Dihedral extensions of Q of degree $2l$ which contain non-Galois extensions with class number not divisible by l

by

Kiyokazu Iwasaki (Tokyo)

1. Main results. In this paper we specify all dihedral extensions K of degree $2l$ over the rational numbers Q which contain non-Galois extensions of odd prime degree $l \neq 3$ over Q with class number not divisible by l in terms of the conductor of the cyclic extension K/k of degree l, where k is a unique quadratic subfield of K. In [3] E. Gerth III completely gave the discriminants of all (non-Galois) cubic extensions of Q whose class numbers are not divisible by 3. Our paper extends in essence his work to all non-Galois extensions of Q of odd prime degree $l \neq 3$ whose normal closures have degree $2l$ over Q.

Now to state our results we need the following fact proved by J. Martinet [7].

Lemma 1. Let K be a dihedral extension of Q of degree $2l$, where l is an odd prime number $\neq 3$, let k be the quadratic subfield of K with discriminant d, and let L be a non-Galois extension of Q of degree l contained in K. Then the conductor f of the cyclic extension K/k of degree l has the following form:

$$f = \prod_{i=1}^{l} p_i \prod_{j=1}^{l} q_i,$$

where p_i and q_i are rational primes such that

$$p_i = \left(\frac{d}{p_i} \right) = 1 \pmod{l},$$

$$q_i = \left(\frac{d}{q_i} \right) = -1 \pmod{l};$$

$u = 1$ if $l \mid f$ and $l \nmid d$, $u = 0$ otherwise; and $v = 0$ or 1. Furthermore the discriminant of L/Q is $d^{l-1}v^{l-1}$.

Our main result is:
Theorem 1. Let \(p \) be an odd prime number \(\neq 3 \). Let \(k \) be a quadratic extension of \(\mathbb{Q} \) with discriminant \(d \), and let \(K \) be a dihedral extension of \(\mathbb{Q} \) of degree \(2l \) containing \(k \). Let \(H(k) \) denote the \(l \)-class group of \(k \); i.e., the Sylow \(l \)-subgroup of the ideal class group of \(k \). In each part below, we give the conductor \(f \) of the cyclic extension \(K \) of \(k \) (of degree \(l \)) which contains non-Galois extensions of \(\mathbb{Q} \) of degree \(l \) with class number not divisible by \(l \).

There exists a unique \(K \) with the specified conductor \(f \).

(a) \(H(K) \) is not cyclic. Then no such \(K \) exists.
(b) \(H(K) \neq 1 \) but is cyclic. Then \(f = 1 \); i.e., \(K/k \) is unramified.
(c) \(H(K) = 1 \). Let \(A \) be the set of rational primes \(q \) such that \(q = \left(\frac{d}{q} \right) = -1 \) (mod \(l \)). Let \(e \) be the fundamental unit of \(k \) when \(d > 0 \), and let \(e = 1 \) when \(d < 0 \). Let

\[
A_1 = \{ q \in A \mid \text{e is a } l\text{-th power residue (mod } q\mathcal{O}_k) \},
\]

where \(\mathcal{O}_k \) is the ring of integers of \(k \), and let \(A_2 = A \setminus A_1 \). (Note that \(A_1 = A \) when \(d < 0 \).) If \(l \mid f \) (resp. \(\left(\frac{d}{l} \right) = -1 \)), let \(B = \{ \} \) when \(e \) is an \(l\)-th power residue (mod \(l\mathcal{O}_k \)), resp. \(\mathcal{O}_k \), and let \(B = \{ \} \) when \(e \) is an \(l\)-th power nonresidue (mod \(l\mathcal{O}_k \)), resp. \(\mathcal{O}_k \). Then the conductors \(f \) are given as follows:

(i) \(f = q \) where \(q \) is any element of \(A_1 \);
(ii) \(f = q_1q_2 \) where \(q_1 \) and \(q_2 \) are any distinct elements of \(A_2 \);
(iii) \(f = l \) if \(l \nmid f \) and \(g \in B \);
(iv) \(f = -l \) if \(l \mid f \) and \(g \) is an element of \(A_2 \);
(v) \(f = l^2 \) if \(\left(\frac{d}{l} \right) = -1 \) and \(g \in B \);
(vi) \(f = P \) if \(\left(\frac{d}{l} \right) = -1 \), \(l \nmid f \), and \(q \) is any element of \(A_2 \).

