critical line \(\text{Re} \sigma = \frac{1}{2} \) does not contain an arithmetical progression. It follows that \(f_{\alpha, \beta} \) is not constant.

Case 4. \(\alpha = \frac{1}{2} \). In this case we invoke a theorem of Putnam [2] saying that the set of zeros of \(\zeta(s) \) on the critical line \(\text{Re} \sigma = \frac{1}{2} \) does not contain an arithmetical progression. It follows that also in this case \(f_{\alpha, \beta} \) cannot be constant.

Case 5. \(0 < \alpha < \frac{1}{2} \). Because of the functional equation for \(\zeta(s) \) this case may be reduced to Case 3.

Summarizing, we have the following

Theorem. If \(\alpha \) and \(\beta \) are positive constants and \(f_{\alpha, \beta} : \mathbb{R} \to \mathbb{R} \) is defined by (3) then \(f_{\alpha, \beta} \) is a constant function only in case \(\alpha = \beta = \frac{\log 2}{k} \), where \(k \) is any positive integer.

Acknowledgement. The author wishes to thank J. Vaaler at the California Institute of Technology for drawing his attention to Putnam's paper [2].

References

Received on 26. 11. 1976

Some results in number theory, I

by

M. RAM MURTY (Cambridge, Mass.) and V. KUMAR MURTY (Ottawa, Ont.)

Dedicated to the memory of Professor Paul Turán

Let \(\varphi(n) \) denote Euler's totient function and \(V(n) \) the number of distinct prime factors of \(n \). In this paper, we shall study the quantity \(V(n, \varphi(n)) \) which arises naturally in group theory. For example, letting \(G(n) \) denote the number of non-isomorphic groups of order \(n \), we have by a classical result of Burnside that \(G(n) = 1 \) if and only if \(V(n, \varphi(n)) = 0 \) (i.e., \(n, \varphi(n) = 1 \)). Erdős [1] showed that the number \(F_k(n) \) of \(n \leq x \) satisfying the latter condition is

\[
F_k(x) = (1 + o(1)) x e^{-\gamma}/\log x
\]

where \(\gamma \) is Euler's constant and we write \(\log x = \log x, \log_2 x = \log (\log x_2 x) \). More generally, we can define \(F_k(n) \) to be the number of \(n \leq x \) for which \(G(n) = k \). The authors [2] have shown that for each \(k \),

\[
F_k(x) \ll x/\log^2 x
\]

The proof depended essentially on a weak form of the following result stated by Erdős in [1]: for each \(\varepsilon > 0 \), the number of \(n \leq x \) that fail to satisfy

\[
(1 - \varepsilon) \log x < V(n, \varphi(n)) < (1 + \varepsilon) \log x
\]

is \(o(x) \). (A proof of this was supplied by the authors in [2].)

It is an interesting number-theoretic problem to estimate the number \(A_k(n) \) of \(n \leq x \) for which \(V(n, \varphi(n)) = k \). Our main result here is the following theorem.

Theorem. For each \(k \geq 0 \), we have

\[
A_k(n) = \frac{(1 + o(1)) x e^{-\gamma}(\log x)^k}{k \log^3 x}
\]

The proof will require several lemmas and intermediate results. The first two lemmas are due to Erdős [1].

\[5 - \text{Acta Mathematica XXXVII}\]
Lemma 1. Let p be a fixed prime. Then
\[
\sum_{s \leq x} \frac{1}{s} \ll \frac{1}{p} (\log p + \log_4 x),
\]
where the asterisk indicates that the sum is over primes $s \leq x$, $s \equiv 1 \pmod{p}$.

We remark here that unless otherwise stated, p, q, and s will denote primes.

Lemma 2. Let $p < (\log_4 x)^{1+\varepsilon}$. Then the number of $pm \leq x$ such that m has no prime divisor $\equiv 1 \pmod{p}$ is $o(\log_4 x)$ uniformly in p.

Lemma 3. Let $H_k(x)$ be the number of $n \leq x$ of the form $n = p_1 p_2 \ldots p_k m$, where
(i) $p_i < (\log_4 x)^{1+\varepsilon}$, $i = 1, 2, \ldots, k$;
(ii) all the prime divisors of m are $\not\equiv 1 \pmod{p}$;
(iii) $[m, \varphi(m)] = 1$.
Then for each fixed k,
\[
H_k(x) = \frac{1 + o(1)x^{1-\varepsilon}(\log_4 x)^k}{k\log_4 x}.
\]

