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On sets characterizing additive arithmetical functions, 1
by

RosErRT FREUD {Budapest)

To the memory of Professor Paul Turdn

I, Throughout this paper f denotes an additive arithaetical
function, 4 and B ave subsequences of the natural numbers, formed of
the elements a, < ag < @y < ... and by < by < by < ..., respectively.

A is called « sef of wuniqueness (from now om: Llset), if fla,) =0, -
E=1,2,..., implies f = 0. This notion was introduced by L Katai

The problem of the T-sets is a special case of the following gemeral
type of characterization of additive functions:

It fla,) satisly certain condifions, then f belongs to a given elass of
additive functions.

Thus the U-sets characterize the elass consisting of the single funetion
f =0 (see [1], [6], [71, [8]). Many characterizations were given for the
clags of the elogn functions (see e.g. [2], [6], [9], [10]}. '

In [37 T showed that

(I} even sets of “arbitrary ravity” ean characterize the funetion
JF =0, and

(ii) every “sufficiently dense” set has this property.

More precisely:

(1) Let g(n) be an arbifrary rcal-valued ‘arithmetieal function. Then
there exists an 4, for which .

{1) a, > (k)
holds, and A is a U-set; moreover if

(2) f(a,) is convergent,
then f = 0. )

(i) If a set A has upper density 1, then (2) implies f = 0, and the
assumption of upper density 1 cannot be weakened, even under strength-
ening the other condifions.
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- In conneetion with (i), Professor Paul Erdos recently raised the
following problem:
What can be asserfed if in (i) we require even stronger conditions
of rariby than (1)% '
The aim of this paper is fo answer this guestion.
The refinements of condftion (1) are the following:

(1&) By — Oy > g(k);

(1b) Bt o gy,
Oy

(1e) _ Wpr > glag).

We shall show that we can find a suitable 4 which satisfies (1b)
and thus (1) too, and still characterizes the function f = @ (Theorem 1),
On the other hand, we prove that (1¢) cannot be valid for U-sets either,
and we determine the exact rate of the possible “growth” of the elements
of a U-get (Theorems 2 and 3).

More precisely, we have the following results:

TeporEM 1. Let g(n) be an arbifrary veal-valued arithmetical function.

We can construct an A, for which (1b) kolds, and A has the following
characterizing property: '

If ‘

(3) Fleny,) —flag) 4s convergent,
then f = 0.
TrmormM 2. L. Let 4 be a U-set. Then

LG |
liminf — < 1;

a

) ! . e
moreover, if we put £ = then

&
{4) liminf{e,+... e = 0.

1L Let o be an arbitrary sequence of positive numbers, satisfying

(5) limint(a, - ... -o) = 0,
and '
() - o> 275,

Then there emisis an A, for which

(7) - ’ Qi
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holds, and A is a U-set; moreover, if

{8) E flag) is convergent,
_ k=1
then f = 0.
TuroreM 3. I. Let A be @ U-set. Then
' P i1
(%9 hminf ——7 = g,
: CEI' v 'ak

IL. Let B, be an arbitrary sequence of positive numbers, satisfying
liminf g, = 0.

Then theve exists an 4, for which

G

(10) i AENRY: = By
holds, and (8) implies f — 0,

Remark. ITn {4] we consider the problem when the characterizing
condition (8) is replaced with (3} and (2) respectively.

2. Proot of Theorem 1. First we prove a

LEynes, If f(n) is convergewi, then f == 0. _ oL

Proof. Let j be a natural number, and e > 0. We show that I < e

{f(n)}?° is & Cauchy-sequence, consequently we can find an N, such

thatforall s, m > N we have |f(s) —f(m)] < &. If we take > N, (5 =1,
then

I = [ —fEl < o. m

“We turn now to the proof of Theorem 1. We may assume that g{n}

Is an inereasing function, and g{n) > 1 for all =. )
We define first o get B:

dg, ng, da, Sds-, saey d{, ?;'di’ seey

where .

(d i) =1, d;>g(4d) and ;> (i—1)-d,_,.

Then we have '

bpy>g{(2k) and  by> b,

We form now the required set A:

B=1,3,..

§15 01781, 80y Bo8ay oy 8, b8y, 0,

where

(11) (8,,b) =1 and §£>_g(2i).

i 8;

3~ Acta Arithmetica XXXV.4
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(11) assures that

By

>g{k)  (and e, > ay)

73

hold for all .
Let now f be additive, satisfying (3). For ¥ =2¢—1, ¢ =1, 8, ...

