = IOy (19 I,
S

using types of even length only, gives rize to a solution of

(|A{/[Hy x Hy| it 4 = IPI®
(19) E'w(j'(‘-!)) ‘Q_»i (JF(E)) — for some J® =+ Iglz),
#12) 0 1{ A == I(])I(z)
with JO = o,
by taking

; Al Hy)| 1
wig®y — _HIHE e
VI = e ) = g

Taken together, (18) and (19) amount to

wy(F9) .

S'w(at) 2 (at) = A H xH (4 Ay,
&7

where each o with w(.e¢) 5= 0 eonsists of types of even length, and

\mw o x"v |7 ) 01 .
. - T - E )
2, wld) 24 2T wy () AT 1w,y (FR)
o) p(2) )
“’j.’ 1 l _1’ 2.
- 24 () + "l'jf”“]"z 257
2 Y

It follows that

By(Hy X Hy) 2 By(Hy) -+ | Hy " By (Hy)

and '
bE(‘lil x Hy) < bz(ﬂﬁ) = |-lelba (Hz):

~and henco

Ou(Hy X Hy) = Oy () + |Hy = O (Hy).

§ — Acla Arithmetiea XXXV
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Every finite Abelian group can be written as a direct produet of
distinet homoeyelic p-groups (although the primes p need not be digbinet).
Nince there are only finitely many homocyclic p-groups of any given
order, & large finite Abelian group must have a large homocyclie p-group
as 2 direct factor. Theorem 6 now follows from the faets that ¢, i3 an
inereasing function of H, that D(H) tends to infinity with % and that
C(H) tends to 1/2 as A tends to infinity whon M is restricted to homo-
eyelic p-groups (by Theorem 5}

It would be interesting to know whether C'(H) itself iy an increasing
function of H in any sense, and if so whether it satisfies an inequality
of the kind that L(H) and (y(H) do. An argument very like the one used
at thé end of §4 shows that if :

1 vl w(H)
e v i T
UH) = 57 2, (2 D(H))

(by Theorem 2 (ii) this is an upper bound for ¢(H) when H is a p-group)
thén U(H)z U(H[H,)+ U(H,)[H,|/|H| for every subgroup H, of I
{The corresponding inequality for the general upper bound (4 — D{H )‘”’) X
® (1L —|H|"%) given by Lemma 2 (i) is also true and follows trivially from the
faet that D(H) i, by ite definibtion, an increasing funetion of I.) Bince
Theorem O shows that C(H) = U(H) when H iz a homoeyelic p-group
we have O(H)z C(H/H,)+C(H,)|H,|/lH| whenever H is a homocyelic
p-group. -

7. ¢, and C(H) for certain small class groups. In this seetion we
evaluate O, and O(H) for some small clags groups not covered by Theorems
3 or b. :

We start with H =Z,xZ, = (¥, 2>, where ¥* =2 = X,. The
ixreducible types of H are <Y, ¥ >, <Z,Z>, <¥YZ, YZ > and < ¥, 7,
¥YZ >, and so the equations (5) are

20340, = §(X),

2oyt = 8(Z),

2?}3*]"04 == d(YZ),
where the numbering of the variables corresponds to the oxder we have
listed the types in. In any solution v, = §(8(¥) —u}, v, = £(3(%4)~— v
and v; = §{d(¥Z)—v,); so '
l : .

Dv; = }(8(X)+6(2)+ 6(YZ)—1,).

te=l

This is miﬁima,l when #, is as large as possible (subject to the variables,
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being non-negative), that is, v, = min(8(Y), (%), 6(¥Z)). Hence -
. b=4{ Y 6(X)— min 5(X)}  and

X¥X XXy
Next take H = Z; = (¥), where ¥Y* = X,. The irreducible types
of H (taking only one from each inverse pair) are

<T>, <P, <Y <Y, ¥, <T, ¥,

O =} min 8§(X).
XX,

<T, T*>,
"<:QY., %-72>'5 '<Y7 Y5>'7 '<Y7 ygy :Y3>'; '<Y27 IT4>_’ "<Y, y3; :2Y4’>')

and so the equa.tionsh {7T) are .
61, . —|—4zv4+3w5+2w6+2w7+2w8+w9 Fwy; = 28{F),
3w, + 1w, +wg + 2w, + Wy 4 2wy, + 2w, = 26(F?)
-+ 2w, + 10, + 2y gy = d(Ya)-
Lvery column except the last, of the coefficient matrix on the left, can
be expressed as a linear combination of the first three columns with non-
negative coefficients whose sum is < 1. Hence any solution of the equa-
tions can be modified to make w0, ..., w;, zero at the expense of inereasing
Wy, Wy and wy, and 3’ w; will be no larger for the new solution than for
the oviginal one. So in looking for a solution with ¥, minimal we can

agsume that w, = ... = w,; = 0, and the equations become

By +awyy = 26(Y),
3w, -+ 2wy, = 28(Y7),
2wy -+ 1wy, = 8(TY).
In any solution wy = ;6(¥)—ltwy, wy = E6(¥*) —tw,, and w, = %-6(1’3)—4
= Ry, 8O

2w = 30N H16(F%) 4 3 8(X) — Jwy.
Thiy is minimal when wy, iv ag large as possible, namely min (28(X),
8(X%), 6(X%). Hence
bos= 3 9(¥) 50 ( Y+ 1(Y?) —min (36(F), $6(¥%), 18(TY)
angd
0 =30(X) 4§ 8(X) +-min (§6(7),16(F?), 26(7Y).

