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Introduction. A polynomial f(#) = aya”+aa" '+ ... +a, with
integer coefficients is said to be “with affect” if the Galois group &, of
its splitting field, considered as & permutation group on the roots of f(w),
is & proper subgroup of the symmetric group on % letters. In this paper
we improve previous upper bounds for the number of monic polynomials
of degree 3 with affect. More generally, we also consider trinomials of
the form

Flz) = az®-ba* 1+ ¢

and count the number of these whose Galois group is & subgroup of the

‘alternating group om n letters.

I. Preliminary lemmas. In this section, we obtain an upper bound
for the number of integer points on ellipses and bounded sections of hyper-
bolas. The estimate also follows from a vesult in Lang ([10], Theorem 103,

LeMMy 1. For an integer d == 0, the number of integer solutions (&, ¥)
of

wr—dy: =m with |z, lyi< M

is €, m" for d <0 and < (mdM) for d > 0, for each s> 0.

Proof. We may assume d is square free by absorbing into y any
square factors. Let a®-— db* = m. Then the integer

(L.1) a=a+bVd

of the quadratic field & = Q(ﬁ) satiplies Nygga =m where Ngga = ai
and @ = a—bVd. The principal ideal q = (o) then satisfies N(a) = m.
Thus, each integer point (4, b) on x*—dy* = m gives a generator of a prin-
cipal ideal g with Nq = m. The number of such principal ideals is <, m*
for each ¢ > 0. (See, for example, Narkiewicz [12], p. 143.) For each such
prineipal ideal, therefore, it remains to estimate the number of generators «
of form- (1.1) with a, b € Z and [al, [b] < M.
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Case 1. For d < 0, K is an imaginary quadratic field, and so there
are at most six generators for each principal ideal since K has at most
six units. Therefore, for d < 0, there are <, m° integer solutions (z, ¥)
of v — dy? = m. :
Case 2. For 4 =1, we are counting the number of integer solutions to
m o= 2*—y* = (z—y}(>eLy). Since thiv gives a factorization of m, the
number of such solutions is < =(m) <, m® Sothe bound of the lemma holds
in this case. '
Case 3. For d > 1, K is a real quadratic field. Fov each such 2 in (1.1)
we get

la| < M(14+Vd) and |a < M(1L+Va).
Binee |oa) = 1N gal = 1, it follows that
1 _
YRR < lal < M1 +Vd)
o1
(1.9) Hogal| < log {M{1+Va).

It a4 is one generator of g of the form (1.1) then each generator is of
the form a, = #'q (» = 0, =1, £2,...), where » is the fundamental
unit of K. (We note that if d = Imod4, then all of these 7" gy May not
be in Z[d].) Tt follows from (1.2) with ¢ = a,, that

[vlogn +logay|| < log {M (1 +Vd)}

or
o Joglel | log{dr(1 +Vapn _
logn logn
- 1 Md
This shows that the integer » belongs to an interval of length < “Eigu
og
and so the number of such o, is <e (1) .
logx

Thus, to obtain the estimate in the Iemma for d > 1, it suffices to
Prove the following fact about logy.

Prorostrion 1. If o is the fundemental unit of a real quadratic field K,
then logn = e > 0, where ¢ is a constant independent of K.

Proof. We show that » is not close to 1. A quadratic unit 7 satisfies
an equation

"—andl =0
with & € Z, From this, we get

& =nL7.
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For 7 elose to 1, this would give @ close to 2 or 0. Since @ is an integer,
this would force ¢ =2 or a = 0. We would then have n =1, a contra-
dietion. Thus, % is not close to i. Hence, for any quadratic unit n>1,
and, in particular for the fundamental unit, we have logy > ¢, where ¢
is & positive constant. This proves the proposition and hence the lemma.

