Conspectus materiae tomi XXXV, fasciculi 4

Pagina
T. Chinburg, ‘Easier’ Waring problems for commutative rings . . . . . . 303-331
R. Freud, On sets characterizing additive arifhmetical funetions, I . . . 333-343
H. @& Kopetzky, Uber naiiirliche Zahlen o mit der Eigenschaft
(flam D) =1 . . 0 0 o e e e e . . B45-352
0. Korner and H. Stihle, Remarks on Hua's esiimate of complete trigono-
metrical SBUIME + - .« c . . - v e e e e e e e e e . . 353-359
J. van de Lune, A note on a formula of van der Pol . . . . . . . . 361-366
M. R. Murty and V. K. Murty, Some results in number theory, T . . 367-371
K. F. Roth, On irregularilies of disfrivution,III . . . . . . . . . 375384
K, Iimura, Dihedral extensions of @ of degree 2f which contain non- G.-alms
extensions with clase number nof divisible by § . . . . . . . . (. 385-304
— On 3-class groups of non-Galois eubie fields . . . . . . . . . . .. 385-402
Az Moaep, JAoCasrenne k paGors ,,00 opmotr reopeme Xapmm-JIurrasyze
B Teopdu gsera-pymxmum Pmmaxa” . . . . . L. 0 . . . . 403404

La revne eat conpacrée & la Théorie des Nombres

The journal publishes papers on the Theory of Numbers
Die Zeitschrift verdlfentlicht Arbeiten aus der Zahlentheorie
FHypHAR DOCBAMEH TROPHN HHCEN

 L’adresse de Address of the Die Adresse der Anpec pe:xammﬁ
1a Rédaetion Editorial Board Schriftleitupg und u  eENT00OMeHa
et de I'dchange.  and of the exchange des Austausches
ACTA ARITHMETICA

ul. Sniadeckich 8, 00-950 Warszawa

Les autenrs sont priés d’envoyer leurs manureriis en deux exemplaires
The authors are requested fo subimniy papersg in two copies

Die Auforen sind gebeten um Zusendung von 2 Exemplaren jeder Arbeit
Pyronmenm cTarTeft pORAKIEA NPOCET OPEJITATATE B ABYX IKBEMIIADAX

© Copyright by Padstwowe Wydawnietwo Nankowe, Warazawa 1879
ISBN 83.-01-01327.3 IBSY 0065-1036

PRINTED IN POLAND

W R O OC L AW S EA DRBRUEKARNXNIA NAUTE O W A

Im“ L ARITHMETICA

XXXV (1979)

‘Easier’ Waring problems for commutative rings

by

TED CmINBURG*® (Cambridge, Mass.)

1. Introduction. Let E be a commutative ring with identity element
and let % be a positive integer. Let J (%, B} be the subring of E generated
by its Eth powers. If there is a non- ne@atlve integer » such that every f
in J(k, R) canbe written in the form ¥4 ff4 .. L% for some fi, ..., f,
in E, let v(k, B) be the smallest such 2. Other“ise, let »{k, RB) = co. Let
V(k) be the supremum of v(k, R) over all commutative rings with identity.
As in [8], if p is a prime, then & number of the form (p*—1)/(p°—1)
for some positive integers b= 2 and ¢ 1 is called & p-power sum. Call
a prime g ewceptional if it is 2 p-power sum for some prime ; otherwise,
g is called non-ewceptional. We will show that

V(%) < k2(3logk+-5.2) + 3 [klog (3%* k)] 4- 8k 44

if % is & non-e

ranges over the exceptional primes, where g, is repeated if it is & g-power
sum for more than one prime g. Thus V(&) is finite for all non-exceptional
primes, and ‘almost all’ primes are non-exceptional. This gives an affirm-
ative answér to a question raised in [15] by J. R. Joly, whe showed
that V(2) = 3 and asked whether V(%) is finite for some % = 3. In a later
paper we will show that if # > 2 is an integer then V{(2") = oo o

The following related question was also raised in [15]. For » a positive
integer, let R[n] denote the polynomial ring B[z, ..., z,]. It is shown
m [15], Proposition 7.12, that V' (k} = supw(k, Z[n]). A natural question

n==l
is hence whether o{k, Z[n]} is finite for %> 3 and » > 1. We will show
that o(%k, Z[n]} is always finite. Upper bounds will be produced which
grow exponentiaily with » if % is composite, linearly with = if % is an
exceptional prime, and which are independent of » if k is & non-exceptional
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304 T. Chinburg

prime. Methods for obtaining sharper upper bounds are developed. These
are illustrated in the appendix, in which the case k = 4 is considered.

Tn the eourse of obtaining these bounds, we will prove certain results
comeerning the strmeture of "oJ(k, Z[n]). These results will provide, in
particular, algorithms for determining whether feZ[n] is in J(k, Z[z]),
and for representing f as % (not necessarily minimal) sum L fFff4 ...
<. £f% if this is the ease. Other related Waring problems are discussed
in remarks throughout the text.

The author wishes to thank the referce and the editors of Aecta
Arithmetien for thelr assistanee and patience during the preparation of
this paper. '

2. Upper bounds ox V (%) for non-exceptional primes. We fivst establish
gsome notation. Unless otherwise specified, R will denote an arbitrary
eommutative ring with identity element. If 4 is a subset of B, let H (%, B, 4)
denote the set of kth powers of elements of A, Let J{&, B, 4) be the
additive subgroup of B generated by H(k, B, 4). Let Lk, B, 4) denote
the set of sums of elements of H (%, R, 4), and let L{k, B) = Lk, R, E).
We will ugse p and g to denote primes, and = will dencte a positive infeger.

We adopt the conventions that the sum of an empty set of elements
of Ris 0, and that the zero ring has identity element ¢. If there is o non-
negative infteger » such that every fin An J(k, B) equals -£f54frt ...
.o &fF for some fy, ..., f, in R, then lot o(k, R, 4) denote the smallest
guch v, Otherwise, let v(k, B, A) == oo. Define w(k, K, 4) similarly for
AnE(k, B). Let w(k, R) = w(k, R, R); castomarily, w(k, R) is called the
‘harder’ Waring constant of R. We will sometimes indicate how results
concerning ‘eagier’ Waring constants extend to cover ‘harder’ Waring
constants. : '

We now make one basie observation. Suppose that I is an ideal

~of B, and that aedJ(k, ). Then '

(1) ok, B) <olk, R/T) +o(k, B, I-+0)
where I+ a = {i4a; i eI}, For if fed(k R}, then
. . ik, RIT)
fma= D ff+b
=

for some b €I and some f; e R. Sijme b+ae(I+a)ndk B), (1) follows.
- Rimileawly, if 10 < Lk, B) then

() wik, R)gw(k,R/I)—i—w(k,R,I—}-a).
Using only (1) and the results of [8] Wwe can now show that V(%)

is finite if % is & non-exeeptionsal prime. When referring to homomorphisms,
we will always mean unitary homomorphisms. :

icm
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TrEOREM 1. If k is a non-exceptional prime then
Vi)Y <1 +o(k, Z[7], {ke)) < =o.

Proof. By (1),
3 ok, B) < v(k, R/LR)+v(k, R, kR).

Sinee (#40) =u*Lo* mod kR it v, veR, o(k, RER <1 It follows
trom [8], Theorem 1, that ks e J(k, Z[#]). If ¥ & R, consider the homo-
morphism ¥ Z[n]-+R induced by z—u. Tt follows that
ku = ¥(kx) s V(I (k, Z{x])} < J (k, R)
and that
o(k, B, kRY < v{k, Z[2], {ka}).
The theorem now results from (3),

As one consequence of Theovem 1, we have the following corsllary
from [15], Proposition 1.9.

.
COROLLARY. If k 4s & non-crceptional prime, then the fuictor R—J [k, R)
commutes over direet sums.

We now consider explieit bounds on V(%) when & iz a non-exceptional -
prime, Parts (a) and (¢) of the following lemma are contained in [15],
Proposition 7.2. The proof of part (b) is left to the reader.

