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2. Proofs. Let »(F), %(K) be the residues of Zp(s), {x(s) respect-
ively at ¢ = 1. Then since Z(s) = Ix(s}L(s, ¥) we have
x ()
_ #(E)
Under the assumptions of the Theorem, L{s, y) is an entire function, it
follows that if {x(3) = 0 then {x(1) = 0. We use this fact o obtain a lower

bound for «#(F), and since an upper bound for x(K) is easily got we can
prove Theorem’.

L(1, x) =

TEnMwA 1. If K is an algebraic number field of degree n > 2, then
#(E) < 22"V (1.3)" (log |dg )™ 2.
And if K is o totally real ficld, then '
%(H) < 2° Ve (L.3)" (log ldg )" L.
Proof. This is Lemma 2.1 of [4].
Levua 2. If 0p(3) = 0, then
x(F) = 2—2(ﬂ+1) Pl |dF]—1j4.

“Proof. Take s, =}, ¥ = [F:0] =2n in Lemma 3, p. 323 of [3].

Thus together Lemmas 1 and 2 give

L, ) ldg,

and under the further asgumptions of the Corollary we have from the
first part of the proof of Theorem 4.1 of [4] (see (7)) that

' B(F) |dx "
50,0 < onp HELIEL
and so :

W(EF) > I{1, z)[dgl" > |ag0".
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Existenee of an indecomposable positive quadratic form
in a given genus of rank at least 14
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G. L. Warson (London)

0. Introduction. We shall prove the following

TrroREM. Lei f be a positive-definite quodratic form with integer
coefficients in n 2= 14 variables. Then in the genue of f there is at least one
class that éonteins no disjoint form.

There is also (for # ;= 12) at least one class that does contain a disjoint
form; see [4], pp. 75, 76, Theorem 47.

The constant 14 is best possible; to see this, we define genera each
of which consists entirely of classes that contain disjoint forms. Twelve
suitable genera may be defined by

{0.1) feaitmt .+l 2<a<1l or 0 =13,
(0.2) C feaidat . e 20, (2 =12).

In a number of papers, references to which may be found in [1], it has
been shown that

{0.3) each of (0.1), (0.2) implies f ~ {454, for some
' (n—1)-ary form b = h(@y, ..., B,)-

 Denote by ¢(f) the class-number of f, that is, the number of elasses
in the genus of f. In the counter-examples (0.1), (0.2) we have ¢(f) =1
for n< 8;2 for m = 9;10,11; 3 for » = 13; 4for » = 12. Many other
counter-examples, with n < 10 and o(f} = 1, may be found in [B]. For the
smaller values of # many examples with ¢(f)>1 could be given. TFor
example, with n = 2 and f eo}+140f = 24} 1723, we have o(f) = 2.
‘We ghall use the elassical formula, see [2], [3] for the weight of a posi-
tive genus. The weight, w(f), of the genus of f i the sum of the weights
of its constituent classes. Temporarily, let «’(f) be the sum of the weights
of the classes that contain disjoint forms; and detine W (f} as @' (f) w0 {f).
Then frivially W (f) < 1; and the theorem may be expressed as:

{0.4)  W(f) <1 for every positive-definite f in n > 14 variables:



i6 G. L. Watson

I have shown in [6], p. 182, Theorem 8, that the theorem follows in
all cases if proved for f with certain conveniently simple arithmetical
Properties, without which the estimation of W(f) would be impossibly
complicated. See (6.1), (7.1), below.

L. Formulae for W(f). It suffices (by permuting the variables) to
consider disjoint forms of the shape
@an

Gy ey )R Bppgy ooy &), V< k<.

For brevity we call this form ¢+ h, and for symmetry we write I for n— &,
the rank of h. We define W( f) in the same way as W(f), except that
we count only those classes, in the genug of [, that contain at least one form
g+ with given k but do not (if % > 2} contain any form g’ 44’ with ¢’
of rank %', 0 < &' < k. Clearly this makes & <1, or & < 4#, which Jessens
the symmetry but gives .

(1.2) W) = Walf}+Walf) + oo Wy ().
We now show that, for 1<k < §n, '
)i

Wilf) < X olglw(hyw(f): rank g =k, g1 ~7},

Where the accent means that if 2jn the term with k #n 1s to be halved,
and the summation is over ordered pairs of genera. To see this, let a, b
be the number of integral automorphs (with determinant 1) of 0, h
respectively. Then by definition the weights of ¢, b (or of their clagses)
are 1/, 1/b; and that of g+ % iz at most 1 job, since it has trivially at least ab
automorphs. Now let g range over a set of representatives of the clasges
* In some fixed k-ary genus, and similarly for 4, with the two genera such
that g +% =~ f. The sum of the ‘weights of the g-+k is at most

D iaby = 3" (1fa) 3" (1) = w(gyw (hy;

the sum of their contributions to W, (f) is st most w(g)w (k) jw(f), whence
we have (1.3) exeept for the accent. Now if k — ] — £n we need not count
both of g%, h4g unless g ~h, in which ease we may suppose g = h.
Then g--7% is unaltered by interechanging 2, and g, v TOr @ =1,..., in;

50 it has at least 2ab automorphs, and the above estimate for its weight
may be halved, which completes the proof of (1.3).

