On the order of Dedekind Zeta-functions near the line $\sigma = 1$

by

W. Staś (Poznań)

1. Denote by K an algebraic number field, by n and d the degree and the discriminant of the field K, respectively, and by $\zeta_K(s)$, $s = \sigma + it$, the Dedekind Zeta-function (see [4]).

Basing on some estimates of A. V. Sokolovskii connected with the application of I. M. Vinogradov's methods to the theory of Dedekind Zeta-functions (see [7] and compare [10]), refined in [1] with respect to the constants of the field, we shall prove the following

Theorem. If $1 - \frac{1}{n+1} \leq \sigma \leq 1$, $t \geq e$, then

$$|\zeta_K(\sigma + it)| \leq e^{e^h + (\log d^h n^{1/2} (\log n - \log e))^{1/2}} \log^{10} t,$$

where c is a positive purely numerical constant.

About possible application of (1.1), see [3]. For the Riemann Zeta-function $\zeta(s)$ the strongest estimate of the form (1.1) is due to H. E. Richert (see [9] and compare [9]).

2. The Dedekind Zeta-function of an algebraic number field K is defined by the series

$$\zeta_K(s) = \sum_a (Na)^{-s}, \quad s = \sigma + it,$$

in the open half-plane $\sigma > 1$, the sum being taken over all ideals of K (see [4]). The function $\zeta_K(s)$ can be continued analytically to a meromorphic function with a simple pole at $s = 1$.

It is known that

$$\zeta_K(s) = \sum_{\sigma} \left(\sum_{a \in \sigma} (Na)^{-s} \right),$$

where the inner sum is taken over all ideals of K, belonging to an ideal class C (see [4], p. 57) and the outer sum is taken over all h ideal classes.
It is also known that

\[f_C(s) = \sum_{a \in \mathcal{O}} (N(a))^{-s} = N(a')^s \sum_{m(\text{mod } a')} |N(a)|^{-s} \]

where the last sum is taken over a complete system of pairwise not associated algebraic integers belonging to any ideal \(a' \in \mathcal{O}^{-1} \) (see [4], p. 58).

If \(a_1, a_2, \ldots, a_n \) form a basis for \(a' \), then every element \(a \) of \(a' \) can be uniquely represented in the form \(a = a_1x_1 + \cdots + a_nx_n \) where \(a_i, i = 1, 2, \ldots, n \) are rational integers.

Every element \(a \in K \) can be considered as an element of the \(n \)-dimensional real space \(\mathbb{R}^n \):

\[a = (a_1, \ldots, a_n, b_1, \ldots, b_n) \]

where \(a = r_1 + 2r_2 \) (see [2], III, § 3).

Denote by \(\mathbb{M} \) the \(n \)-dimensional lattice in \(\mathbb{R}^n \) formed of images of algebraic integers \(a \in K \) divisible by \(a' \) and denote by \(V \) the fundamental domain of \(K \) (see [2], p. 332). Then the summation in (2.2) reduces to the summation over rational integers \(a_1, \ldots, a_n \) such that \(a(a) \in \mathbb{M} \cap V \).

Denoting

\[N(a) = N(a(a)) = f(a_1, \ldots, a_n) \]

we can write

\[f_C(s) = N(a')^s \sum_{a(a) \in \mathbb{M} \cap V} |f(a_1, \ldots, a_n)|^{-s}. \]

We denote by

\[a^{(0)} = a_1a^{(0)} + \cdots + a_na^{(0)}, \quad i = 1, 2, \ldots, n, \]

the conjugates of \(a \) so that \(a^{(0)} \) are real if \(1 \leq i \leq r_1 \) and \(a^{(0)} \) are complex conjugates of \(a^{(0-i)} \) if \(r_1 + 1 \leq i \leq r_2 \) hence \(N(a) = a^{(0)} \cdots a^{(0)} \).