Tinally we evaluate O(Z, x Z,). Let ¥ and Z be generators of Z, x Z,

with ¥* = Z* = X,. Apart from {X,} this group has the three auto-

morphism classes {&°}, {¥, ¥2%, and {Z, Z°, Y%, YZ%)}, the first having
» =2 and the other two having » = 1. Also D(Z,%x Z,) = b. Any irre-
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ducible type other than < 7%, 7, can have atb wost one element
from the first of these classes and ab most two from the seeond,
and it must have an cven number of clements from the third class
for the total power of Z in the produet of its elements to ho
even. Congsequently the only posgible vectors €Q(.of) that satisfy (16)
are €, = (1,1,2) and £ = (0,1, 4). Iowever, whon $(X) == A~ == 1/8
for all non-principal X, 4 = 7| &]) = (3,3, which is not a Jinear
corabination of £, and £, at all, let alone @ linear combination with
non-negative coetficients. Consequently

1_ ‘“‘ !

14]
b(Zg s Z,;) - "[3' 2 e !

',u(A) W =g

To find the exact value of b {Z, x Z;) we ptart by listing all the possible
veetors R(s#) with Y v(4)Q,4(of) < D. These are
932(210:0)7 94”’"(1’270)) 95»_—(1,0,2),

972(0;014)’ Qﬁ=(0,1,2), 2, =.(0:2:0);

It is possible to find a non-negative solution of

Q; = (0,2, 2},
Oy = (0’ 0, 2],

10
(20) Dl w2 =Gy i d)
P

with Y w; = 5/24 (for example, w, = 118, wy == 1/12, w, == 1./24, the
other w,’s zero, or wy = 1(8, w, = 1/24, w; = 1/24, the other s zero)
and we shall show that no smaller value of ) w; is possible. First, the
minimum valoe of 3 w, can be atbained with all but three of the w,'s
zero, gince any four or more s are linemly dependent, and the linear
dependence relation can be used to reduce one of the corresponding ¢w,'s
to zero while keeping the others non-negative and not deereasing the
sum of the w.s. Next, pubt w,-Fw, = Wy, Wg+ 104101 W -i- Wy == Wiy
w, = W, and w,+wy = W, (the new suffixes referring bo tho value
of the left-hand gide of (18) for the corresponding £2,'s). Then multiplying
(14} by »(4) and summing over A gives

BW oAt AWk SWy - 2Wy = 25 b LojbL§ == L

T W, +W, Wy W,y 524 then W,—Wy—2Wa 1—d4(3/24) == 1/8.
Hence Wy = w,+w; = 1/6 when 2w, attainy ity minimom, Considering
the first and last components on each side of (20) shows that neither
wy nor w, oan be as large ag 1/6, s0 w, and w, are both non-zero when
¥ w, attaing ity minimum. For each ¢ =3, ..., 10 there is @ wnigque
solution of

Wiy +we s+ 1w, = (5,4 9y

icm

Number of different lenglhs of drveducible factorization : 80

and all that now remains is to pick, from among these eight sets of w’s,
the one with the w’s all positive that has the smallest sum. There are
in fact two such sets (those mentioned above) and their common sum is
5/24. Finally, we need to check that there actually are irreducible types
s with Q(&) cqual to €2, 2, and £ (or ), and these are given by
<7 Y, 2, Y%, <X,%,2, %, YZ> and <Z ¥, Y7 (or <X, Y7,

Z,Z>). Hence

5 1
b(Z,xZ,) =55 and O(quzd) =_2_.__m:__

TaworeM 7. (1) If k has dass group Z,x Z, then

0, = }miné(X).
XXy

(ii) If % has class group Z; and Y is a generator of i then
0, = %5(Y)+§6(Yz)+min(§5(3?), 18(X%), 36(¥9)).
(i) O(Z,x Z,) = 11/43.
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SCICON COMPUTER SERVICES ' A note on some polynomial identities
Brick Cloge, Kiln ¥arm .
Miltor Keynes, England ' ¥
DEPARTMENT OF PURE MATHEMATION
UNIVERBITY COLLEGL, CARDIFF L. Garumrz (Durham, N. ()
Cardifl, Walcs -
1. Hirschhorn [2] has proved the polynomial identities
Recetwed on 30. &, 1077
and in vevised form on 21. 6. 1977 (848) 3n ”
(1) [JO—a) =@ —a"¥) . (=™ Y (1) (@00 g g oris ¢
r=1 : ) —1

X (L— @8V 48) (1 — ) (1 — g8y | (1 gy
and

(1.2) ﬁ(l—-—m")a = j(“l)r(gqf_l_l)m(rﬂ)fz %

T=al Pl
X(L—a™ ) (1= (1 —a ) (L -2,

He showed also that (1.1) and (1.2) imply

e oo

(1.3) n (1—a") =1+ Z’( — 1Y (g CrRE g grirDizy
r=1 r=1 )
and _
(1.4) ” (1 — ") = 2 (—1)"(2r _I_l)mr(rﬂ)/.o;"
Fow] tee=()

tho identities of Buler and Jacobi, regpectively.
In this note we show that’

i3 H
. ' e 1 N e 118
(1.5) [Ja=am™) = @), ' (-1y[ 20 ] et
gl P
and
th n
(1.6) [[a—oy = 2(~:1)"(29~~g-1)[ifj:] aririe,
P )
wlhero

(), = (1—aw){L—a?) ... (1l—o™