(1.8)
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We conclude this section by showing that (1.3) remains valid if we

impose the additional summation eonditions

(1.4) Wi <1if k22, W, <lif l<r<k-i.

To see this, note that if W{g) = 1 then every class in the 'génus of g con-~
taing a disjoint form and o is to be disregarded in the above definition
of W,(f). Similarly for h if the second part of (1.4) fails.
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2. The weight formula. For the classical formula for the weight of
a positive genus, see [2], p. 96, (2), with a factor % sinee Pall there excludes
awfomorphs with deferminant —1, and so doubles the weight. He also
omits to mention that another factor 1 is needed in the trivial cagse » = 1.
I also replace the d in Pall’s formula by det 4, where '

(2.1) A = A(f) = (3% |0, 0u;)

L=l

is the matrix of f in the notation I prefer. In Gaussian notation this 4
is the matrix of 2f; but clealy w(f) = w(2f), so we have

(22)  w(f) = {L+sgnin—1}m 00 [T [T fa, (4 (e Ay,

Here the second product is taken over all primes p, and the p-adic density
a,(4) of the matrix 4 = A(f) iz defined as in [2]. :

Now let (det 4), bo the highest power of p dividing det.d, and define.
(2.3) By(f) = By(A) = (det A7 ¥ Fa,(4).
It iy easily seen that this gives B,(af) = 5, {f) for every positive in-
teger a; and we may replacs (2.2) by

(2.4) w (f) = {1 -+ 8gn (n —l)}n‘_i'l(ﬂ'i'l] H F{%’b) n {ﬁp(f}}—l

We define also

%
(2.5) 00k, 1) = 0(1, %) = = [ [ {T(34)/T(3i-+10)},
i=1
(2.6) 8,095 B) = B, iy +1)B, (938, (W),
@0 81 = 3] (6,0, 1) ank g = b, gk =F, (14).

The sum in (2.7) is over ordered pairs of genera ag in (1.3). With these
definitions, (1.3) gives, for 1< k<< 4n, n 23,

(2.8) W, (f) < 3 {14 sgn(k—1)} {14 sgnn—2k)}0(F, %fk)s(fs k).

3. Further definitions. Let d denote a positive square-free infteger.
When g, h satisfy the summation conditions of {2.7) we must clearly have,
for some d, '

(3.1) rankg =%, g+h o~ f, and d-'det{}4(g)} is a rational square.
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8o if we define

(32) S3t, 1 = [T a1, 12 (014, (31}
we have
{3.3) B(f, %) = D 8ulf, B)

d

This lagt surm may be taken over d =1,2,3,5,...;
finitely many terms are non-zero.
Now for each prlme p (8.1) implies, for some mteger s, that

{34) rankg =k,g+h ~f, and d'p " det{3 A (g}
P _
is the square of a p-adic unit;

; but clearly only

here ~ denctes equivalence over the ring of p-adie integers.
‘;f'e define
(3.5) Talf B2, 8) = 3 {0,005 B): (3.4)).
Here the summation is over ordered pairs of classes under ;; and the

accent means that ferms for which (3.4) is inconsistent with (1.4) are fo
be omitted. Next, we define

(3.6) Ualfs by 2) = 3 Talfy by 2, 803

the sum may he taken over a finite set of integers s for which (3.4) is
possible; and we have

(3.7) S By < [ Uus, By ).
»

Here strict inequality is to be expected, because there may not exist
pnsitive forms g, h satisfying a given set of conditions (3.4);, with p

=2,8,5,
Now eiefme
{3.8) M,(f, k) = mimx Uslf, & p)—l—max Uslf, k
Then clearly (3.3) 1mphzs
(3.9) - 8(f, k) < H M, (f, %),

which will be used for & = 1 and for 3 < k< {n; bub the pl oduch diverges
fork = 2.

4. Inequalities for 6 (%, » —%), We notice that (2.5) gives
(£3) (1, n—~1) = =" [I'(}n),
(4.2) 8(2,n—2)/0(1, n—1) = ="/ P (3n—1).
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Tach of these expressions is a decreaging funetion of = for # > 14. For
the gamma funection is logarithmically convex and so
Mo+ > {Fo—1) P @ = (- 1)2 0 e) > =2 (@)

if 2 > n-+1. Using the duplication formula I'(#)(w+1) = 2= 1"(2),
(4.1) and (4.2) give
(4.3) (2, n—2) = (2r)" *f(n—2)!
and (2.5) gives
(4.4) 0k+2,n—%—2)8(k, n—k) = (2r)"" P n—k—2)!

For »n =19 we shall later nse (4.1), (4.2) and
4/9  for nzmin(l19, 2k 4),
1/20 dfor #z=19 and k<2

To prove (4.5) for fixed k > 8, note that the right member of (4.4) is a de”
creaging funetion of n for m > 2k+44, and reduces for n = 2k-+4 to
(27)2J(E+1)(k +2) < 40/90. For fixed & < 7, the right member of {4.4) ig
decreasing for n 2= 19, so greatest for n = 19. So (4.5) is easily verified.