-
Lemma 1. If R is the divect sum @ R, of the vings R,, then
=1

() (Foly)v(k, ) = supu(k, B;) if %k is odd;

. 3
(BY »(k, R) gs::gp(l——;—) (o(k, R} + 0k, B)) & & is even, where
0t =1 and & =0 if i +#7;
ey (Joly) w(k, B) =supw(k, ;).
p .
Define o*(%) = infv (k, Z,(d, oo)). It is shown in [12] (p. 325-327)
deZ .
that »(k, Z) is finite, so »*{k} is finite. Tiet ord, denote the usual p-adic
valuation on Z, so that ord,(0) = oo and p™%9|g if 0 £aecZ To
simplify notation, we supress indicating the dependence om %k of the
integers y and y, now to be defined. Let
1 tp==%
ord,(k)4-1 i p #% k% and p or k is odd,
ordy(k)+2 if p £ % and p = 2|k and & # 4,
3 Hp=2and k=4 '

y = [ [

p=k

o =
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TmumA 2. For all B and F,

(a) (&, R) < »ik, R_[}‘.,!R)-l-z" L.

() ik, R) < vk, RjyR}+14-min (257, ke*(R));

(¢} (Chen) min (287 ko*(k)) = ko (k) < k* (8logk+5.2) i &> 12;

{(dy (Rai) min(10u*(10), 2°) = 10v*(10) < 300 end min {1ie=(11), 2
= 13p%(11) < 264

Proot. Let ¢ € Z huve hmage @ in B under the homomorphism Z—I5.
By (1),
{4) vk, By < o(k, BEI R)+o(k, B, k! B &},

In the standard identity (ef. [12], p. 325)

Tomm
: v(?s-;ik! =§j(k;—1) (@ 5y — 1)1

(5} Ela

(F—1) k!

=1 ‘ .
we have E (Lzl) =251 Then if zeR and o = , it follows
i—0

that »fk, B, k! R+ &) < 2*~7. This and (4) prove (a).
Part (b} follows from (a) it 2 <2, so suppose k> 2.
By (1), : i

(6) ok, B) < ok, RjyR) +-o(k, R, yR+ 7).

Let b be & non-negative integer. By a standard application of Hensel’s
lemma, if 2 = B then there is a w e B such that
wh == 14pzmod 2" %! B.
Hence
(7) vk, R, yR+a&) <ok,
Tetting b = 0 and G—1 = (k—1)k!/2, we have
o(k, B) <ok, BjyE)+o(k, K, yE-+7)
<ok, RlyR)-+o(k, R, M R-+o—1)+1
<o, RjyR)+25+1.

E, 2k R+a—-1)+1.

It b is sufficiently large, then
@(k,z,(’“;‘)(—l)‘z")gv*(k) for i=1,.., k—1.

Now multipiying (5) on both sides by 2° and letting a—1 = 2>k —1)k!
shows fhat : :

o(k, R, 2bk!R+a 1) < ko (k).
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Then

v(k, R) < vk, BjyR)+v(k, R, vR 1)

=<
Lok, RiyRy+ok, B, 2* kI R4+2—-1)+1
< o(k, R/VR)+7~’0*(75)+1

o (b} is proved.

The asymplotic ‘harder’ Waring constant of Z is defmed_ to be &)
= infwik, Z, (@, 00)]. Clearly v*(k) << (k). Part (¢} now follows from

acs
bounds on G{Z) given by J. Chen in [7]. T. Rai has shown in [18] thad
2{19, 7Z) <L 30 and »(11, Z) < 24, from which {d) follows.

TaworeM 2. If k is a won-svceplional prime, then

V(k) << B2(3logk+5.2) - 3[klog (32— k)1 48k 4.

Proof. It is shown in [18] that V(2) =3, so suppose b > 2. By
Lemma 2(b), (¢), (d) and Lemma 1({a}, '
(8) o(k, R) < v(k, RjpR)+1+ko*(k)
<supnlk, B/pRy+-1+k*(3logh+ 3.5 2).

sk

If w,veR then (u-+o)* =u"o"mod kR, so w(k R/FR)<1. Since
Tw e J (k, Z[#]) by the rvesalit of [87, it follows that F,[w] = J (&, F,{o])
if p < k, where F, is the field with p elements. If now z € EB/pR, consider
the homomorphism %,: F,[z]—--R/pR induced by z-»2 We conciude
that BfpR = J(k, BfpR) and that o{k, B/pR) < vk, F,[0]). Tt is thown
in [161 that v(k F,[x]) < 3k+3[kiog(3k*—k)]+4 if p 1k The proof
of the theorem is now cmnpleted by substituting these bounds on »(%, BE[pE)
into (8). : _ _
Remark. The technigue of Lemma 2 can be used to lower certain
known bounds on other Waring constants. For example, suppose I Ik -
an algebra over a field of characteristic 0. It is shown in [15] that

(9)  w(k, By 1wk, B, {—1]).

Let b be a large positive integer, and note that every element of sueh
an- algebra is of the form 20%!a+-2'"*(k—1)k! for some » e E. Then
multiplying (5) by 2° and bounding the number of smmmands on the
right, we have

(1) - wk R < (Ia)[k+ ]-i—'a*(k)w(k;R: {—1}).
Simjia,rly,
o wik, B) < kor(Ww(k, B, {—1}).

From [7] and [19] we have that o*(k) < G(k) <k(3loghk+5.2) and

S o*(11) < 264, Hence one of (10) or (11) improve (9) i k= 11._
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3. Statement of bomnds on v (&, Z [»]) and vutline of the proofs. Ag men-
tioned in the introduetion, it is shown in [15] that V(&) = supv{k, Z[n]).

nz1l

Tt % is a non-exceptional prime, the bounds of Theorems 1 and 2 hold
for o{k, Z{n]). We will show

THEOREM 3. If k @8 an exceplional prime,

() v(k, ZI) < (B2 +L)n+k 41+

+min{k?(3logk+5.2), 21 if & > 3;
(h) »(3, Z[nl) < 4n - B; :
() vk, Z[1]) < 8k 3 [klog(3k% — )]+ 4+
+min(%*(3loghk +5.2), 2571).

Terorey 4. If & is composite,

(a) o(k, Z[n]) < exp{{l-+e(k)n(logh)®log2} +
-{—%pr{( +&(k}) 2{log k)*/log 2}
where (k) i¢ finite and e{k)—0 as E—oo,
(LY o{4, ZIn]) L 2(4% —n) - 34n + 21,

The firgt step towards proving these theorems is to reduce fhe con-

-sidevation of J (&, £ [n]) and ©{%, Z[n]) fo that of J (&, §,[»]) and v(%, S,[n])
when p is & prime <% and 8, = Z/p?rZ.

- In [8], the smallest positive integer m(k) such that m(k)Z[1]

€ J{k, 2{1]) 15 computed. From [8], Theorem 1, it follows that m(k)|y.

Sinee ¥ == H _’pv—t’ we have an exach sequence
Pk

(12) {)-wa»yZ[n}—>J{k Z[n})—>(—9J(k 8,[n])—

Thizg shows that the structure of J (k Z [n]) is determined by that of
Sk, 8,[n])} for p < k. Similarly, Lemmas 2 and 1 show that upper bounds
on v(ic, 8, [»]) for p <k will yield an upper bound on v(k, Z{nl).
We consider J(&, 8,[n]) and o(k, 8,[»]) when p4 % in Bection 4,
In this case S, = ¥,. The method used invelves first using [8] to deter-
mine whether there is a polynomial identity of the form

18y | z= Dgof

in F,lz). If such an identity exists, it is shown that J(k, F w1} = Fpyn]
- and o(k Fpln]) < ok, F,[11). Beunds on o(k, 7, [fn]) then follow ﬁom
Imown upper bounds cm o(k, 1, [1]).

 1f no identity of the form (13) exists, then one constructs an 1dent1ty
of the form :

‘;’g,.(wu )"

7.-—1

gy (@l — 2y gy (o

icm
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in L, #,]. From such an identity it follows that the ideal I = S {af -

i=1
—x) T[] is contained in J{%, F,[ad), and thet

n
e(h, Fplnl L=y <t 0 o= M g{e).

