On a paper of Baker and Schinzel

by

D. R. HEATH-BROWN (Cambridge)

1. Introduction. Let \(D \) be an integer, positive or negative but not a square. It was shown by Baker and Schinzel [1] that every genus of primitive binary quadratic forms of discriminant \(D \) represents a positive integer, prime to \(D \), and less than \(O(\varepsilon |D|^{3/4 + \varepsilon}) \), where \(\varepsilon > 0 \) and \(O(\varepsilon) \) depends only on \(\varepsilon \); and they conjectured that in fact the bound could be replaced by \(O(\varepsilon |D|^\varepsilon) \). The object of this paper is to prove the following sharpening of their result.

Theorem. Every genus of primitive binary quadratic forms of discriminant \(D \) represents a positive integer, prime to \(D \), and less than \(O(\varepsilon |D|^{3/4 + \varepsilon}) \).

Our theorem may be used in place of the result of Baker and Schinzel, in the work of Möller [4], thereby improving his results somewhat. In particular it follows from our theorem that the smallest prime which splits in \(\mathbb{Q}(\sqrt{-d}) \), but does not ramify, is less than \(O(\varepsilon |D|^{3/4 + \varepsilon}) \), where \(D \) is the discriminant of the field, and so all the “numer idonei” of Euler are less than \([2O(\varepsilon)]^{2\varepsilon} \), for any \(\varepsilon \) with \(0 < \varepsilon < 1/4 \). Thus if \(O(\varepsilon) \) were effectively computable then all the numeri idonei could in principle be explicitly determined. But unfortunately, as in [1], the constant \(C(\varepsilon) \) is ineffective; this is due to the use of Siegel’s lower bound for \(L(1, \varepsilon) \) (see [5]).

Our improved bound results from the use of estimates of Burgess [2] in place of those of Burgess [3] as employed by Baker and Schinzel [1]. Apart from this our argument follows that of [1] closely, but there are two further differences; the first involves the employment of a modified path of integration and the second involves the replacement of a finite sum by the corresponding \(L \)-function. The latter change is not in fact essential but we believe that it leads to a more elegant exposition.

I would like to thank Professor A. Baker for his help in the preparation of this paper, and also to thank the Science Research Council for their financial support while I was engaged on this research.

2. **Bounds for \(L \)-functions.** In place of Lemma 2 of [1] we prove the following.
Lemma. Let \(\chi \) be a real character with modulus \(k \) and conductor \(f \). Let \(r \) be an integer \(\geq 2 \) and let \(s > 0 \). Then we have
\[
L(s, \chi) \asymp |s|^\frac{f(4r)}{2} k^s
\]
where \(\Re(s) = 1 - \frac{1}{r+1} \), and the implied constant depends on \(r \) and \(s \) only.

The bound in this lemma could be improved by an appeal to Burgess [3]. However the improvement would not result in a sharpening of our main theorem.

We prove the lemma first in the case when \(\chi \) is primitive, with modulus \(k \). If \(k \) is 1, \(L(s, \chi) = \zeta(s) \) and the lemma follows from a basic estimate in the theory of the Riemann zeta-function (Titchmarsh [6] (2.12.3)). We now assume \(\chi \) is non-principal. We define
\[
S(u) = \sum_{n \leq u} \chi(n).
\]

By Burgess [2], Corollary to Theorem 1, we have
\[
S(u) \ll u^{1-(r+1)/2} \log^{(r+1)/2} u.
\]

Also, by the Polya–Vinogradov inequality we have
\[
S(u) \ll k^{1/2+\epsilon}.
\]

In the identity
\[
\sum_{n=1}^\infty \chi(n) u^{-s} = s \int_1^\infty S(u) u^{-s-1} \, du
\]
we use the estimate (1) for \(1 \leq u \leq k \), and (2) otherwise. Then
\[
L(s, \chi) \ll |s| \left(\frac{1}{2} \int_1^k u^{1-(r+1)/2} \log^{(r+1)/2} u \, du + \int_k^\infty u^{-1-(r+1)/2} \log^{(r+1)/2} u \, du \right).
\]

Since \(\Re(s) = \sigma = 1 - \frac{1}{r+1} \), and \(r \) is fixed, we deduce
\[
L(s, \chi) \ll |s|^{(r+1)/2} \log k + k^{1/2+1/r+1} \ll |s|^{f(4r)/2+\epsilon}.
\]

This proves the lemma for primitive characters.

Now let \(\chi \) have conductor \(f \), and be induced by \(\chi_f \), a primitive character with modulus \(f \). Then \(\chi_f \) is also real, so that
\[
L(s, \chi) \ll |s|^{f(4r)/2+\epsilon}
\]
for \(\Re(s) = 1 - \frac{1}{r+1} \). However
\[
L(s, \chi) = L(s, \chi_f) \prod_p (1 - \chi_f(p) p^{-s}),
\]
where the product is over prime factors \(p \) of \(k \) which do not divide \(f \). Then
\[
\prod_p (1 - \chi_f(p) p^{-s}) \ll \prod_{p \leq k} 2 \ll k^\epsilon,
\]
whence
\[
L(s, \chi) \ll |s|^{f(4r)/2+\epsilon} k^s.
\]

This completes the proof of the lemma.