Remark. When \(l = 3 \) and \(H(k) = 1 \), there are nine cases to appear in [3], Theorem 2 (c), including our six cases (i)-(vi) in Theorem 1 (c).

Theorem 2. In Theorem 1, the sets \(A_1 \) and \(A_2 \) both have infinite cardinalities whenever \(d > 0 \) and \(d \neq (-1)^{(l-1)/2} \), and so does \(d < 0 \).

In Section 2 we shall prove Theorem 1, and Theorem 2 will be proved in Section 3 using the Tchebotarev density theorem.

Throughout this paper we use multiplicative notation for groups and modules, and the action of a group on a ring on a module is expressed by exponentiation. Furthermore, \((x^r)^f = x^{fr} \), and \((\frac{d}{l}) \) will denote the \(l \)-th Hilbert symbol.
sequence, it suffices to show that \(\tilde{V}_i^{0\rightarrow t} = H_{i+1}(K)^{0\rightarrow t} \) for all \(t \geq 1 \). By definition \(\tilde{V}_i \subset H_{i+1}(K) \), and so \(\tilde{V}_i^{0\rightarrow t} \subset H_{i+1}(K)^{0\rightarrow t} \). Now let \(h \in H_{i+1}(K)^{0\rightarrow t} \).

Then \(h^{(s-1)i} = 1 \) and \(h^{s-1} = h^{-1} \). Now

\[
U^{(s-1)i} = U^{(s-1)i} \in H_{i+1}(K)^{0\rightarrow t} = H_{i+1}(K)^{0\rightarrow t} = H_{i+1}(K)^{0\rightarrow t}
\]

since

\[
(s-1)i \in (s-1)i \in \mathbb{Z}[\sigma] \quad \text{and} \quad h^{(s-1)i} \in H_{i+1}(K).
\]

On the other hand, since \(h^{s-1} \in H_{i+1}(K) \), there are \(h_1 \in H_{i+1}(K) \), \(h_2 \in H_{i+1}(K)^{0\rightarrow t} \) such that \(h^{s-1} = h_1 h_2 \). Then \(h^{(s-1)i} = h_1 h_2 \in H_{i+1}(K)^{0\rightarrow t} \), which implies that \(h_1 \in H_{i+1}(K)^{0\rightarrow t} \). So \(h^{(s-1)i} = h_1 h_2 \in H_{i+1}(K)^{0\rightarrow t} \), which implies that \(h_1 \in \tilde{V}_i \cap H_{i+1}(K)^{0\rightarrow t} = \tilde{V}_i^{0\rightarrow t} \). So \(\tilde{V}_i^{0\rightarrow t} = H_{i+1}(K)^{0\rightarrow t} \).

Lemma 4. For all \(i \geq 1 \), there is an exact sequence

\[
1 \rightarrow \tilde{V}_i^{0\rightarrow t} \rightarrow \tilde{V}_{i+1}^{0\rightarrow t} \rightarrow H_{i+1}(K)^{0\rightarrow t} \rightarrow 1.
\]

Proof. Since \(\tilde{V}_i = \tilde{V}_i^{0\rightarrow t} \times \tilde{V}_i^{0\rightarrow t} \), it suffices to show that \(\tilde{V}_i^{0\rightarrow t} = H_{i+1}(K) \).

Clearly \(\tilde{V}_i^{0\rightarrow t} = H_{i+1}(K) \), and so \(\tilde{V}_i^{0\rightarrow t} = H_{i+1}(K) \). Now let \(h \in \tilde{V}_i \). Then \(h^{s-1} \in \tilde{V}_i \).