=

—

Hence if 4 = F, i/, then _
o{le, Fy[nl) < ok, A)+olk, F,[r], T+R) <ok, 4)+ s,

It @: F In]>4 is the quotient homomorphism, then o (&, Fi,[-n])
=gt ( (%, 4)). We are hence reduced to considering Waring problem8
for finite rings of the form ﬁ F,aljL

Note that pa =0 = & —a ]f o =.4. By applying certsin known
structure theorems for rings A with these properties, one can bownd
v{k, 4) and determine the structure of J(k, A4). These results can then
he lifted to F,[n], and in fact to any £ sach that pR {01,

In Seetlon 5 we consider J(k, S,fnl) and ok, 8,[n]) when plk.
The cage p = k is very simple, since then 8, = F, and f—s- f# is a homo-
morphism of F,[n] onte J{p, F,n]), 80 'v(p,Fp [n}) =1. Suppose now
that pl% and p < k. As in the case p { k, one wishes to find polynomial
idenfities which yield bounds on o(k, 8,[#n]) as functions of ok, 8,[n]/1),
whete §,[n]/I 13 some finite quotient ring of 8,[n]. A major obstacle
to fielnewng this is that in this case 8,[nl}J(k, S [#]} ean be shown to
be an infinite group. Hence there is no 3deal Iof S [n] such that §,[#1/T
iz finibe and I < J(k, 8,[»]).

The difficulty is resolved by considering the §,-wodule

)
17 = N8, Tl a2l ],

i=o
One fivst considers systems of polynomial identities in 8py[x,, #,] satisfying
certain conditions, These conditions depend on two integral parnmeters #
and », and the set of such identities iy denoted by F(w, ). One shows
that given an element of F(u, v) there exists an ideal I of §,fn] such
that 8,[n]/T is finite, o(k, 8,[n]) < o(% 8,n}/T)+on and Ik, Sp[nl)
_ Mg YT (%, 8,[R]ITY), where @ Sy [n]—wS’ [n]/I is the quotlent
homomorphism. The problent then bwomes to congtruet an element of
some F(u, v), i.e. to find a system of identities of the reguired type, and

to analyze o(k, S,[n]/I) and J{&, S,[n]/I).

The results of Sections 4 and 5 wﬂl be sombined in Section & fo prove
the bounds on o(k, Z[n1) stated in Theorems 3 and 4. We will then sum-
marize our results concerning the structure of J(k, Z[rn]). We will also

- (isenss the relation of o(k, Z[n]) to @(k, R) as R ranges over finite Artin

local rings which are homomorphie _images of Z[n].
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4. The ease p 1 k. In thiz section we assume only that » 1 &, withous
any restriciion as to whether p <k or p> k. By definition, S, = I,.
As a typographical convenience, we will wse F,, and GF (m) interchangably
to denote the field with m elements when m iz a power of p. If ¢ is a positive

¢
—1
integer, let e, he the smallest divisor d of ¢ such thatb %MT k.
Prorosrrion 1. Suppose p 1k, pB = {0} and ¢ = ¢, for all positive
integers 6. Then J(E, B) = B and
{f'i) v{k, B) <ok, Ty[1]) <w(k, F,[1]);

(b} w(k, B) < w(k F,[1]);
( e) (Kubota) w(k F,[11) < 3k 3[klog(3k*—
(@) (RPaley) if B = p™-+1 for some integer m,
(1) wik, F,[1) <5 i p =2,
(1) 2wk, F,[1) <6 if p=2;
(e} (doly) wik, R)<F &f b <p, and 2(2, R) < 3.

Proof. If follows from [8], Theorem 1, that p+ m(k) if p ¥ % and
¢, ==¢ for all ¢. Hence F,[] = m (L} F, [wlj = J (& Fyla,]), so Fyis]
=d (R b pl#1]). Suppose now that z e B. Consider the homomorphism

Iy, {vi}wl?, induced by #;—+2. It follows that J(E, R) = R, and that parts
(a‘) and (b) of the proposition hold. Part (c) is shown in [16], Theorem 37.
Part (d) is shown in [20], Theorems 5 and 6, and part (e) iz shown in
[15], Proposition 7.27 and Theorem 7.9.

We must now allow the possibility that ¢, < ¢ for some e. We first
produce a polynmmal identity of the form

kYI+4;

(15} _( —wl)wz"f'gu(mﬂ = Zgz(mn%)

{=1
where b and ¢ are positive integers, g, (x;) € F,lz] c].']ld G5y m3) € Fy [, 3]
for i=1,...,1
In [18], a polynomial iz called primary i its Ieadmg coeﬂluoﬂt is 1.

Suppose My > m; = 0 and 1> 1 are integers and that -
(—1)my < p* < ki, a«nd P -1 = (E—1)imy+m,.

In the course of proving Theorem YII of [18], it is shown that
(% 3 (™t a™) = Ty A

degree a1
a primary

where the sum is over a 6 ¥, [a4], and I ;A Oend 4 are in F,[#]. Clearly

z

(17) r= 3 o

degree a=1
eprimary

‘iom
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It is shown in [18] that if r < p*—1,
(18) ' D d =0,

demree o=l
a primary

The familiar Vandermonde determinant is also stated:

(19) R . = [T (4—ap.

g1 Ii<j<s

Letting s = p' and «, -++y @ be the primary polynomialy of degree I
in (19), we replace the last row by the sum of all the rows (without changing
the deferminant). By equations (17) and (18), the only non-zero term
in the bottom row is now I"in the bottom right-hand corner. Expanding
by minors along the bottom row and using the Vandermonde formmla

again, we derive
[] 5=/ I] (@-a
!

e R B ) 1&,&‘\.}{.1?

= [T y-w= [] u

1Ty dtm‘g,vre#eoad
[}

(20) =

Let b = L.OM. r <1: 0 <reZ}. Then

(21) @ -a)= J] a

< degree a<i
a irreducible

Henee from (29) and (21) we have [7| (mf — )" fur some positive integar
rpand I'=af —o, i T =1, Thus if [ = 1, (16) hecomes

Z (a™1m, —}—a’”’)

degres a=1
¢ primary

which is an identity of the form (13) with ¢ = p' = . If I > 1, then by
2 standard refinement argument, ' '

(zr”’ — &) Fy b

1 (@ — e, = wmod (2P — ay)
for some w e F,[m,, ¥,]. Since I| (mﬁ’b-—ml)”, wa have
(mfb—fal)m, =w'—1+4+Ty for some g & F, [z, 2,].
Then (16) gives . .
3 (@mgamepat= (o
degree p=1 '

o PriImary

— )%+ A+1 )

‘which is an identity of the form (185) with ¢ = p'+ 1.
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These identitics exizt on the condition that my>m =0 and 1> 1
are infegers such that (B—1)m, < pt << Ty and Pl —1 = (k—1)m,+m,.
Thege conditions lead to the fellowing upper bounds on integery ¢ for
which identities of the form (15} exist.

Tmnia 3. Suppose p Lk and p < k. If & # 9™+ 1 for all integers m,
thewn there exists am identify of the form

¢
(ﬁfb*fﬂl)mz‘i'gn(ml 5 ({00 22)"

i Pylw,, 5] for some b >0 and some 1< (E—2Y4+1. If & =p"™-1
then
(ﬂ?fm — B}y *I“&?fﬂmﬁlm —1 = (& +a};1'ﬂn)k —(mawy 4 l)k - -fz:: + (ml%)k

is such on- identity with § = 4.

Proof. If & = p™ 11, then the above identity with ¢ == 4 holds.
Now suppose k =% p™+1 for all integers m. To prove the lemma, it will
suffice to show fhere exigt my > 0 and 7 > 1 sueh that (£ — 1) My < P < Ky
and p 41 (F—2)+ 1. Tor then we may let o, == p—L—{k—1)m,
in the previous construction, o have an identity with ¢ < P41 < (B—2)+
+ 1.

If my > l—1, then the intervals {{k— 1)m;., Fering) aind (% —1) (my—+1),
Bl mz—}-l)) overlap. Th 1s impossible that p* = k(k—1), sinee p 1 k. Hence
it p'> (k—1)% then p'is in some mterv&l (ke —1)ma, Fomy). Thus it guf-
fices to show that there is a prime power p' such that (k1) < p* < (B —2)%.

Since p <kand k#£p+1, wehave p<k—2. I p> (75,——1) M {hen

(F—1)% < p*<{(k—2)* and we are finished. Now suppose p (F—1).