3. Proof of the theorem. Following Baker and Schinzel [1], \(\S \), we define \(D = e^r D_0 \), where \(D_0 \) is a fundamental discriminant, and let \(\chi_0 \) be the principal character mod \(D \). We denote by \(U \) the set of generic characters for \(D \), and by \(T \) the set of generic characters for \(D_0 \). \(T \) is a non-empty subset of \(U \). If \(S \) is any subset of \(U \) we write
\[
\chi_S = \chi_0 \prod_{\chi \in S} \chi.
\]

Now consider a genus determined by the values \(\epsilon \) to be \(\pm 1 \) to be taken
by \(\chi \) in \(U \). The values \(\epsilon \) satisfy
\[
\prod_{\chi \in S} \epsilon = 1.
\]

On the assumption that no positive integer less than or equal to \(x \) and prime to \(D \) is represented by the genus, we have, as in [1],
\[
\sum_{S \subseteq U} B(x, S) \prod_{\chi \in S} \epsilon = 0,
\]
where
\[
B(x, S) = \sum_{\chi \in S} (1-n|\varepsilon|)^2 \sum_{n \leq x} \chi_S(n) \chi_{T^{x=6}}(n).
\]

We now apply Lemma 1 of [1] which results in
\[
B(x, S) = \frac{1}{2 \pi i} \int_{\sigma=1}^{ \sigma = \text{Re}(s) + \epsilon} \frac{\theta(s) \chi(S) L(s, \chi)}{s(s+1)(s+2)(s+3)} \, ds.
\]

We denote the integrand by \(F(s, S, \varepsilon) \) for brevity. \(F(s, S, \varepsilon) \) has a pole at \(s = 1 \) when \(S = \emptyset \) or \(T = S = \emptyset \), in which cases \(\chi_S \) or \(\chi_{T^{x=6}} \) are principal, but not for other \(S \). Hence if we move the line of integration to \(\Re(s) = 1 - \frac{1}{r+1} \), where \(r \geq 2 \) is an integer, we obtain
\[
B(x, S) = \frac{1}{2 \pi i} \int_{\sigma=1}^{ \sigma = \text{Re}(s) + \epsilon} \frac{F(s, S, \varepsilon) \, ds + R(S)}{s(s+1)(s+2)(s+3)}.
\]

\(R(S) \) is zero unless \(S = \emptyset \) or \(T = S = \emptyset \) in which cases
\[
R(S) = \frac{\sigma^2}{4} \frac{\varphi(|D|)}{|D|} L(1, \chi_D).
\]
By the lemma of §2 we have, for \(\Re(s) = 1 - \frac{1}{(r+1)} \)

\[
F(x, S, s) \ll x^{1-\frac{1}{(r+1)}} (f_{S}f_{S^{-1}})^{1/4(s-r)}|D|^{s/2} |s|^{-2},
\]

where \(f_{S} \) denotes the conductor of \(\chi_{S} \). However \(f_{S}f_{S^{-2}} \) divides \(D \) and we conclude that

\[
\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(x, S, s) \, ds \ll x^{1-\frac{1}{(r+1)}} |D|^{1/4(s-r)+2}. \]

When we substitute the resulting estimate for \(F(x, S) \) in (4) we obtain

\[
E(\Theta) + E(T) \prod_{2 \leq r \leq T} \zeta(s) \ll \frac{x^{-\frac{1}{2(r-1)}} |D|^{1/4(r)+1}}{s} \sum_{S \in \mathcal{U}} 1.
\]

Now the number of generic characters is at most two more than the number \(\nu(|D|) \) of distinct prime factors of \(D \). Hence,

\[
\sum_{S \in \mathcal{U}} 1 \ll 2^{\nu(|D|)} \ll |D|^{1/2}.
\]

We now apply (3) together with the fact that

\[
E(\Theta) = E(T) = \frac{\varphi(|D|)}{|D|} L(1, \chi_{D}).
\]

These yield

\[
\frac{\varphi(|D|)}{2 |D|} L(1, \chi_{D}) \ll \frac{x^{-\frac{1}{2(r-1)} |D|^{1/4(r)+2}}}{s}.
\]

We also have

\[
|D|/\varphi(|D|) \ll |D|^{1/2},
\]

and by Siegel's estimate [5]

\[
L(1, \chi_{D}) \gg |D|^{-\varepsilon},
\]

A simple rearrangement now yields

\[
x^{\frac{1}{2(r+1)}} \ll |D|^{1/4(r)+1/2},
\]

or

\[
x \ll |D|^{1/4+1/4(r)+1/2}.
\]

Finally let \(\alpha' \) be given, take \(r = 1 + [1/(2\alpha')] \) and \(\alpha = \alpha'/(8r+8) \). Then

\[
x \ll |D|^{1/4+\alpha'}
\]

and the theorem is proved.