Write \(h^{(s-1)i} = (h^{(s-1)i} h^{(s-1)i})^{(s-1)i} = (h^{(s-1)i} h^{(s-1)i})^{(s-1)i} = h^{(s-1)i} h^{(s-1)i} = h^{(s-1)i} h^{(s-1)i} = 1 \),

since \(h \in H_{i+1}(K) \) and \(h^{(s-1)i} h^{(s-1)i} = N(h_1) \in N(H_{i+1}(K)) = 1 \). So \(h^{s-1} \in H_{i+1}(K)^{0\rightarrow t} \) and \(h^{s-1} \in H_{i+1}(K)^{0\rightarrow t} \).

Lemma 5. For all \(i \geq 1 \), \(V_i / H_i(L) \cong H_{i+1}(K) / H_{i+1}(L) \).

Proof. Since \(H_{i+1}(K) / H_{i+1}(L) = H_{i+1}(K) / H_{i+1}(L) \), then

\[
V_i / H_i(L) = H_{i+1}(K) / H_{i+1}(L).
\]

Lemma 6. For all integers \(i \geq 1 \), we have

\[
|H_{i+1}(K) / H_{i+1}(L)| = \left| \tilde{V}_{i+1} / \tilde{V}_{i} \right| \left| H_{i+1}(K) / H_{i+1}(L) \right|.
\]

Proof. We have

\[
|\tilde{V}_{i+1} / \tilde{V}_{i}| = \left| H_{i+1}(K) / H_{i+1}(L) \right| \quad \text{by Lemma 3},
\]

\[
= \left| \tilde{V}_{i+1} / H_i(L) \right| \quad \text{(by Lemma 4)} = \left| \tilde{V}_{i} / \tilde{V}_{i} / H_i(L) \right|
\]

\[
= \left| \tilde{V}_{i+1} / H_i(L) \right| \left| H_{i+1}(K) / H_{i+1}(L) \right| \quad \text{(by Lemma 5)}.
\]

Now if we apply [4], Theorem 4.3 to both \(\mathbb{Z}[\sigma] \)-modules \(H_{i+1}(K) \) and \(V_i \), we have, for every \(i \geq 1 \):

\[
|H_{i+1}(K) / H_{i+1}(L)| = \left| \tilde{V}_{i+1} / \tilde{V}_{i} \right| \left| H_{i+1}(K) / H_{i+1}(L) \right|
\]

(2.2)

\[
|\tilde{V}_{i+1} / \tilde{V}_{i} / H_i(L)| = \left| H_{i+1}(K) / H_{i+1}(L) \right|
\]

(2.3)

where \(t \) denotes the number of primes of \(k \) which ramify in \(K \), and \(r_i \) and \(r_i^i \) for each \(i \geq 1 \), are both nonnegative rational integers whose precise definitions will be given after equation (2.2). Now in view of the definition of \(V_i / H_i(L) \), \(N(H_i(L)) = 1 \) implies that \(N(V_i) = N(H_{i+1}(K)) \) for all \(i \geq 1 \). Hence from equations (2.2) and (2.3),

\[
|\tilde{V}_{i+1} / \tilde{V}_{i} / H_i(L)| = \left| H_{i+1}(K) / H_{i+1}(L) \right|
\]

(2.4)

Equations (2.1) with \(i = 1, \ldots, l - 1 \) put together to give

\[
|H_{l-1}(K) / H_{l-1}(L)| = \prod_{i=1}^{l-1} \left| \tilde{V}_{i+1} / \tilde{V}_{i} / H_i(L) \right|
\]

(2.5)

Equations (2.4) and (2.5) together with the equation

\[
|H_{l-1}(K)| = \prod_{i=1}^{l-1} \left| H_i(K) / H_{i+1}(L) \right|
\]

then yield

\[
|H_{l-1}(K)| = \prod_{i=1}^{l-1} \left| H_i(L) / H_{i+1}(L) \right|
\]

(2.6)

We now give the definitions of the numbers \(r_i \) and \(r_i^i \) that appear in equations (2.2) and (2.3), following the results in [4, pp. 36-42].