813-

Then if p ig the smallest power of p greater than (5—1)2 p' < (k—1)
Henee the lemma holds if %> 7, since then (F—2)2> (B—1J*. The
hypothoses that p4 &k, » <k aund % 5= p™+1 for all m leave & =5 and
p =3 as the only remaining case. This case is easﬂy checked, so the
lemma is proved. :

Suppose now that we have an 1dent1ty in F [rl, 2] of the form

(ﬂ'p — )@+ gole) = 29'1 Lo ”Uz)

T follows that it pR = {0}, then the ideal I of B generated by {Jﬂ’ ;
# € R} is contained in J{%, B). Let A = R[I,snd note that ps =0 = a¥ —a
if a e A, We will first consider J(k, 4) and o(k, 4) for rings 4 with these
properties. These results will then be lifted to rings & suwch that pR = {0}.
The cage R = F,[»] will then be considered.

Lmnora 4. Let A be o ring such that pa = 0 and o =a for all ae A
‘and some fized positive integer b. Suppose t and v are integers and fi, ..., f;

€ A[®), ..., 0,1 Then there evists o solution @ = (@, ..., a;) € A* of the .
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equations fi{e) = ... = fi{a) =0 if and only if for each mavimal ideal 3
of A there s o solulion ay & A" to fi{ay) == ... = fi{#y) = 0 mod 3.

Proof. The existence of @ certainty imphea the existence of the
g0 we show the converge.

Let B = A @GF (p°). Ibis clear that every prime ideal of B is maximal.
Itis shown in [1], pp. 465—466, that there is a homeomorphiem ¢ of Spee(B)
of finite order such that 4 is isomorphic to the ring of all functions f:
Spec(B)—>GF(p”) which are continuous in the Zawiski tepology, vanish
outside o compact set, and satisty f{or) = f{z)* for all # ¢ B. Since 1 e B,
it follows from [13], [14] that Spec{B) is compact and zero-dimensional.

Since B is integral and finite dimensional over 4, znA4 is a maximal
ideal of 4 whenever # € Spee{B). Hence for each sueh x there is an
a, = (&, af?, ..., a?) such that f(a,) (2 . = fi{a) (#) = 0, where
Filay), ..., fi{a,) are considered as funetions on Spee( IR Smce the clements
of 4 are continmous functions on Spec(B), there is a compaet, open and
closed set U, around z such that f(a,)(y) =... =f(a,){y) =0 for
ye U, We can furthermore fake U, fo De invariant under o, since
fjw)ay)——(fj (u)i”—(}foryEU

Since Spec(B) is compact, finitely many of the U, say Uepsoons Ugys
cover Spec(B). By taking appropriate complements and intersections, we
may assume that U, ,..., U, are disjeint. Now each U, is compacs,
open and closed and is invariant under o, Hence the characteristic funetion
y,0f U, 18 an element of 4. now e = '}_’x, ythen fi(a) = ... = fi{a) =0
and the lemms is proved.

To apply Lemma 4 to the ‘Waring problems for 4, define

3(b) = supw(k, GF(p%)] and  &(b) = mf(a(b),supzw(k GF(p)))
cib

dary

when b i a positive integer. I¢ pR = {0}, & maximal ideal M of B i5 said
to be of degree ¢ if BfM is isomorphiec te GF(p°®). In the following prop-

. osition we do not need the hypothesis that p { &

ProPOSITION 2. Let A be o ring such that pa = 0 and e —a for all
@& A and some fived positive integer b, Then a € 4 is in J(k, 4} if and
only if @ ds dn J(k, A) mod M for all mazimal ideals M of A which have
degree ¢ for some ¢ ¢,. Also, w(k, A) < (b)) <k and v(k, A) < () <k

Proof. Suppose » is a positive integer and a ed. Leb
fe=ofp .. taf—acAlpy,..., 2]

Every residue field of 4 must be isomorphic to GF(p%) for some ¢|b.
By Lemma 4, there is a solution & = (ay, ..., a,) € A” of f(@) =0 itf
there is & solutlon mod M for all maximal ideals M of 4. Binee it iz shown
in [3] and [4] that o (k, GF(p°)} = GF(p’), we need only consider M/
of degree ¢ > ¢,. The stated comhtmn in order that a be in J (X, 4) A) follows,
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as does the bound w(k, 4)<C 8(b). If iz shown in [22] that §(b) < k. Thé
bounud #{k, 4) < &(b) € & is proved similarly by considering polynomials
of the form

fe=abd . daf-al, — .~ —a.
I’iopmmon 2 has the following two extensions to rmgs R such that

= {0k

PROPOSITION 3. bSuppoae pR = {0}, g eJ(, B) and thet [ is an ideal
of B containing ¥ —r: 5 € R} for some b> 0. Then

(a) ok, R) < e(b)+o(k R, I+g) <k +o(k, B, I+g);

(b) (k, RY< 8(8) 10(k, Ry I -+ 0) < ob-wo(h, B, L +g)if L g = J(k, R).

Proof. Since vlk, B) < ik, R/ 4ok, B, 14 ¢) and 4 = /T satisfies
the hypotheses of Proposition 2, paxt (a) holds. Part (b) is proved similarly.

Prorosrrion 4. Suppose p 4k, pB = {0} and that f € B, Then f e J(L, B)
if and only if f & J(k, B) mud M for all maximal ideals M of R which are
of degree ¢ for gome ¢>> ¢,

Proof. If p >k, then ¢, == ¢ fov all ¢, and the proposition holds by
Proposition 1. Now suppose p < k. By Lemma 3, there i8 ab 2 1 such that
the ideal I generatcd hy {;r.!"'b—m: x € B} i eontained in J(k, R). The
propositicn now follows on applying Proposition 2 fo A = R/L

Remark, Let
dugree ¢ for some ¢> ¢,.

Tk, B)

3 be the set of maximal ideals M of B which are of
Thern _
=07 [Tk, ®{11))
Ml
where @ B {] B/ is the projection into the direct product of the
el
RIM. 1t 3 is finite (e.g. when R = F,[n]), then this gives an exaet seguence

0= ST (k, B> @ J (&, B/H) =0
MeI -

In the case B = F,[n], let

: ¢
v
(@] —z1)ms+ gy (@) =ng(m” %, )*

=1

be an identity of the type deseribed in Lemma 3. Led

kL n
g= gl md I= 3l -a)F,0]
= =1
Then w (ky Fy[n], I+g)<in and J4g<Jk Fyfn]) by Lemma 3.

Hence
w(k, P [n]) < wik, B,[n}I)-+uik, F,Inl, I+g)
< @) -in <k -in '
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by Proposition 3. Bimilazly,
wlk, Fyln]) <
We now have the following regults from the bounds on £ given In Lemima 3.
PROPOSITION 5. Suppose p | k. Then
(a) the bounds of Proposition 1 hold if ¢ = ¢, for all positive integers
v; ofherwise, p << k;
() ok, Fplnl) < wik, F[w]) < {(E-2p
= p™+1 for aZZ integers .
{¢) w(k, J,[nl) << 4n + 4(2m) <
Sdntkif B =p"+1;
(@) (Kubota) w(k, F,[17) < 3L+ 5 [klog(3%2 — k)] -+ 4
From Proposition 4 we get the following simple condition in order
that fe Fy[n] be n J{& Fyznl).
PROPOSITION 6. Suppose p{ k and f = flog, ..., x,) &
s in J (&, Fp[n]) if and only if
Flogy @ay ..y @) € ik, GF(P)) = GF (™)
, o, € GF(p°).
As one further application of Proposition 4, we compute
ok, p,n) = ﬁil));-jlfpf‘JL]fJ(kg Fo[n]) '

when p ¥ &k {cf. [15], Propogition 3.6, and [16], Theorem 40).
o= S

ProrostrioN 7. If p 1k then
__G_ adn
DI PR

g=1 dle
where p 48 the Mobius function, and the righi-hand sum 4s finite.
Proof. Let I be the set of maximal ideals 3 of F,[n] which are
of degree ¢ for some e>e,. By the remark following Proposition 4,
F ]l (k, F,[%]} is isomorphie to (—}) P[‘II] Tk, F[M]), where F[3]

ip the residue field of M., Now Ik, (:I‘(p”)) G (pP), 8o it follows that

e(bY-+in

< ke,

wink i p<k oend &

<dn+k oand ok F,ln]) < dine(2m)

F, ] Then f

Jor all 0> ¢, and all oy, ...

Leo]

cﬂ’lﬂa

ﬁc’(kﬂ'.p’%) = (@—Gp)g( )

1

" where g(c) is the number of maximal ideals M ¢ T which are of degree o.