ﬂ“ﬁ) _f(azi—l) = f(b,: °8;) *‘.f('gi) = f(b‘i)ﬂ

Le., f is convergent on B,
Hence

o) = F by _s) = f(0-a,) —fld,) = f(n)—0,
and so by the lemma f=10. &

Bemarks. 1. By the same method we can easily prove that instead
of the convergence of Af(a,) = flepy) —f (@) it 18 enough to assume that
Af(a,) is convergent, where » is an arbitrary but fixed natural number
and A" denofies the rth difference. In this case we construet 4 so that
we repeat + times the ‘‘doubling” process used in the preceding proof.

2. The set 4 eonstrueted in the proof of Theorem 1, obviously also
has the following property:

If flay,,)—f(a;) is bounded, then f is bounded. Moreover: If

Hlons) —Fla) = OIT(R)  or - oT(k)),
then
fln} = 0{T(n)] or

o{T(n)), respectively,

if T{n} satislies some fairly general conditions, e.g.: T(n} is monotene,
and T(n) hag the same order of magnitnde ag '(4n) (thus e.g. we may
take T'(n) = logn, n, loglogn, cbe.).

3. Proofof Theorems 2/Tand 3/I. These two assertions are equiv-
alent, since

) _ Oy O 4

Gy .. a; Ay,
We shall prove the statement of Theorem 3/L
Indirectly, we assaume that for some d> 0 and ¥, we have
(12} gy > G lyc . vy,

for T = A _ :
- We shall call p” (p is a prime, 7 = 1) a prime power of % if p has exactly
the exponent r in the standard form of x.
For any ay, cither all the prime powers of a, have already appeared
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in some previous a; numbers (j < k), or a; containg a “new” prime power,
Le. one oceurring in @, for the first time in the 4 sequence.

{«) Lef us consider the ease when there are infinitely many a, of
the first type, i.c. which contain no “new® prime power, Let a, and a,
he two such numbers, where m=1i> N,

Then a, is formed of some of the prime powers of @y, ds, ..., G,
and a;_,, and 80 a,, is the product of sone of the prime powers of a,, ...
vy Mgy Gprgy vany Gy o and a,_,, le,

(13) By Sy v "Gy g e gy -

On the other hand, by (12},

O > dra- .o va, g,

and 5o, nsing (13), we infer
- doay <1,

But this is impossible if ¢ is large enough. .

We obtained that apart from finitely many values of &, each a, must
contain & new prime power.

Thus we may assume ¥ to be so large that for k> ¥ a, has a new
prime power,

(8) If an a, contains more than one new prime power, say P and Q,
then put f(P) = 1, f(Q) = —1, f(R) = 0, # R is a prime power of By ene
srey Op_g OF @y, 8nd finally we define the valucs of f successively on the
new prime powers of a,.;, ¢;.., ..., by the equations f(g,) =0, k = i1,
42, ...

Thus we define an additive f, for which f(a,) = 0 holds for all %,
but f £ 0. This iz impossible since 4 is a U-set.

Therefore we may assume that in each a, exactly one new prime
power appears, if > V. _

Further, every prime power must appear in some g, ofherwise we
could define the value of f arbitrarily on the “missing” prime powers,
but this contradiets to the assumption that 4 is a [-geh. :

Let us consider now an arbitrary & > N, and take three prime powers
lying between «, and 2ay, let these e gy, g, and g,. We check, which
of the numbers @, t,,, ... contain these g; as ‘‘new” prime powers.
Suppose, we “meet” fivst ¢, in a,, and then g, in a;. {We needed the third
one only for eliminating the probiem of the possible occurrence of one
of the g; already in a,,,.) ) '

Clearly, a, consists of g, and of some of the prime powers in yy Tgy o .o
-+ry Oy_j, and so ¢, is the product of g,, possibly of g;, and of some prime
POWEES T by, cuny Gy_yy Bypgy ooy C_go
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Thus we have
. &y = ql-qg'alf e T gyt e Ty
This and the lower gstima;tion (12) applied to @ imply
(14) Qi ds > 4+ d. '
TUsing (12) again, we obfain
(15} Aoy A2y s Gy > Aty oun Gy 00,

ginece s = 2.
Furthermore, we have

(16) g: s < 44}
by the choice of the g,.
(14), (15) and (16) togethér imply
' dag > d%ay ... a4,
ie. .

d—2> Ay aen O _qy

but this iz impossible if % is large emough. B
Using the same ideas we-are able fo prove an even sharper result:

TaEOREM L. If A does not satisfy {4) or (9), d.e.if

Byl
021' e 'Cbk

{iminf >0,

then there ewists an f, which is unbounded, though fla) =0, &k = 1,2, ...
HMoreover, to any h(n) positive-valued funclion we can construct a swil-

able f, which sabisfies even '

flw)
hin)

Proof. In the preceding proof we actnally showed, that if

limsup

a
limint —**1 > 9,
al “awe a'k
then
(*) @, contains 8 ‘“new” prime power it & is large enough,
and ' _ _ :
{*%)  either there are infinitely many prime powers which do not appear
in any o, or there are infinitely many e, which contain at least
two new prime powers. .
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To verify (++), indivectly, we choose N so large, that for k> ¥, g,
containg no more than one new prime power, and all prime powers greater
than a, occur in some (later) a;. This leads to a contradiction, exactly
in the same way, as in the previous proof.

We are now ready fo prove Theorem 4.

Case 1. There are infinitely many prime powers, Py, ... s By ey
which do not appear in any a;. Put f(P) =j-{P), j =1,2,..., and
f(P} = 0 for all other prime powers P.

Cage II. There are infinitely many a,, say By ooey By oo, Which
have at least two new prime powers, one of these should be ;.

We may assume, by (+), that for k> &, cach @, contains at least
one new prime Power.

Put f(Q,) =j-R(Q), § =1,2,..., and for the other prime powers P
we define the f(P) values so, that f{a,) = 0 should hold for all k. This
is possible (see the previous observation), f is not necessarily mmigue.

The f functions constructed according to the two cases clearly meet
the requirements of Theorem 4.

4. Proof of Theorem 3/IT, We take a sequence {of natural nunhers)
14 %5y ..., in which each natural numbers occeurs infinitely often.

The required &,, @z, ... sequence will be the union of successive
“blocks™. . o

The éth block consists of ¥, 41 elements:

Ugpy Tgny - o5 Wiz B3 My " oo “Ugnys

where the w; are primes, (u;,f,) = 1, and the u; and ¥, are specified
as follows:
Let us suppose, that we have already constructed the (4 —1}-86 bleck,
and let a, denote ibs last element (s = Nyt oo + N +4—1). We take:
Bgpy ™= Ugy 22 Py -oo "ty

.....................

Byerr; = Uiy 2 Bs 170" oo "oy vy
Boy el = Tty e g
Now we have to choose an N, satisfying
] q3+Ni+1 = ti"bﬁﬂ' e "MiAri 2 ﬁs+A\ri‘a'1 faen t a3+Ni
= ﬁs+Ni-a1- e O Uyt e B

~This means

By 01 oe " <y
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Here s, %;, ay, .~., g, are fixed numbers, Since liminffd, = 0, we ean find
an r > ¢, for which
By ..o, 1

holds. Put N, =r—s, and so (10) is valid.
We take now an f satisfying (8), and fix an arbitrary e > 6. Using
the Cauchy-property we have

Fltg) + oo HFla )] < e/ and (...

if 4 is large enough.
Thus

IFE = H{F (bt -
if 4 18 large enough, .

Since each natural number oceurs infinitely often among the %, we
obtain [f(#)| < & for all # and for all & ic. f=0. &

'T'-im’j)f < gf3,

"”'m-'l-)}‘{f(‘?ln)‘% sl M < ] <

5. Proof of Theorem 2/IT. Put y, = a,-(1+27%2 — a,0%. Since

o0

] [ (14-27%) ig convergent, we have liminf(y,-... -p) = 0.

fe==1

The sequence ;,1s, ..., and the structure of the blocks should be
the same as in the previous proof, the u; will be primes again, with
(%4, %) =1, while the other specifications are modified as follows:

bet us suppose that the (¢ —1)-st block has already been constructed,
and a, is is last clement,

We want to define the set 4 so that the valne of ..1/0% should be
“about” op. This means:

Oopq = Uy reily 5,
T gy = U gy (l )
- . 2
(LS__r Ny T ”"I‘Vi ""-’as_i_‘\'.i*l (a‘s_“_;\?i_l) I
Bgngr = bty oo sl

We dencte w; simply by », and express all the y by « and the a:

)
% 541 Uy
Uy gy o * U ~ gy o " (Ol 1 )2 05,
"-..-..'.";1;2.-3]-—i
"‘":j"“as—uﬂ'(as-'-g—-‘l) ( s+1) U

More precisely, we define the w, as follows: Let u,; = u be & prime,
3=y, 4> 1, and

(17) . X % > 21{!(31‘»1)‘
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Furthermore, for j > 2:

'-—1 nf—
(18) M, = o (Vous) 7 e Vaggon) Vorsor < Uy < My By

(3; also depends on 4, of course).