Remark. It is easily seen that the estimate {(md¥)® in Lemma 1
also holds if  and y are < M* for some I 1. In that case, the constant
implied by < depends upon I as well as &

Lizvwa 2. If Q(x%, y) is o quadratic polynomial with integer coefficients
of absolute value < N and nonzero discriminant, then there are <, (MN)
integer solutions (v, y} of Qlz,y) = 0 with =), ly] < M.

Proof. Write

Q{z, y) = ax®+boy +oy*+dz+ey+1.

Tt is easily seen that the eondition @{z, y) = 0 can also be written as.
(1.3)
where D =Db*—dac, o = —Dy+2ae—bd, ¥y =2ar+by+d and
m = —D{(d*—4af)+{2ae —bd)*. Bach solution {m,y) of Q(z,y) =9,
with |z}, ly] < 2f, gives a solution (2, ') of {1.3) with [#'|, iy'] « U N By
Lemma 1 and the preceding remark, the number of such integer solutions
of (1.3) is <, (MNm) <, (MN).

We also remark here that the estimate (M NY in this Temma holds
if # and y ave < A for some I =1 and if the coefficients are < N* for
some k=1, -

25— Dy’ =m

2. Cubics with affect. We now apply the results of Section 1 to the
following problem considered by van der Waerden. Dencte by R, (N)
(respectively ¥_(#)) the number of monic nth degree polynomials |

flo) =g+ 5" .., +a,
with integer coefficients bounded in- absolute value by N, for N3 1,
which are reducible (Tespectively, which are with affeet). Clearly R, ()
< H,(N). Van der Waerden [17], and later Speeht [14], showed that

R, (N) <« N*? (n = 3)

2.1) < NlogN (n =9).

For #,(N), van der Waerden [17] gave the estimate

3
" Toglog NV ith ¢ — ———
B (N) <N ~ with ¢ 6in—2)"

a,hd he s\uggesteﬁ, based on a partly heuristic argnment for = .= 3', that
E(N) <N (n>=3). : '
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Knobloeh [83, [9] improved van der Waerden’s estimate for E, (W) to

BN Ni—e Fith ¢ = ———,
() € N with ¢ Bnnhe

Using the large sieve in several variables, Gallagher [3] obtained
B (N) « N logN.
In this section we show that
' By (N) <, N***

for each &> 0, and also obtain nontrivial upper bounds for the number
of certain fourth and fifth degree pelynomials whose Galois group is a sub-
group of 4,, the alternating group on n letters.

THROREM 1. Let I(N) be the number of irreducible polynomials iz
= ap* +ba?f-ex+d (@ = 0) with integer coefficients bounded in absolute
value by N, for ¥ > 1, with affect. Then, for each ¢ > 0, we have

I(N) <, N
Proof. The discriminant D, of f(#) equals
Dy = b2e* — dact — 455 d — 2Ta2d? - 18 abed.

Since f(w) is irreducible, G; is tramsifive and therefore equals A,, the
alternating group on three letters. Hence {Jacobson [7], p. 91) D, is the
square of a rational integer. This condition gives the equation

(2.2) b2t dae® —4b3d —27a2d2 - 18 abed =— 22
for some 2z ¢ Z, ' '

If one thinks of «, b, ¢, 4, and 2 as variables, then the number of in-
teger points (a, b, ¢, d, 2) satistying (2.2) is = 27 (N). Therefore, it suffices
to obtain an upper bound for the number of integer solutions of (2.2).

Now, (2.2) is o quadratic equation in ¢ and z:

(2.8 2702d% 4 (46° — 18 abe) d--4ac® — b2t 4-2° — 0.