Denote further by \(V \) the set which we get multiplying the elements of \(V \) by images of all roots of unity belonging to \(K \). Then the series (2.3) can be written as follows

\[f_C(s) = \frac{1}{m} N(a')^s \sum_{a(a) \in \mathbb{M} \cap V} \sum_{\sigma(a) \in V} e^{-s \log |f(a_1, \ldots, a_n)|} \]

where \(m \) denotes the number of roots of unity contained in \(K \) (see [7], p. 323).

In the following we shall always assume that

\[N(a') \leq |a'|^{12}, \]

since in each ideal class \(C \) there exists at least one ideal satisfying (2.5) (see [4], p. 42).

3. The proof of (1.1) will rest on the following lemmas:

Lemma 1 (see [1], Lemma 4, and compare [7], Lemma 1). If \(a_1, \ldots, a_n \) form a basis for a given ideal \(a \) with \(N(a) \leq |a'|^{10} \), then \(K_{\mathbb{R}}^X \) denotes the set of all systems of real numbers \((u_1, \ldots, u_n) \) with

\[\max |u_i| \leq X \]

where \(u_1a_1 + \cdots + u_na_n \) are elements of \(R^a \) which belong to \(V \), then for any system of real numbers \((u_1, \ldots, u_n) \in K_{\mathbb{R}}^X \), we have the inequality

\[A_1X < |u_1a_1| + \cdots + |u_na_n| < A_2X, \quad i = 1, \ldots, n, \]

where

\[A_1 = \exp(-4n^6|a'|^2), \quad A_2 = 2|a'|^n+1. \]

Lemma 2 (see [1], Lemma 12, and compare [7], Lemmas 5 and 8). Denote

\[F(a_1, \ldots, a_n) = -\frac{t}{2\pi} \log |N(a(a))| = -\frac{t}{2\pi} \log |f(a_1, \ldots, a_n)|. \]

If

\[m_1 = \left[\frac{n+2}{n} \log t \right], \quad A_k = \left[\frac{1}{n+1} \log X \right], \]

then

\[|S_d| = \left| \sum_{\sigma(a) \in V} e^{-s \log |f(a_1, \ldots, a_n)|} \right| \leq A_k X^{1 - \frac{1}{4n_k}} \]

where

\[A_k = \exp(4 \cdot 10^6 n_k^6 |d|^2), \quad A_k = 10^6 n_k^6. \]

Remark. Lemma 2 is a slightly completed version of [1], Lemma 12, to that effect that in the present version of the lemma under consideration all the numerical constants are counted out explicitly.

Lemma 3 (see [1], Lemma 13, and compare [7], Lemma 9). In the region \(\sigma \geq 1 - 1/(n+1) \), \(t > 1 \), \(\sigma = a + ti \) of the complex plane, we have the estimate

\[|\zeta_K(s) - \sum_{1 \leq m \leq n+1} F(m) n^{-s} | \leq \exp(\sigma n^6 |d|^2) \]

where \(c_2 \) is a pure numerical positive constant.
Lemma 4 (see [8], p. 186). In the region $-1 \leq \sigma \leq 2$, $-\infty < t < +\infty$, of the complex plane, we have the estimate

$$|z(s) - z(s')| \leq A_s(|s| + 1)^{\epsilon_2}; \quad s = \sigma + it,$$

where

$$A_s = c_e^2|s|^{\epsilon_2}, \quad A_s = \frac{3}{4}n + 2,$$

and c_e is a pure numerical constant.

4. Proof of the theorem. Denote

$$K_{s,t} = |s|^{-1/2}$$

(see Lemma 1) where $t = \exp(\log^{2^{23}}t)$, i integer, $i \geq 0$. Owing to (2.1), (2.4) and (3.4) we have in the region $\sigma \geq 1 - 1/(n + 1)$, $t > 1$, the estimate (compare [7], p. 330)

$$|z(s)| \leq \exp(c_1n^2|A|^2) + |A|^{1/2} \sum_{j=1}^{h} \sum_{x_1, \ldots, x_n} |N(x)|^{-s} +$$

$$+ |A|^{1/2} \sum_{j=1}^{h} \sum_{x_1, \ldots, x_n} \sum_{x_{n+1}} |N(x)|^{-s},$$

where c_j are ideals belonging to the inverse classes O_{j}^{-1} and are chosen in such a way that $\|N_0\| \leq |A|^{1/2}$ (see (2.5)) and h is the class-number. For h we use the simplest estimate

$$h \leq |A|^{(\sigma-2)/2n}$$

mentioned in [5], p. 160.