Let \(\mathbb{F}_1, \mathbb{F}_2, \ldots, \mathbb{F}_n \) (resp. \(\mathbb{G}_1, \mathbb{G}_2, \ldots, \mathbb{G}_n \)) be ideals of \(K \) (resp. \(L \)) which satisfy the following two conditions:

(1) \(H_{i+1}(K) \) (resp. \(H_{i+1}(L) \)) is generated by the ideal classes of the \(\mathbb{F}_j \)'s (resp. \(\mathbb{G}_j \)'s).

(2) If we define \(\mathbb{G} \) (resp. \(\mathbb{G}^\prime \)) to be the ideal group generated by the \(\mathbb{F}_j \)'s and their \(\sigma \)-conjugates (resp. the \(\mathbb{H}_j \)'s, and their \(\sigma \)-conjugates), then \(\mathbb{G} \cap \mathbb{G}^\prime \) is the group of principal fractional ideals of \(k \); let \(\mathbb{A} = \mathbb{G} \cap \mathbb{G}^\prime \) and \(\mathbb{A}^\prime = \mathbb{G} \cap \mathbb{G}^\prime \), where \(\mathbb{A} \) denotes the group of fractional ideals of \(K \) whose ideal classes belong to \(H(K) \).

Note that the ideal classes of the \(\mathbb{H}_j \)'s and the \(\mathbb{K}_j \)'s generate \(V_i \), and that \(\mathbb{G} \) and \(\mathbb{G}^\prime \) are both \(\mathbb{Z}[\sigma] \)-modules. Let \(\psi : k^* \rightarrow \mathbb{G} \) be the map defined by \(\psi(\gamma) = (\gamma) \) for \(\gamma \in k^* = k \setminus \{0\} \), where \(\mathbb{G}(k) \) denotes the group of principal fractional ideals of \(k \); let \(A = \psi^{-1}(N(k)\mathbb{G}(k)) \) and \(A^\prime = \psi^{-1}(N(k)\mathbb{G}(k)) \), where \(N(k) \) is the norm map from ideals of \(K \) to ideals of \(k \). Then \(A/A^\prime \) and \(A/A^\prime \), which may be viewed as vector spaces over \(\mathbb{F}_1 \), the finite field of \(l \) elements, are both of finite dimension, since \(\mathbb{G} \) and \(\mathbb{G}^\prime \)
are both finitely generated. So, let \(\{a_j\}_{1 \leq j \leq m} \) (resp. \(\{a_j\}_{1 \leq j \leq n} \)) be a set of generators of the vector space \(A/A' \) (resp. \(A/A'' \)). Furthermore, let \(\alpha \) be an element of the field \(k(\zeta) \) such that \(K(\zeta) = k(\zeta, \sqrt[n]{a}) \), where \(\zeta \) is a primitive \(n \)-th root of unity; let \(p_1, p_2, \ldots, p_t \) be the primes of \(K \) which ramify in \(K \); and let \(\mathfrak{p} \) be any prime of \(k(\zeta) \) above \(p_j \), \(1 \leq j \leq t \). Then we can define \(r_\alpha \) and \(r_\alpha' \) to be the ranks of the matrices (over the finite field \(F \))

\[
(\beta_j) \quad (1 \leq j \leq m, 1 \leq \nu \leq t)
\]
and

\[
(\beta'_j) \quad (1 \leq j \leq n, 1 \leq \nu \leq t)
\]

where

\[
\zeta^j \alpha = \left(\begin{array}{c} a_j \alpha \\ \mathfrak{p} \end{array} \right) \quad (1 \leq j \leq m, 1 \leq \nu \leq t);
\]

\[
(2.7)
\]

\[
\zeta^j \alpha' = \left(\begin{array}{c} a_j \alpha \\ \mathfrak{p} \end{array} \right) \quad (1 \leq j \leq n, 1 \leq \nu \leq t).
\]

(2.7)

(It should be noted that these definitions of \(r_\alpha \) and \(r_\alpha' \) are well-defined (cf. [4], Proposition 3.4 and Theorem 4.3.).)

Now if we choose a set of generators of \(A'/A'' \) such that \(A/A'' \) is generated by one of its subsets (such a set does exist), we see at once from the definitions of \(r_\alpha \) and \(r_\alpha' \) that \(r_\alpha = r_\alpha' \) for all \(\nu \geq 1 \). But in some special cases, for example, when \(\nu = 1 \) or when the condition of the next lemma is fulfilled, it occurs that \(r_\alpha = r_\alpha' \) for all \(\nu \geq 1 \).