. To compute g{¢), let R = F,[#]. Let I Dbe the ideal generated by
{8 —x: v e B}, and let 4 = B/L Then A is the direct sum of its residue
fields, each of which has deglee d tor some d|e. The map M -»M[I sets
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up @ one-to-one correspondence between the maximal ideals 3 of B which
ave of degree dividing ¢ and the maximal ideals of 4. Counting the order
of 4 in two different ways,

GO _ a (CU
p¥ = (p%)=e,
[

Hence p™ = 3 dg{d), so by Mobius inversion wehave g (6) = (1/e) 3 ulejd)p™.

dle ]c
Z (e~

Remeark, B. M. Kubota hag shown in [16] that ¢k, p,n) =
(k*—3k+2)j2 = (p"*—p")j2 if &k = p™+1 for some k. Using Proposition 7,
this result can be extended as follows, Let ¢ be a prime < p, and suppose
B=14p"+ ... +2“P for gome A Then ¢k p,n) = (¢g—1) (ph—

—p™)[g. The main part of the proof is to show that ¢ — ¢, unless ¢ = qd
fDl some di% such that (h/d, ¢) = 1, and that ¢, = 4 for such ¢. The result
then follows on simplifying the expressions which result from Proposition 7.
The detailks are left to the reader.

Remark. If m is & positive integer and p ¥ %, define
ok, ", n) = dimy, G (p™) [nIfJ(k, GF (p™) [n])-

Then the same argnments used in proving Proposition 7 will show

o =n 2o (,—547 ™

The proposition now follows from (%, p, %)

f=1

el=
atle m

(ef. [16], Theorem 40). .

5. The case plk. If p =% then S, = F,. As remarked in Seetion 3,
the map f—=f? is 2 homomorphism of F,[a] onto J(p, F,Ind). Henee
(21) o(p, Fylnl) =1 and J(p, F,[n]) = Fylaf, ..., #2].

Unless otherwise specified, for the rest of this section p will denote
a fized prime such that p|k and P <k Let 8 =ord,(k) and § = §,
= Z/p'?Z. Define -

i e
I8, L., 22

\/cn

T —=

i=0

[

We now define the systems of polynomial identities which will be
wsed in analyzing J (%, 8 [x]).

DEpPINITION 1. Supposs 4 and v are non- negatwe integers. Let F{u,v)

be the set of (0--2)-tuples (f(2,), go(®), ».., galmy)) of polynomials in S[z,]
such that

icm
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(a) 0 =2f(1)e8 [.2,1 y o ,ﬁu], flaey) has dogree v and leading coefficient
prime to p;

(b} f(wl)pf’* gt gy lmy) € (B, Sy, 2] for £ =0, ..., 0.
( ) 2 ('T" S[Jﬁls 372], {f(m]. b-i :13? T‘%(-ﬁl)}} = 7.

i=0 .
In terms of the parameters of Definition I, we have the following
information about o(k, S{x]) fmd J (&, 8{n]).

ey g5) 8 B, ). Let I = F flz)8n),
2 fl@)T and k = Z‘ ‘?’qf (2;). Let @: S[r]->8[n]/L be tke quolient

i=1 il =

PROPOSITIO"*T& Suppose f, Gos -

" homomorphism. Then

(a) ok, S[]) < o(k, B[n/T)+ ik S[al I'+B) < ok, Sn]/T) +-on.
(b T (% STR]) = L@ {d (k, S[n/I}).

Proof. Since f(w,) is & polynomial &7 whose leading cocfficient is
prime to p, and the degree of f{u,) is %, the following is trme. For every
g € 8n] (respectively T) there is a 'unique g & 8] (respectively T
such that g—g’ e I (respectively I') and ¢’ is of degree << u—1 In each
of the variables @y, ..., ®,. From this it follows that Tnl = I'.

Clearly i r = ?(ml, ceey By} € S{n] then #?—r(af,...,a%) e pSinl
A gimple induction now shows that

(22) = {7’ o e 0 for e feES[%]}
Hence J(k, S[n]) = T, since T is an adfll’me group and conbains jp for
fe8n].

We conclude from (22) and Definition 1 (b), (¢) that I'+h = J{&, Sn])
and v(k, S[n}, I'+ k) < vn. Since hed(k, 8n]) e T and InT =TI, we
have v(k, S[n], T+4) = ok, S[n], I’+h). Part {a) of Proposition 8 now
follows from the bomnd

o(k, 8[n1) < v(k, STn1I)+o(k, S[n], I+h).

Since T = ker® and I =I' = J{k, S[»1} = T, part {b) holds.
Remark. Given an element of F(u, ) and a polynomial g in S[»];
a finite procedure exists for computing P (g) and for determining whether g
is in 7. Sinee S[x1/1 is finite, Proposition 8(b) thus gives an algorithm
for determining if g is in J (&, S[n])/L. Similarly, the final upper bound of
Proposition 8(a) is constructive.
The problem of bounding (%, S{n]) now breaks into two parts:
() finding %> 0, v 3> L andf, ga, ..., 9o € S [ ] for which {f, go, ..., o)
e B (u, v), and :
(ii) bounding v(k, 8[n]/1) as a function of (f; gy, ..., gs) € F(u, ).
To accomplish (i) we make some furfher defimtlons o b= 0, let
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S[n]; be the additive group of polynemials g € §[n] which are of degree
-&b In each of the variables o, ..., m,. Let Ty = T'nf[n], and J, =
J(k, 8{n], S[nl), where ¢ = [3/k]. Let T, be the set of polynomials g € 7,
which do not contain any monomial terms of the form af®gf® ... i,
where a,, ..., 4, are non-negative integers. Here T, J, and U, depend
implicitly on &, p and n.

We will first show that there exist integers Aand ¢suchthat T, ¢ U, +
4y for @il b2 0. Then inftegers w and » sueh that F(u, o) £ @ wil
be found as fanections of 1 and £. &

IeMma 5. If A> 0, v20 and ez (h—1) (r-1-h) are integers, then
there ewist non-negative integers ¢ and d such that

(a) @ = e{h—1)+d;

(b} e—d > » =03

{¢) re < a+r+h. _

Proof. Choote ¢/, &' € Z 850 that we have a = (h—1}¢'+ . Let s =
[[r—¢'+dVR]+1, ¢ =¢'+8, d =d —(h—1)s. Then (a) holds. Clemly
htr—c +d& Zhs>r—¢+d, 50 htrzd—dths=c—d>r> 0,
which shows (b). Parti (c) holds by part (a) and the incguality b 47 = ¢ —d.
All that remains to be shown is that ¢ and 4 are non-negative. Since
r+h+dzeand ¢ (A —1){(r k), we have (h—1) (r+-h+d)+d = (h—1) e+
+d =az(h—1)(r+h). Rearranging the first and lagt terms in this
nequality shows that hd = 0. Hende 4> 0, and &0 ¢ 0 by (b)

DesmvrTIoN 2. Suppose v 0 and s> 1 are integers and that s|k
Let

(&) ofsy7) = k(kjs =1} (r +Efs}+r+1—1;

. 6—1 ¢

0 ¢ = k(14 3 [ [ @ +29);

i={ {=0

(e) 2 = a1, (£—%)/2).

LEsA 6. Ty € U4+, for all b3 0.

Proof. For w =0, ..., § define

w

Too = ) (L (8164 .., o108l

=1}

Let T, . = {0}, Bince ordﬁ((}:;i)) =@—4ifor 4=0,..., 0, wehave I, , = 1.