We estimate the second term of (4.1) as follows.

Denoting $K_m = |s|^{-1/2}, m = 0, 1, 2, \ldots$ (see Lemma 1) we have

$$|z(s)| \leq \sum_{|s| = \frac{\log^{23}t}{\log 2}, \ldots, x_{n+1}} |N(x)|^{-s} +$$

$$+ \sum_{|s| = \frac{\log^{23}t}{\log 2}, \ldots, x_{n+1}} |N(x)|^{-s},$$

where $m_0 = \left[\log^{23}t / \log 2\right], t \geq e$, since $t_0 = \exp(\log^{23}t)$.

Estimating the first term on the right of (4.3) trivially, and the second term by the use of Lemma 1, we simply get the inequality

$$|A|^{1/2} \sum_{j=1}^{h} \sum_{x_1, \ldots, x_n} |N(x)|^{-s} \leq 2e^{\log^{23}t} \log^{1/2} |A|^{1/2},$$

valid in the region $\sigma \geq 1 - 1/(n + 1), t \geq e$, of the complex plane.
We estimate the second factor of (5.5) as follows. Consider the polynomial
\[\varphi(x) = n(1 - \sigma)x - A_0 x^2 - 2A_0 x. \]
This polynomial has a maximum at the point
\[a_0 = -4A_0 a_0 + 16A_0^2 a_0^2 + 12A_0 a_0^2 n(1 - \sigma) \frac{1}{6A_0 a_0^2}. \]
It is easy to realize that the above maximum of \(\varphi(x) \) is absolute for \(x \geq 0 \).

From the obvious inequality
\[0 \leq a_0 \leq \frac{1}{3A_0} \sqrt{n(1 - \sigma)}, \]
we get
\[\varphi(a_0) \leq \frac{1}{3A_0} \left(n(1 - \sigma) \right)^{\frac{3}{2}}. \]

Therefore, owing to (5.4), we have
\[2n(1 - \sigma) - 4A_0 x^2 - 2A_0 x \leq \frac{1}{3A_0} \left(n(1 - \sigma) \right)^{\frac{3}{2}}. \]

Owing to (5.4) and the definition of \(t_0 \), we have for the first factor of (5.5)
\[a_0^{(1 - \sigma) - 4A_0 x^2 - 2A_0 x} \leq \frac{1}{3A_0} \left(n(1 - \sigma) \right)^{\frac{3}{2}}. \]

Therefore, from (5.5)–(5.7) it follows
\[|S_{i0}| \leq A_0 t_{\log_{n^2} t_{\sqrt{n^2}}} \frac{1}{2} - \frac{1}{2A_0 x^2}. \]

For the remaining \(|S_{ki}|, \ k = 2, \ldots, 2n \) we get similar estimates. Hence from (5.1), (5.3), (5.4) and (5.5) it follows
\[\left| A^{|1/2} \sum_{k=1}^{n} \sum_{\sigma < k < \pi_{k/2(k+1)}} \left| X(a) \right|^{-\sigma} \right| \leq c_0 t_{\log_{n^2} A_0} \frac{1}{2} - \frac{1}{2A_0 x^2} \log_{n^2} t_{\sqrt{n^2}}. \]

Owing to (4.1), (4.4), (5.9) we get in the region
\[1 - \frac{1}{n + 1} \leq \sigma \leq 1, \ t \geq e^{1.05 n^2 A_0^2} \]
the estimate
\[|\mathcal{L}(\sigma + it)| \leq \exp(c_0 n^2 |A|^2) \log_{n^2} t_{\sqrt{n^2}}. \]