Proof. By definition,
\[
H_k(x) = \sum_p \sum_{m} \frac{1}{\prod_{i=1}^{k} p_i m}
\]
where the outer sum is over all $p_i < (\log_4 x)^{1+\varepsilon}$ and the inner sum is over $m \leq x/p_1 \ldots p_k$ satisfying (ii) and (iii). Erdős' proof of (1) shows that
\[
\sum_{m} \frac{1}{m} = \frac{1 + o(1)x^{1-\varepsilon}(\log_4 x)^k}{k\log_4 x}
\]
and as the product $p_1 \ldots p_k$ is obtained $k!$ times in the k-fold outer sum of (3), we get
\[
H_k(x) = \frac{1 + o(1)x^{1-\varepsilon}(\log_4 x)^k}{k\log_4 x} \left(\sum_{p} \frac{1}{p} \right)^k - \frac{1 + o(1)x^{1-\varepsilon}(\log_4 x)^k}{k\log_4 x}
\]
proving the lemma.

We are now ready to prove our theorem.

Proof of theorem. We shall give the proof for $k = 1$ and then sketch the modifications needed for general k. Write
\[
A_1(x) = A'_1(x) + A''_1(x)
\]
where $A'_1(x)$ counts the contribution of squarefree n to $A_1(x)$ and $A''_1(x)$ counts the remaining n. First we estimate $A'_1(x)$. If n is not squarefree and $V(n, \varphi(n)) = 1$ then certainly $n = p^m m$ ($n \geq 2$) with $(p, m) = 1$ and
\[
(m, \varphi(m)) = 1. \text{ The number of such } n \leq x \text{ with } p \geq \log_4 x = y \text{ (say) is clearly}
\]
\[
\sum_{p \geq y} \sum_{m \leq x/p} \frac{x}{p^{\varepsilon}} \ll \frac{x}{y},
\]
and the number of remaining non-squarefree n in $A_1(x)$ is
\[
\ll \sum_{p \leq x} \sum_{m \leq x/p} A_0 \left(\frac{x}{p^2} \right) \ll \frac{x}{\log_4 x},
\]
using (1). Thus, we have
\[
A'_1(x) \ll x/\log_4 x.
\]

If n is squarefree, then $V(n, \varphi(n)) = 1$ implies that
\[
A''_1(x) \ll x/\log_4 x.
\]

Let $\varepsilon > 0$ be fixed. Then, we write
\[
A_1(x) = \Sigma_1 + \Sigma_2 + \Sigma_3 + \Sigma_4
\]
where the sums are over those $n \leq x$ in $A'_1(x)$ of the form (7) and Σ_1, $p > (\log_4 x)^{1+\varepsilon}$;
in Σ_2, $\log_4 x^{1-\varepsilon} \ll p \ll (\log_4 x)^{1+\varepsilon}$;
in Σ_3, $p < (\log_4 x)^{1-\varepsilon}$ and at least one prime divisor of m is $< (\log_4 x)^{1-\varepsilon}$;
in Σ_4, $p < (\log_4 x)^{1-\varepsilon}$ and all the prime divisors of m are $> (\log_4 x)^{1-\varepsilon}$.
Clearly, we have by Lemma 1,
\[
\Sigma_1 \ll \sum_{p \leq x} \sum_{m \leq x/p} \frac{x}{p^{\varepsilon}} \ll \sum_{p \leq x/p} \frac{x}{p^{\varepsilon}} (\log p + \log_4 x)
\]
\[
\ll \frac{x}{(\log_4 x)^{1+\varepsilon}} \log_4 x \log_4 x = o(x \log_4 x \log_4 x).
\]
Also, we get from (1) that
\[
\Sigma_2 \ll \sum_{p \leq x} A_0 \left(\frac{x}{p} \right) \ll \sum_{p \leq x/p} \frac{x}{(p \log_4 (x/p))} \ll x/\log_4 x,
\]
where all the sums are over p in the range indicated for Σ_2. Now from Lemma 2, the number of $m \leq x$, $[m, \varphi(m)] = 1$ which have a prime divisor $< (\log_4 x)^{1-\varepsilon}$ is
\[
oo{m/\log_4 x} \log_4 x \log_4 x = o(x/\log_4 x).
\]
Hence,
\[
\Sigma_3 = o \left(\frac{x}{\log_4 x} \sum_{p \leq x} \frac{1}{p} \right) = o \left(\frac{x \log_4 x}{\log_4 x} \right)
\]
where the sum is over \(p < (\log x)^{1-\varepsilon} \). For \(\Sigma_4 \), we write

\[
\Sigma_4 = \Sigma_4' + \Sigma_4''
\]