For 14 < n < 18, we use (£.1)-(4.4) to calculate the following’ table:

(4B) 0(b+2,n—K—2)/B(k, n—T)<

Rounded up values of 8(k, n—k), see (2.5).

N 14 15 18 17 18
1 4.20 2.87 1.88 1.199 0.740
2 7.91 3.88 1.72 8.719 0,282
3 10.08 3.60 1.15 0.327 0.085
4 10.59 2.93 . 0.69 0.139 0.028
5 10.26 2.81 0.42 0.063 0.008
6 9.82 1.90 0.98 0.083 0.003
7 9.64 1.70 0.22 0.091 0.002
8 .- ' - 0.20 0.016 0.001
9 _ _ _ - 0.001

5. Estimation of certain products over primes., For brevity, write
(5.1) Pl,p) =[] @—p": §=0,1,..., (3k]}
(for prime p and % > 0), and '
(52)  R(b,p) = min{P by, )Pk, p): k>0, Lz,o Toy kg = B}
Clearly we have
(5.3) . (L—p 3 for &
(5.4) R(k,p) =@1—p ¥  for &

sl

=

=
f

H

3
5.

//\//\_
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For larger %, the product over j > 2 can he estimated numerically by
straightforward caleulations; and for j =1 weuse the well known [ [ (L —p~%)
= 6/r% giving

(5.5) H §P(k, )} ' < 1.65, 1.7, 1.82, 1.83,
n

for E<3,<5, €7, 8 respectively.
Now, for square-free positive ¢, define

(5.6) Talp) = 1—p7 (—alp), L =[] Zaln),

»
where the Legendre symbol (—@|p) may be interpreted‘as 0 if p|2d.
We shall prove that

(5.7) Ly<036d for d>=3.

There exists & Dirichlet character y, ‘modulo 4d, such that ¢ (p) = {—d|p)
for every p, whence (5.6) gives

(5.8 Iy =) (N7 y(N): ¥ =1,2,...}.

‘When d = 3 we have (N) =1 for ¥ =31 or 5, —1 for ¥ =17 or 11,
modulo 123 so we have the case d = 3 of (5.7) by a straightforward calcu-
lation. For d > 5, define

Uy, = ZN—

with summation over 2dm < N < 2d(m-1).

It is easily seen that Lg < wy — %, -+ %s— ..., and that «,, is monotone
decreasing. So L, < 4,. Subtract £logd from each gide of this inequality,
and note that 2|N implies x(¥) = 0. We have

1
——logd;

- 11
. I,—1 I+= 4= 4.,
(5.9) La tlogd < tytyteteiTT S

and the term 1/5 on the right may be omitted if d = b, giving (5.7).

Allowing @ to take non-square-free values, and differencing, the
right member of (5.9) is a decreasing function of &, for d = 1, so it is less
than 1 for 4= 6, and we have

(5.10) . A Ly < &7t pdlogd.

By differentiating the right mernber of (5.10) we find that it is a de-
ereasing function for real d 2> 6, and so is at most 67 '(L+ 1log6) <37,
which completies the proof of (5.7). -
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6. 0dd primes. For each odd prime p we shall assume that there exist
forms fi, fa, With integer coefficients, depending on f, p, such that

(6.1) F~fitpfy  prdetd(f)det A(f),

where the right member is disjoint as in (1.1) unless f, is identically 0
If so, detA(f,) is To be interpreted as 1. Defining

{6.2) ;= n(f, p) = rankf; ({ =1,2), whenee #n,+a,; =,
we shall also assume thab
(6.3) - om(fypy=in for every p.

As far as odd primes are concerned these are just the assumptions justi-
fied by the theorem guoted at the end of § 0.
Now for i =1, 2 we define

0 o it 24m,
(6.4) g = . ‘
(=1 (debA(f)lp} it 2iny
(65)  my=[n], Pi=][0—p:j=0,1,..,m}
(6.6) X, = 14 ep".

Later, if there is any risk of confusion, we may write more explicitly
g; = g(f, ), .... We note that P, = P(n;, p), see (D.1).

It now becomes convenient to write exp,w for p¥, when the ex-
ponent & iz complicated. With this notation, we show that

{6.) oy (A(f)) = 2e3p, (03 + §ne) P Po (X X))

To prove (6.7) for n, > 0 weput s =21n [2}, p. 101, (‘?1)-{23) and correct
axn error; the last — sign in (23) should be +.

W]:Len n, = 0, the -convention .detA(fy) =1 gives Py =8 =1,
X, = 2, and the right member of (6.7) rednces to P; X7, agreeing with
the case & = 1 of the formulae just guoted.

Now (2.3), with (detd), = exp,(n,) by (6.1), (6.2), gives

(8:8) BalF) = 2exp,( —bnina) PPy (X, )™
We now suppose thatb
(6.9) - -fwg—i—h vankg =k, rankh =1 =n—Fk.