We split the region (5.10) into the two following regions:
\[D_1: 1 - \frac{1}{n + 1} \leq \sigma \leq 1, \ t \geq \exp(2.105 n^2 |A|^2), \]
\[D_2: 1 - \frac{1}{n + 1} \leq \sigma \leq 1 - \frac{1}{n log_{n^2} t_{\sqrt{n^2}}}, \ t \geq \exp(2.105 n^2 |A|^2). \]

From (5.11) it follows that in \(D_1 \)
\[|\mathcal{L}(\sigma + it)| \leq \exp(c_0 n^2 |A|^2) \log_{n^2} t_{\sqrt{n^2}}. \]

Analogously in \(D_2 \) we get
\[|\mathcal{L}(\sigma + it)| \leq \exp(c_0 n^2 |A|^2) \exp(2.105 n^2 (1 - \sigma)^2) \log_{n^2} t_{\sqrt{n^2}}. \]

Hence from (5.12), (5.13) we get in the region
\[1 - \frac{1}{n + 1} \leq \sigma \leq 1, \ t \geq \exp(2.105 n^2 |A|^2) \]
the estimate
\[|\mathcal{L}(\sigma + it)| \leq \exp(c_0 n^2 |A|^2) \exp(2.105 n^2 (1 - \sigma)^2) \log_{n^2} t_{\sqrt{n^2}}. \]

Owing to Lemma 4, for
\[1 - \frac{1}{n + 1} \leq \sigma \leq 1, \ s \leq t \leq \exp(2.105 n^2 |A|^2), \]
we have simply
\[|\mathcal{L}(\sigma + it)| \leq \exp(c_0 n^2 |A|^2). \]

From (5.12) and (5.13) the theorem follows.

References

On a paper of Baker and Schinzel

by

D. R. Heath-Brown (Cambridge)

1. Introduction. Let D be an integer, positive or negative but not a square. It was shown by Baker and Schinzel [1] that every genus of primitive binary quadratic forms of discriminant D represents a positive integer, prime to D, and less than $O(\varepsilon |D|^{3/8+\varepsilon})$, where $\varepsilon > 0$ and $O(\varepsilon)$ depends only on ε; and they conjectured that in fact the bound could be replaced by $O(\varepsilon |D|^{1/4})$. The object of this paper is to prove the following sharpening of their result.

Theorem. Every genus of primitive binary quadratic forms of discriminant D represents a positive integer, prime to D, and less than $O(\varepsilon |D|^{3/8+\varepsilon})$.

Our theorem may be used in place of the result of Baker and Schinzel, in the work of Möller [4], thereby improving his results somewhat. In particular it follows from our theorem that the smallest prime which splits in $Q(\sqrt{-d})$, but does not ramify, is less than $O(\varepsilon |D|^{3/8+\varepsilon})$, where D is the discriminant of the field, and so all the ‘numer idonei’ of Euler are less than $[O(\varepsilon)]^{12}$, for any ε with $0 < \varepsilon < 1/4$. Thus if $O(\varepsilon)$ were effectively computable then all the numeri idonei could in principle be explicitly determined. But unfortunately, as in [1], the constant $O(\varepsilon)$ is ineffective; this is due to the use of Siegel’s lower bound for $L(1, \chi)$ (see [5]).

Our improved bound results from the use of estimates of Burgess [2] in place of those of Burgess [3] as employed by Baker and Schinzel [1]. Apart from this our argument follows that of [1] closely, but there are two further differences; the first involves the employment of a modified path of integration and the second involves the replacement of a finite sum by the corresponding L-function. The latter change is not in fact essential but we believe that it leads to a more elegant exposition.

I would like to thank Professor A. Baker for his help in the preparation of this paper, and also to thank the Science Research Council for their financial support while I was engaged on this research.

2. Bounds for L-functions. In place of Lemma 2 of [1] we prove the following.