Define 1 = 0, 7, =k and o5 = o(p% 0). If r,, 7; and o, have been

defined for —1<w<i<<9, leb v, =7, +7, 20d 5, = p¥r, -1k, and
- et oy = o(p¥, 1) if w= 0. We will show that ’

(23) Ty, = Jb+,w+Tb+-,ww_1+Tb_,w_1 i bzoy,and 0 <w< 6.
We firgh show how the lemma folows from (23). It is readily verified
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that r,, 7, and o, are non-negative and nondecreasing as w deecreases.
Then induction on 2 in (23) shows that

(24) Ty =TyeSdoy, +Tpy it b3,

The fact that »_, = [ iz readily proved by induction on 8, 50 4 = gy —1.
Hence by induction on b in (24), it follows thut Ty +Tif b= A
Sinee T; = J,+ U,, this will show T, = U, +ody. . Hence to prove the
lemma it will suffice to show (23},

By the definition of T, it will be enough to show that if b 2 Gy
and (P’f,,) (a0 ... 70" ¢ T, . then

(p“) (efrate o e Ty 4Ty o T, .
E 2
Let ¥ = '?F'-*]. Tw_i_ﬁ‘ H@l,...,aﬂ<N, then
. .
Py ey P8, < (B ™) (frw+§£) — P Lo (pY, 1) —rp—1Kh—r,~1

80 (23) holds. Now suppose the a, have been ordered so that a, g = N
and @y gy ey 0, < N.Fori =1,...,tleth = kfp” and a — a,in Lemma 5;
and define ¢; = d and d; = d, where ¢ and d are as in the lemma. Define

:
Y1 =H$~?“;

i=1

i n
s .
Y, = ? Img end 2z = ? l it
=1 it

Now consider
; A S i
25) e = vi+ 3 (F o)+

pip¥ v

“}‘(:w) yic_rw(yaz}pw‘f' Z (ﬂ ¥ (Y22

ik

We have (p’;) o (g P ( ;w) (a5 ... afnP". T8 0 < 4 < Irand s = ord,(4)
we have ord,, ((z“)) = 6—s5 =ord, (( I"S)) We also have the bound
E(N -1y << o(p¥, 1) —Tp—1 < b—r,—1. The following facts now follow
from Lemma. 3:

(252) 1f 0 < i< p® then (f) Y (02) € Ty s
(25b) If p¥ < i<k then (f) ) € Ty
(2¢) ¥ and (g, +ye2) arc iy, |

2 — Acta Arithmetica XXXV.4 -
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We may now réa.rmnge (28) using (2ba), (25b) and (256) to have

ik o
() @ aP” = () 98" 09 € Tty Do+ Do

By our previous remarks, this shows that (23) holds, and fthe lemma is
proved. '
" CoROTLARY. T[T {k, 8[n]) is a finite p-group of order dividing that of U, .

Proof. As shown by equation {22), J (&, §[z]) = T. Lemma 6 implies
that T < U,+J(k, Sn]). Since U, is a finite p-gromp, the corollary
follows.

In analogy to the case p 4 &, we define (%, p, n) for plhand p <%k
so that T/J (%, 8[n]) has order pAern) Tf 9 = & then we define ¢(k, p, n)
= { in accordance with (21).

To now find % and » such that F(u,v) £ @, and to later bound
V{k, §[%]/I) in Proposition 8{a), we need the following lemma. The
proof sharpens an argument which goes back to C. L. Siegel (ef. [21],
[207, p.. 140-141, [22], Theorem 13). For all infegers & and primes p,
define

w(k, p) = max{w(k,Z/p°Z)[é: L< deZ}
and. ' :
w(k, p) = max{o(k, Z[p’Z))0: 1< 6 eZ}.

Lewua 7. Let p be an arbitrary prime and let k be an arbitrary positive
indeger. Suppose 4 = R 4s an additive subgroup of B of ovder p® for some
o e Z. Suppose also that the subset B of A generales A Then every fe A
car be writlen in the forms

(@) f = 2 a,i-”-fi,

i=1
(b) = 3 Fbfy;
i=1

for some a;,b,€Z and some fi,g,€B, where w = [u(k, p)al and v
= [y(k, p)al.

Proof. We prove (a), (b) being similar,

Let {1y, ..-, s =B be a minimal set; of generators for 4 over Z,
define p to he additive order of %;. If 431, let p/i+1 be the index of
the subgroup generated by {5, ..., n;} in that generated by {ng, ...y uur)e
Then since {ry, ..., 7z; is minimal,

{26} 1y -y fgxl and jl—}—...

Furthermore, every fed can be written ag f = @s5+
SOmMe Dy, ..., By 2,

+jz = @a.

. Fmyng for

Let z; = w(k, Z/p*2Z). Then m, = 2 af mod pia for some a;eZ.
=1 . g
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By the definition of j;, this implies

f
+xy a1

Zg
(27) f——-zfz»i?md:m;?]]-;—...
t=1

for some @;,...,2;_; € Z. By induction on d in (27), we conclude that
b

J =X off; for vome ¢, ¢ Z and f, € B and
fe=l
_ _ .
(28) b= M w(k, Z{phZ).

i=1

fieZ ix1, defme m; 1o be the number of j; in equation (26) which
equal 4. Now ("6) becomeq
(29) Zimi =g,

i=1

We may write (28) as

(30) b= >imi(w(k, Zip'2) ).
i=1
It is now immediate from (29), (30} and the definition of u(k
b << au(k, p), which proves the lemma, since » must be integral.
Remark. The bound of Lemma 7{a) is sharp if 4 = B is the divect
sum. of nd copies of Z/p°Z, where w(k, Z/p°Z){6 = u(k, p) and B consists
of those elements of A which equal the identity on one direct summand
and are zero elsewhere. Similarly, the bounds of Lemma 7(b) are sharp
it o(k, Z/p’2)|6 = w(k, p) in the above example.
Remsark. It is shown in [23] that w(k, Z/pZ)

, p} that

<k for all p and %

_In [11], Theorem 4, it is shown that w(k, Z/p°2) < 3k/2 If 1< de 5,

unless k = 2° = p* for some 6> 1, in which case w(k, Z/p°Z) < 4k. T
readily follows from these bounds and direct calcula.twn vwhen k =4 or
8 that

(1) p(k, p) <u(k,p) < b
Equality holds in (31) if & = (p—1)/2 and p is odd. I I8 also clear that
w(k, p) = max{w(k, Z/p°Z): 1< §< 4%}, so that #(k, ») can be readily
caleulated given k and p. Similavly w(k, p) may be easily computed.

We now find bounds on « and o for which Flu,0) =@, If >0,
then T, has order a power of p; let p'® be this order. Let p“® be the
order of U,. Then #(b) and w(b) depend implicitly on %, » and p. We let
1,(5) and. w4(b) denote ¢{b) and wu(b) when n = 2,

Levmva 8. Suppose n =2 and thet T, = U, +J5,; for some fized

for all & and p.
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integers d and e and all b= 0. Let
g =k, 2,2), w= (9—]—1)%2(6)10&—{—(1 and
v = [V’(TG:P)(@(W)“‘P?H (0+1).

Then F(uw,v) # 0 for some w<w—d. In porticular, this fés true for (4, e}
= (£, 1) as in Lemma 6.
Proof. Let b be a positive integer “hmh we will later specify. Define

W(b) ={h mthm{J’UeS[ml,wg]: f=10,1,...

=0
The order of W(b) is p"t'. Define
V(B) = {hp" ' e 8]y, w,]: he W(b), icZ and 0<<i< 0).
Clearly, 1’(&)

 p1).

By assumption, T, o< U,+dJ

" T Since U, has
order p"®, there ave hence at most p*® distinet elements of ¥(b) mod
"prha

If A is an additive subgroup of S{»,, ,], let A" denote the product,

of 841 copies of A. By the preceding remarks, therc are at most p*+Ma@
distinet clements of ¥ (3)* mod (Jy,0, )"
Now let

X(B) = {(hp'wy, hp* N, .., B ) Boe W(B))

so that X'(b) = ¥(5)™'. From our bound on the order of Y (»)’*' mod
(Jb_pf’+d)ﬂ+1: it
(32) order X(b) = p't > plitue

then # =z,
CHF
A;:sume for the momen‘b tlmt (39) holds and that 2, and 2, are as
above. Suppose z = (b p%%y, ..., B m”} and 2, = (Ryp’@ay «.-,y Rp? ) for
gome hy, hy € W({b). Let f = hl—-hg, and let « be the degree off Then f
is 4 nonzero polynomial in 2%, is of degree u <C bp®, hag leadmg coefficient
prime to p, and is such that fp®~iaf eJ,e,, for 4 =0, ..., 6. Hence

1 f, for some 2y, 2, € X (b) and some f, € (Jp,0,4)"" such that

(f, 0, ..., 0) satisties the first two conditions of Definition 1 in order that’

(f, 0, ..., 0) e F'(u, v) for some ». We now show that it satisfies the third
condition as well for v as in the statement of Lemima 8.

Let B = 8[z;, m;] and 4 = Jy0,4 in Lemma 7. By the inelusion
J (k, S = T and our a.ssumptmn on d and e, we have

J(&, 82]) = T = U, +J(k, Si2]).