Itis clear that each of g, k must be of the shape {6. 1) For brevity we write,
fori =1,2,

(610) B =nylg), L=—mlB), mo=clo) &= al),
' ¥, = Xi(g)y 4= Xi(h).
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From (6.9) and (6.16) it follows easily that
(6.11) Bytvk, =k, L+l =1, and &kl =mn for + =1, 2;
also that (with g;, &; as in (6.1) with g, h for f)
(det A (f)lp) = (aet A(g) |p) (Gt 4 (R |)
Now from (2.6), (6.8), and (6.10) we have

(6.13) Gy(g, ) =9 V(2T X Y, a2y | [ LB P

(6.12) (i =1,2).

where the product is over ¢ = 1, 2 and, see (6.11),
(6.14) to=1{g, k, P} = Fls-+Eoly = g — ko —Lils.

7. The prime 2. By the theorem quoted at the end of § ¢ we may
agsume that ,

(7.1) I T @+ 21 + 20, 4y,

where each g; is a diagonal form with odd coefficients and each y; is a form
of even rank of one of the shapes :

b

(7.2) BBy + By oo By 1By, (M2 0),

+ Vg1 By, (M2 1),

(7.3) T2 By By 05+ By Ty By T

One or more of the summands in {7.1) may be identically 0, and no two
of them have a variable in common. We define

(7.4) v, =ranke, (i = 0,1), 2m; =ranky; (4 =1,2), and

Ty = 2')’?’&.’; "';—'.V,E_l (i = 17- 2).

This gives n,+ %, = n and we assume ., 2= % a4 in (8.3).

We need to normalize (7.1) so as to make the m, and », into invariants
under 5 and to define invariants s; = &,(f, 2). To do so, we appeal to [8],
p. 97, Theorem 3: the normalization Is as follows. ‘

(i) A 3-ary 9 can be put into the shape (7.1) with summands of
ranks 1, 2, 0, 0. So we can have

(7.5) ,=0,1,0r 2 (for¢+=0,1);

and this makes the m; and », invariang.
(i) For i =1,2, if »,_; # 0, we can take v, to be of the shape (7.2),
and we define 5; = 0. :
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(i) For ¢ =1,2, if »,_; = 2 and the diagonal coefficients of ¢; have
the same residue ( £1) modulo 4, we can again take y; to be the shape (7.2),
and we again define ¢, = 0.

(iv) For ¢ = 1,2, if neither of (ii), (iii) above implies & =0, we
define s; to be 1 or -1 according as y; is of the shape (7.2) or (7.3). And
now the s; and v, are invariant,

(v) Fori =0, 1, we cantake each term of g; to be 4@ or 4= 30, where ¢
denotes a unary ¢ with coefficient 1. For »; = 2 we can go further by using
the obvious

(7.6) a-+bQ T Q-+ aQ 7 (a+4Q+-(B+4H)Q if  2+1ab.
{vi) We can further normalize g, 2¢p, by using
(7.7) aQ-+ 260 v (61 2b)Q + (b +-24)Q i 9Yrab.

(vii) Now let f, f* he two forms of the shape (7.1), each normalized
as above, of the same rank w, and with detA(f)jdet.A(f) the square
of a 2-adic unit, whence n,(f") = #n;(f) for ¢ = 1, 2. Suppose also that
my(f) = m,(f) foxr ¢ =1, 2, but f' = f is false. Then there iz at most one
possibility for f’ np to 5 when fis given, and we must have
(7.8} g(f) = —g(f) for 1=1,2.

I leave it to the reader to verify this assertion; and note thab it obvicusly
holds good with an odd p instead of 2, and without the hypothesis about
the m,;, which by (6.5) is redundant for odd p.

Assoming that fis of the shape {7.1), normalized as above, we define
P, =P,(f,2) and X, = X,(f,2) as in (6.5}, (6.6), noticing that the = sign
in (6.5); has to be replaced by <, see (7.5). Now we further define

(7.9) 0 = 0(F) = 1y (38 -+ §+15) +1a (1, + 1),
(7.10) g = q(f) = (sgnv,)n, +(8gnv) %, + 8gn v ),
(7.11) E = B(f) = exp, {—2—sgny,—sgny} X, X,;

and we shall show that, with 4 = A (f) as in (2.1), we have

{7.12) ay(Ad) = ¥ ippt where P = P, P,.

Pall’s formula for a,, see [2], p. 105, (47), iz very complicated and
containg obvious errors, so I refer instead to [8], p. 96, Theorem 1, and
p. 108, (13.4). Now we have to specialize, replacing the formaily infinite
sum treated in [8] by the right member of {7.1). This specialization is
straightforward except forthe factor E = [[E;, taken over —oo << j << oo
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The &, of [8], p. 96, (2.9) 15 X, for j = 1, 2 in the present notation, and 1,
in case (7.1), for other j except 0, 3. By = 1 if », = 0, } if not; and F; =1
if #; = 0, % if not. So the B of [8] reduces in case (7.1) to that of (7.11),
and we have (7.12}.

From (2.1}, (7.1), det 4 is exactly divisible by EXD; (%6, 4 204), 50 Trom
{2.3), (7.12) we have

{7.13) Baf) = Pi Py B expyfn—g—1— I ny)
after a little simplification.