If we put M, = u, then (18) holds also for § = 1.

Later we show the u; can be chosen as primes, i.e. there is at least
one prime between M; and M;8,.; (for j = 2). Taking this for granted,
we have also {uy, i) =1, since uy; > u > 1.

We check now

Togirr _ Uiina

T T 0y, for j=1,2,..,N,—1
(@) Uty
Indeed:
ey S S
i1 My w7 lye) S Wepim) Veyy
2 Ty Ve af ) A 2. 2
’M; My (Fang® U (Weg ) s W) (Peyg)®
Veri
= ) g 5 Ueigr
{ s-H?)
We need now a suitable N; for which
Ty ;1
3 '>/ “.'s'-iu’\'i
(as+N4)
also holds.
Boynprr ottty fp MMy My
= =
(@3,) (ty,)* My, st
Ny =3
1 2pd 327 F I42gdta. 428 T .
A (Yesr) < T VeiNg-2

- Vi~ L N2

(Yspr)®

- 't" —R.

U Yapr e VerNg—1Pasny

< VsrNp-1 '.ﬁsh\',-

“Yapp) = 0 a8 well,

Since liminf(y,-... v.) = 0, we have LIminf(p,, ;" ...
or

and thus we can find an ¥, for which
f,

¥

1,

. . DL
LI i". = ==
Yot Yoty Qe T b N;

holds.
Henee

¥4 > .}’s+.N{ > GES_*_'N:.,

which completes the verifieation of (7) for all #%.
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We have to show that the «; may be chosen as primes, i.e. the interval
[J.IIj, ;- B, 5] alwags containg a prime (= 2). As e.g. [0, n-+a"] always
eontaing a prime, it suffices to show that

M0y — My > MG
Le.
(19) AL v,
¥ (17} =
M, = u > 21006+
thus (19) holds for j = 1.
Assuming the validity of (19) for §, we prove it for j-+1. Using
e o oy == 375, we obbain:
Mj+1 — _M-?,,ys_” = 220(s+f),2—a-—j = 210(s+1'+1)_

Finally, if f satisfies (8), we conclude that f == 0, exactly in the saine
way as we did in the proof of Theorem 3/II.

Remarks. 1. The most interesting case of Theorem 2/IT is When
liminfa, = 1, and this shows that (6) is not a serious rvestriction. We
&lso observe, that (6) can also be replaced by conszdembly weaker con-
* ditions. ,

2. Theorems 3/IT and 2/I1 do noi; imply each other, though Theorem
3/IT is “‘almost’® a corollary of Theorem 2/IT (condition {6) is the only
obstacle in this direction).

3. Analysing the proof of Theorem 2/IT we may obgerve that the
condition (T) for the set 4 can also be replaced by stronger prescriptions.
E.g. if liminfa, =4 (d<<1 by Theorem 2/1), and L>1, ¥ > L/d are
arpitrary finibe or infinite values, then we can find an 4 satisfying

liminf %1 _ T and

@y a5,
Similar assertiong hold also for Theorem 3/IT.
4. The sets 4 construeted in the proofs of Theoums 2/IT and 3/11
have also the following property:

It the _Z' fla,) sums are hounded, then f is bounded
r=1

2 .
k1. '
— =M.

Gy Oy

Tim sup

The proof i siraightforward.

6. Finally we mention. the following generalization of Theorem 2 /I,
whieh shows that the @, elements of the characterizing set 4 may be
chosen arbitrarily large, even with respect to ay_,, for almost all k.

TeEEOREM 5. By K =

{feutoe, we shall denole a suifable subsequehce
of the natural mumbers. :

icm
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Let i(n) be an arbitrary function tending to infinily, end g{n) an arbif-
rary funclion. Furthermore, let o, satisfy (5) and {8).
Then we can find an A end &, for which ihe following hold:

(i) Gp > glag) o kel

a’k-»-I

(i) >a, if k¢E,

k

(ifi)  for infinitely many valuwes of n Y 1> n—Lin) (i.e. the upper density

keK
k<n

of K s “very strongly™ 1),

B
(iv) if [ satisfies {B) or the } fla,) swms are bounded, then f = 0, or f
r=1 .
48 bounded, resp.

Prooi. We have fo modify the proof of Theorem 2/IT only slightlv:
alter each block we ingert “very many” “stuffing” elements of “arbitra-
rily rapid growth”.

I am indebted to Professor Paul Erdos for hig valnable remarks.
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