Assume bp® -+ d > ¢; it follows that the canonical map T +d—>T fF (%, 8[2])
iz onto. Henee p"’z, the order of T/[J(k, §[2]), divides the order of
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(pr L ld Tlence 4 must have order p° for some o<
since Ty6, 5 has order p2®'+9 Tt B =
clude from the lemma that

75(k7 S[S]: {ffj&#£‘”§

< b bp" +d) — @y
{g" =4} in Lemma 7. We con-

N < [pik, ) (b9 +d) — ]

for § = 0,..., 0. Thus if w = bp"-d and v = [p(k, p) (:00) —@al] (41,
we have that (f, 0, ..., 0) € F{u, v). Thiz holds subject to the condition
of equation (32) and the condition bp’+d = e

Let b = (011 us(e); then (32) clearly holds. We now show fhat

. bp®4d > ¢ for this b. Recall that p™® is the order of T7,. Since 0 % p’af,

. 6
plwie U, when 0<i<e and k14, we have that wu,(e)>2 (6—— [—i})

Hence bp°+d > b= u,{e) > ¢ if k= 2. But the lemma holds frivially if
% =1. We conclude that when b = (6-+1)u,{e), there is an f such that
(f, 0, ..., 0) & F(u, v) for sorme u < bp’and o = [p(F, p) {ta(bp° +4d) —pa)] %
¥ {6+1), This completes the proof.

We now produce g hound on 2(k, S[n]) as a function of integers u
and v for which ¥(u, v) # @. Using Lemmas 6 and 8, the main terms
of one sueh bound will then be computed.

Levowa 9 If w0, v =1 and Flu, v}y =0 then

ok, 8[n]) < [wk, p) (1w —1) ok, p, 7))]+on < co.

Procf. Suppose (f, gy, :-. go) € F{u,v) and let I*«Z‘f V8 [l

Bv Proposition 8(a),
(33) o(k, 8Tal) < v(k, S[]/I) +vn.

et @: 8 [n]-S[n]/I be the quotient map. As in the proof of Proposition 3,

. for every g7 there is a unique ¢’ e7T,_, snch that g—g' €. Hence

@(T) has the same order ag 7,_,, namely p™~ . Now by Proposition 8(b),
TF(k, S[n]) is isomorphic to @(T)/P{J(k, S[n])). Sinee T[J(k, S[n])
has order p®®?™ e conclude that @ (J(k, STnl)} =J (& S]/I) has
order p‘-U-#kmn) We now apply Lemma 7 with 4 = J(k, S[a}HI)
and B = {¢*: g e S[r]/I}. It follows that

vk, SR} < [plk, p) (Hu—1) —p(k, p, n))]

go the lemma holds by (33).

Remark. The argument of Lemma 9 provides a means of computmw
w(k, p, n) if the order p* of J(& S[al/I) can be computed, sinee a
= $(u—1)—¢(k p, n).
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Remark. The functions £{b), &(B), w(b) and u,(b) arve computed to be
[}

(= OO+ + ) ([ =] +1)
(34a) ta(b) = (yp—0) (b +1) +Z([ ] )

b "
(35) 1(B) = 18—, (H +1) ,

(34) () =

b 2
(352} g (D) = 15(b) — v, ([‘"7‘;] +1) :

An upper bound on v(k, S[r]) may now be computed from Lemmas 6, 8
and 9, the bound (&, p) <k of equation (31), and the trivial bound
cp(kgp, n) 2 0. Sharper bounds may result if Letier Jower bounds on
p(k. p, ) are used, or if more it known concerning the parameters 4, ¢, »
and p for which Lemmas 8 and 9 hold. Ultimately one can return to
Proposition 8{a) and try to find better bounds on v(k, 8[n]/I). Note
that 8[u]/I is Artinian, and so a finite produect of Artin loeal rings, to.
which Lemmia 1 applies.

We now compute, in terms of ¥, » and 0, the main terms of an npper
bound on @{k, S[al). '

Let ¢ and A be as in Definition 2, and let d, = [T (L-+27%), Then

8=0

Eh—1 = ? ﬁ(lﬂo <Pt ”"@(ﬁ“ﬁ'a)( Hi" )

i= 0 §= g=i+1
o0

<SH-Wg i+ T Y p) =

, s=max(f—-1,1}
Note k' = 0(27%. Sinee #> 0 has been assumed, it follows that
| £ (@402 ) Hee,

(d1+0(2‘b)) ro-ne, |

From this and Definition 2,
A (dyj24-0(27 %) ROTIR,

. It iy shown in [9], Theovem 6, that ok, Z{p°2) < 2k for all positive &
and 4. Now

yplk,p) = max{@r(k,z/];ﬁz)/a:. 6= 1},

ok, ZIP D)6 < B <S8 ki0 i 6 =1,..., 0.
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If 6> 8 then v{k, ZpZ) < 2k/(8+1), so for all & and p,
p(k, p) < 2R/(6-+1)-
Now for b > 1 we have from (34} and (35) thﬂt
1]
w(b) < t(B) < 2(b 1)+ Z ([};—] +1)R< (b - By(2ntt —1yj(2" —1).
i=1

We now bound the #, » and # in Lemma 8 when (4, e) = ({, ). From
the above,
w < ([d3TA2+ 027N (14+ 15"
and
_ v < (@ 243216 + O(27%) (§ +- 1)
If e w—{ < w—k, then
2k e L
p(k, pit(u—1) <( 1 1)(_55“?1_“)% -
There now resulis from Lemma 9 the following bound on v{k, S[n]).
ProrostrIoN 10. Suppose plk and 0 = ord (k). La

=]

dy = X (LF277) <478, dy = (0+D)HTA2 and
§=10

dy = (B+1)°d% 243 /216,

Then _
2% gn+t 1 :
'u{k,S[%])g( = 1)( 5T )exp{n((6+ﬁ)logk+logcla+a}}+
| +mexp {26 +13)loghk+logd, -+ &}
where & = 0(27Y, the smplied constant being absolute.

6. End of the proofs. We now prove Theorems 3 and 4 of Section 3.
Tet B = Zn] in Lemma 2; we have

(36) {3, Z[]) < < o(3,Z[n]/6Z [n])
and

@37 ok, Zn]) < o
Since Z[n]/yZ[n] is isomorphic top@kﬁ'p [n],

k,Z EM/?Z [n]) 41 -+min(k*(3log kb +5.2), 257%).

Temma 1 implies

(38) v(k, Z[nlfpZ[nl) = supv(k, S,[n]) i & is odd,

and <

(39) . n(k, Za1/yEIn]) = (.1 - %) fo(k, 8, () 400k, 8,0])
e it & is even.
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Theorem 3 now follows from (36)-(38) and the bounds on v (%, §,[r])
given in Proposition 5 and equation {21) of Section 5. Similarly, Theorun
4(a) follows from (37)~(39), (21} and the bomnds on v(k, Sy[n]) given
in Propositions 5 and 10. (In Proposition 10, one makes stmightforw&rd_
extimates using the bonnd 6 < logk/logp < logkflog2.) Theorem 4(b) is
shown in the appendix.
Ve now smnmarize what hag been shown coneerning J(k, Z [n]).
The exact sequence

O yZ[n]—d{k, Z[n])—~ D J (&, 8, [n])—=0

p<h
relates the structure of J(k, Z[n]) to that of J(%, 8,In]) a8 p ranges over
primes < k. Let p <k be fixed, § = ord, (k) and 8 = §,. Define
T = 51195‘ S’[fn o'

Then T/J (k, §[n]) is a finite additive group of order p#&a.m),

¥ ptk, then § = F, and T = F, [n). Let I be the set of maximal
ideals M of I [n] such that J(k, F,[n]/M) 5= F,[n]/A. These M are
those of degree ¢ for some ¢> ¢,. Then we have an exact sequence

0 S+ (k, F,[0])> @ J(k, F,[n]/3)~>0.
It F,[5]/M = GE(p), then e
J(k, F,[n]{HM) = GF(p).

I p =Fk then § = #, and the Froebenins map f—f? is a homo-

morphism of F,[n] onto J{p, ¥,[»]). Henee
J(p, Fpln]) = Fpiaf, ..., al] =

It p # & and plk, then one ean counstruct an ideal I of 8[n] 'such
that S[n]/I is a finite ring and

J{k, 8fn]) =T ~d~ ( (k; 81n]/T))

where 95 8[n]=8[n]/T is the quoticnt homomorphism. Here S[n]/T is
a finite direct sum @ K, of finite Artin loeal rings R, and
i .
J(k, 8[n]il) = @ J (%, R;).
L3 .
Let 5(k, n) denote the supremum of #(k, R) over finite Artin locat
" rings B such that {i) B is & homomorphice image of Z[n], and (ii) g*2R =0
for some ¢ 5= & such that ¢| . For each such R we have v(%k, R) < v (k, Z [n])
since B is' a homomorphic image of Z[n]. Hence 5(k, n) < v(k, Z[n]). If
g % k and ¢k, then by Proposition 8 and Lemma 8, '

ok, B[n]) < v(k, 8,011 +,gn
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for some &, , € 4 and some finite quotient ring §,[#]/T of §,{n] Writing
8, [/ as the divect sum of {initely many funte Artin laeal rings, we
h‘we from Lemma 1 that

o(F, 8,1 D) < Bk, n) i % is odd,

and

»(k, Sa[ia]/l)gzi(k,n) if & iz even.