If we fix a, b, and ¢, then, by Lemma 2, the number of integer points
(dy2) on (2.3) Is <, N, for cach & > 0. Therefore, for ¢ > 0, we get
' I <, Y Nt < N
CANUIRT R -
TamoreM 2. For each & > 4, we have'

E]

By(N) <, N,

Proof. We may assume that f(z) is irreducible since R,(N)< N*
by (2.1). Therefore, @, = 4, and 1), = 2* for some z € Z. So letting o = 1
in $he previous proof, we get the result,
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We note that the exponent in Theorem 2 is nearly hest possible hecause
if @y = 0, then f(2) is reducible. Hence a lower hound for B, (V) is ¥*
This approach of using the discriminant and counting integer points
on ellipses does not seem to work to estimate E,(¥) i » > 3. Nevertheless,
it does give nontrivial estimates for the number of certain fourth and
fitth degree polynomials f with &; a subgroup of the alternating group.
THEOREM 3. The number of pelynomials fla) = av'<- bat— o -+ d with a,
bye,deZ,a #0,ial, b, e, di< N, and G, < 4, is <, F*° for each > 0.
Proof. Using the formula for the diseriminant of f (van der
Waerden [18], § 58) and the fact that it is the square of an integer, we get

where p = 4ab® —144a2pd and ¢ = 128a%h%d% — 16ac*d —2564%® and ze Z.
This equation is a quadratic in ¢* and 2. As in the eubie cage, we count
the number of integer pairs (¢, z) on this ellipse, for fixed a, &, and 4.
As before, the number of such pairs is <, ¥ for each ¢ > 0. Then, we sum
this nnmber o¥er a, b, and d to obtain the stated upper bound.

THEOREM 4. The number of polynomials f(z) =o'+ bo*+evrt-d
with by ¢, d€Z, b, e|, |d| <N, and Gy 4, is <, N*** for each &> 0.

Proof. Put ¢ = 1 in the proof of Theorem 3.

THEOREM 5. The number of polynomials f(r) = o +bx®+owt+d with
b,e,deZ, 1b), lel, || < N and Gy, < A, is <, N*7° for each > 0.

Proof. The discriminant of this guintie, which can be found in Cohn
[2], is & quadratic In d2. Setting it equal to the square of an integer, we have

55(@?)2_!_?&2_:_q o= 2

for some zeZ, where p = L0BH --2000bc2--900b% and ¢ = 168%¢% —
—12852%¢* +256¢°. Ag in the cubic and gnartic cases, we connt the number
of integer pairs (d, 2) with |d| < ¥, on this hyperbola, for fixed b and e.
It follows from Lemma 2 that the number of such pairs is <, N° for each
g = 0. Summing over & and e, we obtain the stated npper bound.

3. Trimomials, Tn this section we obtain a nontrivial apper bound
for the nmumber J, (M) of trinomials f(x) = aa™-+-ba*+¢ with n > k> 0
and a = 0 which satisfy the following conditions:’

(&) @, byeeZ and la], |bl, je] << M, for M =1.

(b} The Galois group of the splitting field of f(«), considered as a per-
mutation group on the roots of f(z), is a subgroup of the alternating group
on n letters. ‘ '

We show that J, (M) <,, M*** for ecach &> 0.

The formula for the discriminant of f(z) was given previously by
Heading [6], Goodstein [4], and Swan [15] in the monic case, and by
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Artin ([1], p- 1530), Samuel ([13], § 2.7), and Masser [11] for the case a = 1
and & = 1. In the general case, the formuia takes the following form.
Trinomial discriminani formaula. Let f (m) = az"+bo* L ¢,
7>k > 0. Then
{8.1) Dy=(—-1
where d = (n, k), n = Nd, and & = #&d.
Using this formula, we obtain the following result.
THEECREM 6. For each 2> 0,

& # 0,

}in(nwl,l g F 1 g1 (ﬂi\ aEoN-E +(— 1)1\'—1 (n— k)N—KkaN)d

J}’G,n (M) <S-ZI’IZ+S 4

Proof. We may assume that neither a, b, nor ¢ equals zero, sines the
number of such trinomials with cither 4, b, ore = 018 < M=
From (3.1),
-Df . :l:a:n_k_lﬂk_lEd

“1)%(“_1): d = (n, k),

B =nVaE N E

Wher& + = N =wnjdy, K = kfd, and

(3.2)

1YY —By¥ - EREpY,

Case 1:d odd. If 4 is odd, then for some Fe Z[a, b, ¢],

(3.3) P20 = LoV ETE R,

Under the present hypothesis that G, < 4, it follows from Galois theory
(Jacebson [T], p. 91) that D, is the square of a ratiomal integer. Hence,
the same holds for the right-hand side of (3.3).