8. The prime 2, continned. Now suppose, cf. (6.9), that
{8.1) f3og+h, rankg =%, rankh =1=mn—Fk,

Tsing the notation of (6.10), (6.11) follows. Obviously ¢, A have to he of
the shape (7.1). By (i) of § 7 we have

0 if v (g 4y ()< 2,
8.2 ey () —m gy —my(h) = ' :
82) ek (9) = mi(R) 1 otherwise; for ¢ =1, 2.
For brevity we define, for ¢ = 1, 2,
(8.3) o =8gny; o {f), oy =sgnyv.,(g), T =sgny,_,(h).

‘We note that, by (7.5), the %, and », determine the m;{f), and that

{8.4) 2405, k;y I, imply respectively p,, O Ty =1,
{8.5) My, by I = O imply respectively o, o;, 7, = 0,
{8.6) ) o =00, =1, =

each for ¢ =1, 2. For (8.6) see (8.2), (7.5).

We prove next:

Leva 1. If f and g, of the shape (7.1), are given then for given my(h),
iy (h) there is at most one possibility, up to 5, for b satisfying (8.1).

Prooi. We refer to [8], p. 96, Theorem 2. Part (i) of that theorem
shows that the result is true if g is of the shape (7.1) with each ¢; null;
and part (i), with the hypothesis about the m;(h), shows that it is true

for g = a@ (= axl), o odd. By eonsidering the forms adjoint to fia,
the result follows for g = 2a0). Repeating these arguments, we can split
off the summands in the normalized form of g one at a time, and the lemma
follows. :

A similar regult for odd p, with (6.9) for (8.1), is trivial; in i, the m,(h)
need not be supposed given, since they are determined by (6.5) and (6.11).
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From (7.13) and {2.6) we see that Oa(g, k) is the product of the fol-
lowing four factors:

(8.7)  27EP(1)Pu(F) [PAg)Pa(g) Py (R) Py (R),
with ¢ = #(g, h, 2) as in (6.14);

(8.8) exps {1—g(f)-Fe(g) +q(k)},

(8.9) expa{—1-+ 3o~ 0,— 7)),
i=1

(8.10) _ X, XY, Y. 2. Z,.

For (8.9}, we use (7.11) and (8.3).
We define J by :
(811} loged = —preatoyoy-tum+

2

+ 3 {oelhs—1) +y{l— 1) — py(n— 1)}

i=1 .
It is easily veritied that J is the product of the expressions (8.8), (8.9)
(eliminate ¢ by using (7.10)). So we have

(812)  6a(g, B) = M T QXL Y, Vo Ze [ [ AN B

9. Estimation of T, (f, k, p. s). It is convenient to begin by replacing
(6.13), (8.12) by more convenient inequalities. We notice first that (6.5)
and (6.11) give m;{f) = m;(k) for p > 3, and this holds also for P =2
by (8.2). P(f) < P;(%) follows, and we have
(9.1) Ly ()P (f} P (B) Py (R} < 1.

In one special case we shall need to notice that if for some %, M we have

Com(fy =m > #;(k} then the 1 on the right of (9.1) may be replaced by

1—p~2m, .

Again referring to (6.5), with the first — sign replaced by < if p == 2,
as noted above (before (7.9)), we have Py(g) = P(k;, p) and so by (5.2)
{6.11) we have :
(9.2) B Pylg) = RB(E, p). _
Now (6.11) gives k, < ms, 80 if #5 = n,(f, p) =1 we have k<1 and
Pylg) =1 by (6.5), (6.10). Using %, <% to estimate P,(g), we have, see
(5.1), |

Pk, p) o on<,
. . . = .

With g of the sha,]je ('6.1) or (7.1), with %, for n,, we see thai _
{9.4) (3-4) = ky =2s i pid, 28+1 it pid;

b4
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from which
(9.3) PigPelg)y =1 i k=1o0rk=2and pd

(beemse the hypotheses w1th (9.4) give ma;x(]cl, ky) = 1). We now have,
for p= 2,

(9.6) Oplg, By < 9T {B(K, p)} T (2L, X)X, Va2, 2, ‘
with the convention that . = 1 if p > 2, and subject to obvious improve-

ment if we ¢an use (9.3), (9.5) or the remark following {9.1). We define
V= V(gs » P) by

(8.7) = (2K X)) T Yo Z1 2o+ (2 — Y1) (2 — X} (2~ Z,)(2 —z 2)}-
‘We now show that, with s = [1%,] by (3.4), we have
(9.8) Ty b2, )< {BE, p)}7' V7" i p>2

To prove (9.8), we may obviously suppose that there is at least one pair ¢, b
satisfying {6.9) and (3.4); we consider the possibilities for a different pair
satisfying the same conditions; denote such a pair by ¢/, &'. By (9.4) and
(6.11), {3.4) determines all the k y U, also the P,(g) and 4, see (6.14). By the

remark following (7.8) there is ad: most one possibility for ¢', up to 5,

and, see (6.10), we have g{g") = —glg) = —un;, giving, see (6.6), X,(g")

=2—X;{g) =2 X,.

Now (6.9) and (3.4) imply that b satisfies a condition of the same
ghape as (3.4); so what has been proved above for ¢' applies to &' with
obvious changes of notation. The pairz g, 2" and ¢', b can be excluded
sinee ¢ determines & by the remark following Lemma 1. Summing over g, b
and g, ', we have (9.8); and the possibilities for improving on the R-factor
are just the same as for (9.6).