Lemma 7. Assume that there is no rational prime which decomposes in \(k \) and ramifies fully in \(L \). Then \(r_\alpha = r_\alpha' \) for all integers \(\nu \geq 1 \), and hence equation (2.6) becomes

\[
(2.8) \quad |H_{\nu-1}(L)| = \prod_{j=1}^{m} |H_{\nu}(K)/H_{\nu-1}(K)|.
\]

Furthermore, \(H(L) = 1 \) if and only if \(|H_{\nu}(K)/H_{\nu-1}(K)| = 1 \).

Proof. Note that a set \(\{a_j\}_{1 \leq j \leq m} \) of generators of \(A'/A'' \) may be chosen so that, a subset \(\{a_j\}_{1 \leq j \leq n} \) generates \(A/A' \) and \(a_j \) is a rational number for \(m+1 \leq j \leq n \). Then the same argument as in the proof of [6], Lemma 3, shows that \(\left(\begin{array}{c} a_j \\ \mathfrak{p} \end{array} \right) = 1 \) for \(m+1 \leq j \leq n, 1 \leq \nu \leq 1 \). Clearly this implies that \(r_\alpha = r_\alpha' \) for each integer \(\nu \geq 1 \). The last result follows at once from equation (2.6) and the fact that \((\sigma-1) \) maps \(H_{\nu+1}(K)/H_{\nu}(K) \) injectively into \(H_{\nu}(K)/H_{\nu-1}(K) \) for all \(\nu \geq 1 \).

Our next step is to compute the order of \(H_{\nu}(K)/H_{\nu-1}(K) \) under the assumption of Lemma 7. From equation (2.2),

\[
|H_{\nu}(K)/H_{\nu}(K)| = \prod_{j=1}^{m} |H_{\nu}(K)/H_{\nu-1}(K)|.
\]

So we must consider the group \(N(H_{\nu}(K)) \) and the number \(r_\nu \). First, we want to show that \(N(H_{\nu}(K)) = H_{\nu}(K) \). Let \(\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_t \) be the primes of \(K \) which are ramified over \(k \), and let \(H_{\nu}(K) \) be the subgroup of \(H_{\nu}(K) \) generated by the image of \(H_{\nu}(K) \) and the ideal classes of the \(\mathfrak{p}_j \)'s. Then \(N(H_{\nu}(K)) \) is a group, since \(N(H_{\nu}(K)) = \mathfrak{p}_j \) is a principal ideal in \(k \). Also \(H_{\nu}(K)/H_{\nu}(K) \) is either trivial or cyclic of order \(s \), and in the latter case there is an ideal of \(L \) in \(H_{\nu}(K)/H_{\nu}(K) \) of whose ideal class generates \(H_{\nu}(K)/H_{\nu}(K) \) (cf. [5], proof of Proposition 2 or [6], proof of Proposition 6). So in both cases \(N(H_{\nu}(K)) = N(H_{\nu}(K)) = H_{\nu}(K) \). Hence

\[
|H_{\nu}(K)/N(H_{\nu}(K))| = |H_{\nu}(K)/H_{\nu}(K)| = r_{\nu}^t,
\]