where in the first sum, all the prime divisors of \(m \) are \(> (\log x)^{1+\varepsilon} \), and the second sum contains the remaining \(n \) of \(\Sigma_4 \). Thus, for the \(n \) in \(\Sigma_4' \), there is a prime divisor \(q \) (say) with

\[
(\log x)^{1-\varepsilon} < q < (\log x)^{1+\varepsilon}
\]

so

\[
\Sigma_4' \leq \sum_p \sum_{a|n} A_a(pq) \leq \frac{\pi}{\log a} \sum_{n=1}^{\infty} \frac{1}{pq}
\]

where the sum over \(q \) is in the range (12) and the sum over \(p \) is in the range specified for \(\Sigma_4 \). The sum over \(q \) is clearly \(< \varepsilon \) so we get

\[
\Sigma_4' < \varepsilon \log \log x.
\]

Finally, recalling the definition of \(H_k(x) \) from Lemma 3, noting that our \(n \) are now squarefree, and that in the range of \(\Sigma_4 \) every number in (7) satisfies \(\psi(n, \phi(n)) = 1 \), we get

\[
H_1(x) \geq \Sigma_4' \geq H_1(x) - T(a)
\]

where \(T(a) \) is the number of \(psn = n < x \) such that \(m \) has no prime divisor \(= 1 \pmod{p} \) and \(p \) is in the range specified for \(\Sigma_4 \). Lemmas 2 and 3 imply that

\[
\Sigma_4' = \frac{1 + o(1)x e^{-\gamma} \log x}{\log x}
\]

so that combining (5), (6), (8)-(11), (13) and (14), and noting that \(\varepsilon > 0 \) was arbitrary, the proof for \(k = 1 \) is completed.

Now we sketch the modifications needed in the above proof, for general \(k \). As before, we write \(\Delta_k(x) = \Delta_k'(x) + \Delta_k''(x) \) using the notation as in (5). Recalling \(y = \log x \), we get

\[
\Delta_k'(x) \leq \sum_{p < y} \sum_{a > 1} A_{k-1} \left(\frac{p^a}{x} \right) + \frac{x}{y} < \frac{\alpha(\log x)^{k-1}}{\log x}
\]

by induction. To estimate \(\Delta_k'(x) \), we write the \(n < x \) that are counted, in the form

\[
n = p_1 \ldots p_k m, \quad (m, \phi(m)) = 1 \quad \text{and} \quad (n, \phi(n)) = p_1 \ldots p_k.
\]

Then as before,

\[
\Delta_k'(x) = \Sigma_1 + \Sigma_2 + \Sigma_3 + \Sigma_4
\]

where now, the sums are over those \(n < x \) of the form (16) and

in \(\Sigma_1 \), some \(p_i > (\log x)^{1+\varepsilon} \),

in \(\Sigma_2 \), some \(p_i \) satisfies \((\log x)^{1-\varepsilon} < p_i < (\log x)^{1+\varepsilon} \),

in \(\Sigma_3 \), all \(p_i < (\log x)^{1-\varepsilon} \) and at least one prime divisor of \(m \) is \(< (\log x)^{1-\varepsilon} \),

in \(\Sigma_4 \), all \(p_i < (\log x)^{1-\varepsilon} \) and all the prime divisors of \(m \) are \(> (\log x)^{1-\varepsilon} \).

For \(\Sigma_1 \), the estimate (8) holds as before, and also

\[
\Sigma_4 < \pi \log x, \quad \Sigma_5 = o(x(\log x)^k/\log x),
\]

by simple modifications in (9) and (10). Finally, writing \(\Sigma_4 = \Sigma_4' + \Sigma_4'' \) in the same notation as in (11), we find again by a simple modification that

\[
\Sigma_4' = o(\alpha(\log x)^{k}/\log x)
\]

and

\[
H_k(x) \geq \Sigma_4 \geq H_k(x) - \sum_{j=0}^{k-1} A_j(x)
\]

as clearly all \(n \) counted by \(H_k(x) \) satisfy \(\psi(n, \phi(n)) = k \). By induction,

\[
\sum_{j=0}^{k-1} A_j(x) \leq x(\log x)^{k-1}/\log x,
\]

so that by Lemma 3, we get from (19) that

\[
\Sigma_4' = \frac{1 + o(1)x e^{-\gamma}(\log x)^{k}}{k! \log x}
\]

and combining (15), (8), (17), (18) and (20), the proof of the theorem is complete.

Acknowledgement. We would like to thank Professor K. S. Williams for his helpful comments.

References

M.I.T., Cambridge, Massachusetts, U.S.A.

Revised on 31. 10. 1976

(906)