When p = 2 we can argue exactly as above if we strengthen (3.4)
by fixing the m,(g) and the m,(h), or equivalently the o, 7;; which fixes J.
(See (8.3)~(8.6) and the preceding remark, also {8.11).) Then summing
over the possibilities for the o;, 7; we have, again with s = [4k,],

(9.9) Talfs: 2, 8) <TH{B(B, 27 STV (8.4)~(8.6)}.

Now the case % = 2 rvequires special treatiment. Suppose that p12d
and § =0, whenee &, =2, L, = 0. From (3.4), (5.6)—(6.6) and (6.10)
we find 7, = (—d|p), ¥y =1+p ", Py(g) = (1—p?). Similarly, with
the convention for #, = 0 in (6.1), ‘we have 5, = 1, ¥, = 2, and tfrivially
X, =Z,, sinee g, is null and so f,, k; are equal. The seeond term on the
right of (9.7) is zéro since 2 ¥, = 0; and it is easily seen that g does
not exist. So L(f, 2, p, 0) is the same as 6, (g, b), the sum in (3.5) having
Just one term. So, see (5.6), we have, £rom {9.6),

(9.10) Ti(f, 2,2, ) S pLyp) X7'Z, 1 prod,
on noting that (6.14) gives ¢ = 21,, whence by (6.11) ¢ = 2n,.
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Similarly we find that
(9.11) Tolfy 2,2, D) <p MLg(p) X7'Z, i pr2d.

‘ For2 < pld, givings =1andt =1,+1, =1 = n-2, we find, using (9.5),

(9.12) To(fs 2,9, <2 ™Y (for 2 <p|d),

and note that ¥, = ¥, = 1, so that V simplifies.
For k = p = 2, we shall use (9.9}, with the R-factor = 4/3.

16. Estimation of V, see (9.7), for odd p. We shall prove:
Levya 2. For p=3andn>14 we have V2. FPorp=3 and &, =0
we have :
14p ¥ if 20k (= k) and 211,
1+p7# i 2%k and 20,
(L—p ¥~ §f 24k,
ALFp ¥ +p¥yA+p )7 i k=1, = 0{mod?2).

Proof. In the case &k, = 0 we have ¥, =0 and X, = Z, ag in the
proof of (9.10), and so V = X;'¥,Z;. I k is even and I; odd, then n,
is odd by (6.11), whence ¢; = {; = 0 by (6.4), (6.10}, giving X, =7, =1
and V =¥, =1tp ¥ by (6.5), (6.6), and the first case of {10.1)
follows. The second and third cases are dealt with similarly. In the fourth
case &5, My, £; are each +1, and we have (10.1) unless they are 1,1, —1.
From (6.4), (6.9) this is clearly impossible. So (10.1} is proved; and with
{6.11) it clearly gives V < 2.

Tt now suffices to prove V<2 in the case k %kl # 0 since the
case %y, I;, 07 I, = 0 could be dealt with as above. With this assumption,
and p =3, the ¥,, Z; all liec bebween 1£1/3, and (9.7) gives, crudely,
the first part of

(102) < (2K, X,) {48+ (2/3)) < (17/10)X.

(101 T

. For the second part of (10.2), we use » 2> 14, giving n; 2= 7 by (6.3), and

s0 X, > 80/81 by (6.5), (6.6).

Now (10.2) gives V<2 unless X, <17/20 <1 — —p™%, which is poss-
ible only if %y = ks 1, < 2. That, with the %;, [; non-zero, gives n, == 2,
By =l =1, whence ¥, =%, =1, X,>2/3. We can now replace the
fourth powers in (10.2) by squares, and V.< 2 easily follows,

11. Estimation of ¥ for » = 2. We shall show that
(11.1) T2 i p =2,

We begin by noting, see [4], p. 58, Theorem 34, that
(11.2) a5} + 025+ gty — Oy By Oy T 4 228, By .
if ¢y =@, = —a; = L+ 1(mod4).
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We use (11.2) to prove that

(11.3) ety # =1 (i=1,2). -
Taking ¢ = 1 (the same argument works for ¢ = 2), we note that f
may be supposed to be of the shape (7.1} with ¢, = e, (f) null, else {if)
of § 7 gives &, = 0; and (iil) of § 7 may be supposed not be applicable to f,
else again s, = 0. Now by {iv) of § 7 we have ¢ =1 or —1 according as
@, = . (f) is of the shape (7.2) or (7.8). Similarly with g, 7:, or &, &y,

for f, &-
Tn the first case of (8.2) the foregoing gives us
(11.4) "Pl(f) Y Wi (g} -+ i (),

and the vight member is easily seen to be 3+ (7.2) if both or neither of its
summands are so, 3 (7.3) if not. That gives &8, = 1 In the second
case of (8.2) we have to mormalize the 3-ary or 4-ary form oalg) + o (B)
as in (i) of § 7. Tf in so doing we ean use (11.2), as it stands or with one
more unary summand on each side, then (11.4) holds with one more
binary summand (7.2) on the right, which does not affect the argument.
Tf we cannot so use (11.2) then one of g(g), @(h) 18 a binary form
= 4 (o 4 27) (mod 4}; but then by (iii) of § 7 we have n; or £ = 0. 8o (11.3)
is proved. ' '
From (5.6), with p = 2, we see that (11.8) gives