where \(r(k) \) denotes the rank of \(H(k) \); i.e., the minimal number of generators of \(H(k) \). Next we give an explicit matrix associated with \(H(k) \) by taking appropriate ideals as the \(\mathfrak{p}_j \)'s with properties (O1) and (O2). Let \(a_1, a_2, \ldots, a_{\nu(t)} \) be ideals of \(k \) whose ideal classes generate \(H(k) \), and let \(a_j = (a_j) \) for \(1 \leq j \leq \nu(t) \), where \(a_j \) is the order of the ideal class of \(a_j \) in \(H(k) \). Let \(p_1, p_2, \ldots, p_t \) be the rational primes which ramify fully in \(L \); let \(\mathfrak{p} \) be an ideal of \(L \) whose ideal class is contained in \(H_{\nu}(K) \). Let \(H_{\nu}(K) \) be the (\(\nu \)-th) Hilbert symbol for \(\nu \)-th roots of unity in \(K \), and \(a \) be a rational number such that \(H_{\nu}(K) = (a) \). If we put \(\mathfrak{p} = \mathfrak{p}_j \) for \(1 \leq j \leq \nu(t) \), \(\mathfrak{p}_{\nu(t)+1} = \mathfrak{p}_0 \), and \(\mathfrak{p}_{\nu(t)+1+s} = \mathfrak{p}_0 \), then it is easy to see that these \(\mathfrak{p} \)'s satisfy conditions (O1) and (O2). Also, the vector space \(A/A' \) (over the finite field \(F \)) corresponding to these \(\mathfrak{p}_j \)'s is generated by \(\{a, p_1, p_2, \ldots, p_t, a_1, a_2, \ldots, a_{\nu(t)}\} = S \), where \(a \) is the fundamental unit of \(k \) or \(e = 1 \) according as \(k \) is real or complex. Since \(p_1, p_2, \ldots, p_t, a \) are rational numbers, then \(\left(\begin{array}{c} b \alpha \\ \mathfrak{p} \end{array} \right) = 1 \) for \(b = p_1, p_2, \ldots, p_t, a \) and \(1 \leq \nu \leq t \), where \(\mathfrak{p} \) is any prime of \(k(\zeta) \) above \(p \), \(1 \leq \nu \leq t \), \(\zeta \) is a primitive \(n \)-th root of unity, and \(a \) is an element of \(k(\zeta) \) such that \(\mathfrak{p} = k(\zeta, \sqrt[n]{\alpha}) \) (cf. [6], proof of Lemma 3). Furthermore the product formula for the \(\nu \)-th Hilbert symbol says that \(\prod_{j=1}^{\nu(t)} \left(\begin{array}{c} \zeta^j \alpha \\ \mathfrak{p} \end{array} \right) = 1 \) for all elements \(\alpha \) of \(S \). Hence from these and equation (2.7), we get

\[
r_\alpha = \text{rank}(\beta_\alpha) \quad (1 \leq j \leq r(k)+1, 1 \leq \nu \leq t-1),
\]

where

\[
(2.9) \quad \zeta^j \alpha = \left(\begin{array}{c} a_j \alpha \\ \mathfrak{p} \end{array} \right)
\]

for \(1 \leq j \leq r(k), 1 \leq \nu \leq t-1 \),

\[
\zeta^j \alpha' = \left(\begin{array}{c} a_j \alpha \\ \mathfrak{p} \end{array} \right)
\]

for \(j = r(k)+1, 1 \leq \nu \leq t-1 \).
We summarize these results in the following

Lemma 8. With the assumptions of Lemma 7 and the above notations,
$$|H_i'(k)/H_i(k)| = r^t - t - r^t - r^t - r^t,$$
where \(r = \text{rank of the } \{(r(k) + 1) \times (t - 1)\}\)-matrix over the finite field \(F \), defined by equation (2.9). (Note that \(r = 0 \) when \(t = 0 \)).

We are now in a position to prove Theorem 1. Assume that \(K \) contains \(L \) such that \(H(L) = 1 \). Then by Lemmas 2, 7, and 8, we have \(r(k) + t - r^t - r^t - r^t < 0 \). If \(r(k) \geq 2 \) (which means \(H(k) \) is not cyclic), then
$$r(k) + t - r^t - r^t < t - r^t - r^t < t - r^t < 0,$$
which is a contradiction. So \(r(k) = 0 \) or \(r = 0 \). We first assume \(r(k) = 0 \), which means \(H(k) \neq 1 \) but is cyclic. Since \(0 \leq r \leq \max \{0, t - 1\} \) by Lemma 8, it follows that
$$r(k) + t - r^t = r^t - r^t = 0 \Rightarrow t = 0,$$
in which case class field theory says that there is a unique cyclic extension \(K/k \) of degree \(l \) with conductor \(t \). Clearly such a field \(K \) is a dihedral extension of \(Q \) of degree \(2l \). Thus we have proved Theorem 1 (a)-(b).