From Proposition 5,

olk, Syl <eppm it p1E,
and by (21), _
vip, ) =1 # p==%.
From these bounds and (37)—{39) we have
(40) ok, n) <ok, Z[n]) < B{k, ﬂ:.)-:eskﬁ» i & iy odd,
BE, )< vk, Zn) < Bk, n)Fegn U kit even

where g, is a constant which depends only on k. (Upper bounds for g,
could in fact be given.) Thug for a fixed %, the vate of growth of o(k, Z[n])
with # is closely related to that of 5(%, »). In a Iater paper we will consider
the consequences of this to V{(k) = supwv(k, Z[n]), one of which will be
that V(29 = oo if §2 2. .o
Appendix. The case k = 4.
By Lemma 2(a) and Lemma 1{b) we have
(41) v(4, Z[n]) < vi4, S[n])+o(4, Fyln])+8
where 8 = Z/8Z. By (12), there i3 an exact sequence
(42) 0 24 Z[nY—J (4, Z[n]) =T (4, 8[n]) & J (4, Fy[n]) 0.
We now consider J (4, E) and »(£, B} when R = S[n] and R = Fy[anl
Oase 1. B = §[a]. The following identities hold mod8:
(43) 4(at 2ty = 2(1+ o+ oty +ay)t — 2 (02 + 2y —ay) —
— (1422 + oy + (L by +aty)t—
— (@t — (et fay) a2ty 1)+
+ g+ ay) — (2 + Ny +1)%

— 12" = 200y — (s 0%y (L+ oty +
+d (ot ) @ty oty ).

(43) _ (@t ot)y* = (@2 + ()"
Tet T = S[af, ..., w1 +28(a, ..., G31+48[n), I = Z(JB a8 [n],
D = 8[n]/I and let. @: S{n]—=D be the quotient hunwmmphmu Then

(44)  2{z®+aP)y?
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from Proposition § and the identities (43)-{45) we have thab

(46) w(4, 8n]) < v(4, D)-+30 %,
{47) ' J(4, 8] = Tnd T4, D)}

Now I? is the direct sum @ D, of its 1u( alizations at primes p of D,
Hence ’
(48) . (1 D) = DI, D)

®
and by Lemma 1(b),

{(19) v{4, D) < 2maxoe(4, D,).

»
There are 2" primes p, corresponding to the homomorphisms of D into F,.
Lit p be a fixed prime of D. If » e S{»], let " denote @(z) and let
7 denote the image of #' under the map D-=Dp. Since the residne field
of pis By, either 2’ ep or &' —1ep, Let I3 bethea seb 0f £ =1,...,7n
sneh that &) e p, and let I be those 4 auc-h that @;—1 ep. If ¢ e I} then =
is nilpotent, so B4} = 0 implies ¥} = 0. Similarly, 2} = —1 if ¢eI}.
Since the map ])~>l) is surjective, the order of D, is honce < 8", But D
has order 8% and thozn are 2" prime ideals p, so D Iras order 8. From
this we have that
(50) D, =@ E &R,
. wry wrd
where the tensor products are over 8, B, is the ring 8[#]/#*8{x] and &,
ix the ring S[e])(z*-+1)S[x]. Note that B, and R, are not isomorphie,
sinee 4? = 0 for » in the maximal ideal of R,, but (L+2) =0 % (1+2)*
in R,.
Let T, be the image of T under the map S[n]-D-~>D,. By (47),

{51) T)I(4, S[n]) ~ G—) Told (£, De)
the sum being over the primes a of D We now consider T,/ (4, D,).
For ¢ eI, let w; = =, and for 4 e [} let u; = o, —1. Then eac h %;
y Uy

is nilpotent, the u; generate the maximal ideal of Dp, and 1, %, ..
generate D . We also have

(52) T = 80w, ..., w21+ 2800}, .. wl]+48[ug, o0y w,].

Let I, be the ideal of Sfn] generated by {(uy, ..., u,). Consider the
mod8 identities
(63) 4oy + 4oy +day? +dady? = (@-+y)' o'~y — (1 Lay)* + L+ (wy)
{54) : 6m3y2+4fs3y.-}- dwy* = (@ +y) —a* —y',
(55) 404 622 A = (L4-a) —1—at.

1

60 o(4, Fy[n])
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If  and y are nilpotent clements in I, then by induction on the nilpotency
of ¢ and y, (53) implies that 4ry EJ(tL _D ). From (34) and (55) we now
have that :

(56) ifg, 2f*3, AfL2feJ(4,D,) it fgel,.
From {52) and (36) we have that 4%,, ..., 4%, generate T, mod J(4, D,).

fi =]

B n
I claim that }'@,4%; e J(4, D,) and a; € § imply 4a; = 0 for all i. For
t=1 .
it say 4a; 50, then 4%, e J(4, D,). Now (50} implies 4w eJ(L, By) or
4z € J(4, E,), which jone shows divectly not o hold. Hence 7,/J(4, D,)
is a vector space of dimension » over F,, with basis 4%,, ..., 4%, . From (51)
it now follows that 7 /J (4, STn]) is a vector speec of dimengion #2" over F,.
Hence
) pld, 2, ny = n2"™
We now bound o(4, Ii,). We have
3T = 28[a3, ..., )]+ 48[, '--aa';i]!

and if fla}, ..., #)) e S[#3, ..., #.] then

4f :ﬂ%i e 'rn} = ‘J(l'i_f{rli - n)} *_‘)w?,f(‘];]’ e i]{!11)4“

Hence 27, < J (4, D) and »{4, Dy, 2T,) < 6. Xow T,/2T, is of dimension
4" over Fo, so J(4, _Dp) 2T, is of dimension 4" —n over Fz Hence every

—pn
fed4, D) equals Y g;+h for some g; € D, and some b e 21,. It follows

ie= 1

that
(57) - o(4, D) < & 46,
In & later paper we will make a more detailed study of (i, i),

Now from (46), (49) and (57) we havc
(58) o{4, S[n]} < 2(4" —n) 112 4-30n.

Case 2. B = F,[rn]. In the notation of Proposition 5, we have ¢ = ¢
for all pomtwe integers ¢ except ¢ = 2, in which case ¢; = 1. Let J be
the set of (9"--3")/2 maximal ideals M of Py[n] such that J2/if is iso-

morphie to F, (cf. the proof of Proposition 6), Then by the raarks fol-
lowing Proposition 4, we have an exact sequence

(59) 0 () S (4, Fa[n)) > @ T (4, Fy[nlj )

where J (4, Fyin]/M) =~ F, if Me3.
By Propositions 7 and 5 we have

p(4, 3, n) = dimy, Fo[n](d (4, Fyln]) = (4" ~3")/2

L 4n+1.
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Summary. The analysis of J(4, Z [#]) Is reduced by the exact seqnence -

(43) to that of J(4, §[»]) and J (4, F3[n]). By (47) and (48), the structure
of J{4, 8[n]) is determined by that of J(4, D) when D, is a finite Iocal
ring of the form (50). The struecture of J(4, F [%]) 18 given by the exact
sequence (59). We have ¢{4, 2, #) = 22" ¢4, 3, n) = (8"—3")/2, and by
{41), (58) and (59),

p{t, ZTn]) < 2 (4" —n) + 34 n+21.
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