(a}) % even, k odd. In this case W is even and K 18 odd. Therefore, it
follows from (3.3) that +F = 22 for some 2 e Z, Explicitly, from (3.2),
this becomes

i ¥ KcN— _Zzi(ﬁ__k)N~KkE(ij?.)2,
where 4 = (—1)"" Now for fixed o and ¢, we see that
# =2 and y =p"
is an integer solution of
m = p®—dy?
where m — +#Y0EF gnd 4 — Tin
The number of such integer solutmns is <, M* by Lemma 1. It
therefore follows that

el <, 2 M <, MO,

lal, Jel<cd

k)N_KLK
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(b} » odd, % even. Here N is 0dd and K is even. As in (a), it fellows
from (3.2) that LeF = 2* for some 2z e Z, or, explicitly,
i{?E—HIf-)N_KkaNG — 2 —;—,3\' oV Bl (al\'/ﬂ)‘-&

where £+ = {—1""1, XNow by fixing & and ¢ we see that

&=z and y=a""
is an integer solution of
m = . —dy*
where m = L (n—k " FEED e and d = LaVedET

The vest of the proot is identieal to fhdt for {a) except that we sum
over band e.

(e} n odd, & odd. It follows easily frem (3.1) fhat the diseriminants
of fl#) = a@® = ba* L c and g(x) — er® b F L a ave equal. We also note
that if & is odd, then n —7% iz even, if # is odd. Therefore (¢} follows from
(b} by interchanging a with ¢ and % with {(#n —%) (i.e., by applying (b}
to glr)).

Case 2: 4 even. 1 4 is even, then for rome ¥ e Z[a, b, €],

F2Dy = Zac
and so
{at+er—

for some z € Z. On fixing a -+ ¢ there ave <, J° values of @ — ¢, by Lemma 1.
Hence there are <€, )'"° values of {a, ¢) and therefore <, M*T° values
of {a, b, e), as required.
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£-estimates in lattice point theory

by

o

| Borusrav Divis|

i
Let Qu) = Qluy, #e, -0y 1) = X ey be a positive  definite

i,i=1
quadratic form in # 2= 2 vaviables with resl svmmetrie eoefficient matrix
of determinant D. Let b = {b,, ba, ..., B,} by a asystem of real numbers
patisfylng 0 < B, <1 (I =1, 2, ..., 7). For » > 6, lef us denote by Ag{b; x)
the number of latfice points m = (wy, Ny, ..., #,) With integral coordi-
nates my (I = 1,2, ..., ) satisfving the inequality @(m+ b} < &, that is

dglbza) = N 1.

Gt Dy
Geom etrically, the ellipsoid §{m--b) < 2 has center af the point —5
Obviously, d,-(b; x) is asymptotically equal to

T:f}'a mr}fz

Tolbsz) = Vylo) = ———
e\% ) Q l’.DP(i—ﬁ‘—f—l) r.

the volume of fthe ellipsoid Q(u-+b) <o, which is clearly iiidependeut
of b. Let us put
Polb; w) = Ag{d; »)— Vyla).

Since the form {) and the center — o will be considered fixed, we shall
pimply write A(w), T{z) and P{x) instead of Ay{b;x), Vob;2) and
Pgib; x). We shall study the fnnction P(z), and more generally

1 o
= — | Plpym—yidy 1 . Pylz) = Pa).
P,(a) T@Hﬂﬂmm yeidy  for >0, Pylw) =Pla)

The functions A4,{#) and V,{#) ave defined analogously. Finally, let us

put’ '
K

M () :fPﬁ(y)dy for

[}

020, M) = Hya)