(AL5)  X—1 = (¥Y—1)(Z—1) it el #0 and (8.2); holds,
(116) X,—1 = 3(T;=1)(Z 1) if - sl 0 and (8.2), holds,
(11.7) _X;:, Y,'; or Z,,: = 1 1f 6.59?1'5,; = 0-

Suppose now that p, == g, = 0, that is, that f, g, » ave of the shape
(7.1) with each g, null. Then the &, 4y, {; ate all non-zero by (iv) of § 7,
and (8.2), holds. We multipty the inequality V<2 by 2X,X, and use
(11.5) to express it as & linear inequality in the ¥, Z;, which obviously
all liec hetween 0 and 2. We need only verify it when each of the Y, Z;
is 0 or 2, So ¥ < 2 is proved in this cage. ' ‘

Next suppose g, = g» = L. Then each ¢ (f) is non-aull, see (8.3)
and so each &;is 0 by (i) of § 7, giving X, = X, = 1. (8.6) gives g, o 7;= 1,
so one at least of ny, ;8 O and one of ¥, Z; s L, for i =1,2. V<2 I8
now trivial. ' '

So to prove ¥ < 2 we may suppose ¢, + ¢, = 1. By symmetry (pro-
vided that we do not use n, 3> n,) We may SUppose g, = 1, gg =0. As
ahove this gives ¢, or 7y =1 and X, =1, ¥, or Z; = 1. By symmetry
(provided that we do not use k < §#) we may suppose ¥, = 1; and then
V < 2 can be expressed as

(11.8) Y1212, +(2— Y ) (2 —2,)(2 — Z5) < 44,

icm
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it we can use (11.3), with 4 = 1, we substitute for X, on the right
of (11.8), and it snffices fo verify the resulting inequality for ¥, =2,
for Z, = 2 and for ¥, = Z, = 0, each of these being trivial.

Tt we can use (11.6), with ¢ = 1, we sobstitute for X, in (11.8), giving
an inequality which ean be verified as above if 'we further suppose 12 2%,
< 3/2; whenee we may suppose Z, = 0 or 2. But from (7.11) and (7.12),
with % for f, or otherwise we see that Z; = 0; 50 Z, = 2. Now (11.8) reduces
to Y, +Z,<3. From %, =Z, = 2 it would follow that # is null, which
is excluded. So Z; < 3/2 and we may suppose that T; =2 and Z, > 1.
Trom Z, > 1 and Z, > 1 it follows, see (i) of § 7, that & is of the shape (7.1)
with eacl ¢, null; but then the first case of (8.2) holds.

We may therefore assume (11.7), with ¢ = 1. If any two of X,, ¥, 7
are equal to 1, then, with X, 5= 0 as above and so =1 /2, (11.8) is casily
verifiad. So suppose that exactly oune of X,, ¥,, Z, iI§ equal fo 1, that is,
exactly one of &, 7, &y is 0, see (6.6). By (ii)-(iv) of §.7, exactly one of
ool f)s wolg), polh) is congruentto £-(Q Q) (mod 4) as in {1ii). Phis is frivially
impossible if either of the others is null; so suppose not, thatis oy =1, =1, .
giving ¥, = Z, = 1 by (ii). Substituting n {11.8), we have an inequality
which it easily deduced from (11.7), and the proof of (111} is complete.

12. Investigation of J, see {8.11). We shall show that ‘

(12.1) N (4}, H ozl
the summation variables being the o, 7; of (8.8). With (11.1) this wil
enable us to replace the last factor on the right of (9.9) by 2; this gitple
but crude result will however have to be improved in some important cases.

We begin by noticing that if p, = g, = 0 then by (8.6) the o, 7
are all zero, so the sum in (12.1) hag just one term, which is 1 by (8.11}).

Next suppose g, =1, 0s = 0. We have oy =7, =0 and o5, 7y can
only be 1,1; 0,1; or 1, 0, by (8.6). In these cases logsd = —1, —kyy —h.
(12.1) follows at once unless min(k,, &) = 0 or 1 X & oor Iy =0 (8.3)
exclndes two of the three terms; and if k; or I, = 1,.(8.5) excludes one
of them, and again we have (12.1). ‘

The case p, =0, p, =1 is dealt with in the same way, 50 DOW We
suppose g, = gs = L. The sum may now, see {8.6), have up to nine terms.
Tt is easily verified that g0, = 1 and (8.6) imply '

0103+ T T2 = G+ T T Oa b Ta— 2

So (8.11) may. be rewritten as -

{12.2) l0g.(2J) = 2 (ogke;+ vl — ).
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The summand in (12.2) takes the three values 0, —k;, —1;, by (8.6).
Allowing also the value —mn,;, we see that

(12.3) 2 3 < (1427h) (1427 M) (1427 (1+27%),

The 1 in the first bracket on the right corresponds to oy = 1, and the
second term in the first bracket corresponds to oy = 0. Similarly in the
other brackets. Referring to {8.4), (8.5), we see tha® any of the factors on
the right of (12.3) may be omitted if the exponent %, or I; oecurring in
it is O or 1. 8o, by omitting factors > b/4, we can deduce (12.1) from
(12.3) unless at least three of the &;, I, are equal to 2; and even then unless
the fourth is at most 5. But if so we have n < 11 by (6.11); so (12.1) is
proved.