It remains to prove Theorem 1 (c) (i)-(vi). So we assume \(H(k) = 1 \), which means \(r(k) = 0 \). By class field theory \(r(k) = 0 \) implies \(t \geq 1 \). Then in Lemma 8, the number \(r(k) \) is the rank of the \((1 \times (t - 1))\)-matrix whose \(1 \)-th row \(\beta(d) \) is given by \(\overline{\beta(d)} = \left(\frac{a, \alpha}{\beta} \right) \). So \(r = 0 \) or \(1 \), and hence
$$r(k) + t - r^t = r^t - r^t = 0 \Rightarrow t = 1 \text{ or } t = 2 \text{ and } r = 1.$$
We note that if \(t = 2 \), the product formula for the \(b \)-th Hilbert symbol implies that both of \(\left(\frac{a, \alpha}{\beta} \right) \) and \(\left(\frac{a, \alpha}{\beta} \right) \) are \(1 \), or neither of them is \(1 \). Furthermore, from our assumption that \(H(L) = 1 \) and from Lemmas 1 and 2 it follows that the primes of \(k \) which ramify in \(K \) must be either rational primes \(q \) such that \(q = \left(\frac{d}{q} \right) = -1 \) (mod \(l \)), \(l \) (if \(l \) is inert in \(k \)), or the unique prime of \(k \) above \(l \) (if \(l \) ramifies in \(k \)). Also it is easy to see that \(\left(\frac{e, \alpha}{\Omega} \right) = 1 \) (where \(\Omega \) is any prime of \(\Omega(e) \) above \(e \)) if and only if \(e \) is an \(h \)-th power residue \((mod \ qO) \), or equivalently, \(q \) is contained in the set \(A_h \) defined in Theorem 1. If we correlate these results for the case when \(H(k) = 1 \), we obtain the following restrictions for the conductors \(f \) of the cyclic extensions \(K/k \) which contain \(L \) such that \(H(L) = 1 \).

Lemma 9. Let notations be as in Theorem 1, and assume \(H(k) = 1 \). Then \(K \) contains \(L \) such that \(H(L) = 1 \) if and only if the conductor \(f \) of \(K/k \) has one of the following forms:

(i) \(f = q \) where \(q \) is any element of \(A_1 \);
(ii) \(f = q_1 q_2 \) where \(q_1 \) and \(q_2 \) are any distinct elements of \(A_2 \);
(iii) \(f = l \) if \(l/1 \); (iv) \(f = l \) if \(l/1 \); (v) \(f = l \) if \(l/1 \); (vi) \(f = l \) if \(l/1 \).

It still remains to determine completely for which of the possible values of \(f \) listed in Lemma 9 there exists a dihedral extension \(K/Q \) of degree \(2l \) such that the conductor of \(K/k \) is exactly \(f \). To do this we have only to extend the arguments in [3], Section 3, to our dihedral case. However there is no difficulty in carrying it out, and so we will not present it here. Consequently, Theorem 1 (c) (i)-(vi) is proved.

3. Proof of Theorem 2. Let notations be the same as in Theorem 1. In this section we let \(\xi \) be a primitive \(2t \)-th root of unity. Let \(E = Q(\xi) \), \(\bar{E} = \bar{E} = k(\xi) \), and let \(E^* \) be the maximal real subfield of \(E \). We consider the case \(\bar{d} \neq (1 - 1) \) in which case there is only one quadratic subextension \(E^* \) of \(E/E^* \) other than \(E \) or \(E^* \), since the Galois group \(G(E/E^*) \) is the four group. Now suppose \(d > 0 \), and let \(N = \bar{E}(\bar{E}) \). Clearly \(N/Q \) is Galois. We want to show that \(G(N/E) \) is cyclic of order \(2l \). Let \(N_0 \) be a subfield of \(N \) which has degree \(l \) over \(E \), and let \(\bar{f} \) be the generator of \(G(N_0) \). Since the action of \(\bar{f} \) on \(l \) is the same as that of the generator of \(G(k/Q) \), then \(\bar{f}^a = a(e)^{-1} \) with \(a \in Z \). But \(\bar{f}^a = \bar{f}^{a2} = a(e)^{-2} \), which implies \(a = 0 \) (mod 4). So \(\bar{f}^2 = \bar{f}^{-1} \). Now let \(\bar{e} \) be a generator of \(G(N/E) \), a cyclic group of order \(l \), and let \(\bar{e}^a = \bar{e}^{2a} = \bar{e}^{2a} \), where \(b \in Z \). Then \(\bar{e} = \bar{e}^{2a} = \bar{e}^{2a} \), which implies \(\bar{e} = \bar{e}^a \), and \(G(N/E) \) is cyclic of order \(2l \). The Tchebotarev density theorem then shows that the set of primes \(O \) (resp. \(O_0 \)) of \(N \) for which

\[G(N/E) = \left\{ \frac{N/Q}{O} \right\} \quad \text{(resp.} \% G(N/E) = \left\{ \frac{N/Q}{O_0} \right\}) \]

(where \(\left\{ \frac{N/Q}{O} \right\} \) is the Frobenius symbol) and which are unramified over \(Q \), has positive density. Setting \(q_t = O_t/Q \) \((i = 1, 2)\), we easily see that \(q_t \) is contained in \(A_i \) \((i = 1, 2)\), which completes the proof of Theorem 2 when \(d > 0 \). For the case \(d < 0 \), we can again apply the Tchebotarev density theorem to \(G(E/E^*) \) to obtain our result.
On 3-class groups of non-Galois cubic fields

by

KITOAKI IMURA (Tokyo)

Introduction. In this paper we give information about a certain direct summand of the 3-class group of a non-Galois cubic extension field of the rational numbers \mathbb{Q}, and show using it that for any finite elementary abelian 3-group G, there exist infinitely many pure cubic fields whose 3-class groups are isomorphic to G.

Throughout this paper we use multiplicative notation for groups and modules, and the action of a group or a ring on a module is expressed by exponentiation. Furthermore $(a^p)^p = a^p$. The cubic Hilbert symbol $\left(\frac{a}{p}\right)$ used here corresponds to $(a, b)_{\mathbb{Q}}$ in [5].

1. **A direct summand of the 3-class group.** Let L be a non-Galois cubic extension field of \mathbb{Q}, let K be the normal closure of L, and let k be the quadratic subfield of K. Let σ be a generator of the Galois group $G(K|k)$, and let τ be the generator of $G(K|L)$. Then $G(K|\mathbb{Q})$ is generated by $\{\sigma, \tau\}$ with the relations $\sigma^2 = \tau^2 = 1$, $\sigma \tau = \tau \sigma$. For any finite algebraic extension field F of \mathbb{Q}, let $H(F)$ denote the 3-class group of F. As the canonical homomorphism $H(L) \to H(K)$ is injective, we may consider $H(L)$ as a subgroup of $H(K)$. For all nonnegative integers i, we define $H_i(K) = \{h \in H(K) \mid h^{3^i} = 1\}$ and $H_i(L) = \{h \in H_i(K) \mid h^3 = h\}$. Then $H_i(K)$ is a subgroup of $H(K)$ and is a $\mathbb{Z}[G(K|\mathbb{Q})]$-module; $H_i(L)$ is a subgroup of $H(L)$ and $H_i(L) = H_i(K)^{1+i}$; $H_i(K) = H_i(K)$ for large i (cf. [4], Proposition 1). Furthermore let $N : H(K) \to H(k)$ be the map induced by the norm map from ideals of K to ideals of k. Note that $N(H(L)) = \{1\}$ since $H(L) = H(K)^{1+i}$ and $H(\mathbb{Q}) = \{1\}$.

Now we let H be a maximal direct summand of $H(L)$ contained in $H_1(L) = \{h \in H(K) \mid h^3 = h^2 = h\}$.

DEPARTMENT OF MATHEMATICS

TOKYO METROPOLITAN UNIVERSITY

2-11-1, HIRAKAMAYAMA

TOKYO, JAPAN

Received on 18. 3. 1977 (923)