It will be useful later to note that if & = &, = 1, &, = 0 then we mush
have g, = oy = 1 and ¢, = 0; and then (8.6) gives 7, =~ g5. R0 the gum
in (12.1) has at most two terms, with 7, =1, 0 andJog,J = —1,1—n,— Qo
Bimilarty for &y, ky =0, 1.

13. Simplified estimates for 7,(f, %, p,s). In this section » > 14,

p=2 Is fixed, and n, = ay(f, p) < §n, k< §n are assumed. By (9.8),

with ¥ < 2 by Lemma 2, we have for odd p the second of

Y
WY T ke LT s,
2{E(&, p)yp™ i my>2.
For the first part, see (9.2), (9.3). For p =2 see (9.9), (11.1}, (12.1), and
we again have (13.1). For s and ¢, see (3.4), (6.11), (6.14) and {9.4).
For odd p and n, = 0, p+d, we have s =1 = 0, and we must improve
on the 2 on the right of (13.1). We define (for odd p)

(13.2) Vo(p, b) = (140~ #) (1 — p—iminky~1

where y; = 1 if 2|k, 0 if not, and the minimum is taken over the even
i 2> max (k, 14—%). With n, = 0 we have I, =0, I, = I, By =0, by =5k,
by (6.11), 50 we can appeal to Lemma 2; note that V,(p, k) is an upper
bound for the right member of (10.1). So using ¥V < Vy(p, k) instead of
V < 2, we have in place of the case n, = 0 of (13.1)

(13.8) To(f, b, 2, O < Pk, 9y * Volp, ) i my =0 and p1d.

By d]?nfming V(2, k) = 2, this is valid also for p =2

the ease & = 1 we may write (13.3) more explici i

_ . plicitly, noting that
P(l,p) =1 by (5.1), as i ¢

(13.4) Talf, 1,0, 0) < (L—p™ ™ it 1y = 0 and p12d.
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The case #, = 1 of (13.1) can be improved on by an-argument like that
leading to (13.3); we shall do sofor k = 1. Taking %, = 1, iy = 0, Iy = #y
=1, =l-1=n—2and ¢ =0,¢{=1, we find

(13.5) T{f.1,p,0<pHl—p ! H =, =1 and pe2d.

For p =2 (13.4), (13.5) hold with 2, 2Y% on the right; but these
estimates are too weak, and will be improved in the next section.

Now take & = 2; (13.3) is true but of little use becanse V,(p, 2} has
a factor 1+4p~', and the prodnet [J(1-+p") iz divergent. Take first the

B .
cage p>> 2, k, = 0; we have I, = n,—2 2 5. I 9, and I, are odd, Xy = Z,
=1, and (9.10} simplifies. If not, the worst caseis n;, =0, X; =1 L
Z, =129 % In either case (9.10) gives

(18.6)  Ty(f, 2,2, 00K (1—p ' A+p)p 2 Lulp) i pi2d.
Similarly, but more cradely, (9.11) gives

@1s.7) Ty(f, 2, p, D <3pMLglp) i pi2d.

From (9.12) and ¥ <2, '

(13.8) L Ty, 2,p, 00K 2<pld,

nsing (9.5), {9.9), (11.1) and (12.1}; these also give

{13.9) TS, 2,2,8) < (4/3)27°% i 24,

with ¢ = 0 and £ == 2n,, or ¢ =1 and § = 2n,.

14. A sharper estimate for 7T,(f,1,2,0). (13.1), with E(i,p)
=PA,p) =1, and &k =1, t = 5, gives

{14.1) T,f,1,2,00<2" ™ for 2|d and n>14.

" We shall prove that

(14.2) T4, 1, 2,0) <277 (g2 inp2t-mrine it 24d;

and note that the second term. on the right is zero if 24n,, since then
v, = 1 by {7.4) and g, = 1 by (8.3). :

With ky, b, = 1,0 and { = 5, = I,, the right member of (9.9} re-
duces to 27 Y JV, with summation over the two possibilities mentioned
at the end of §12. In the term with logyd = 1% — g, <1 —mny, We use
(11.1) to give V < 2, whence the third term on the right of (14.2).

In the other term, 7, —1,J = %, and we have oy, 03 = 1,0, 0, = 1;
from which, by using (6.6), (6.10), (7.4}, (7.5) and § 7, (ii) it may be deduced
that ¥, =2, ¥, =1, Xy =1, Z; = 1. Now (9.7) simplifies o ¥V = X7'Z;.
I o, =1, then o, =0 and (8.6) give v, =1 and X, =2, =1 follows,
giving V =1, and (14.2) follows on using J = .

&
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So we suppose X, Z, not both 1; and write for brevity m = m, ()
whence by (6.6) we have X, = 1 or 12" Now if we suppose %, = 1,
(14.2) follows since #1-2m = Ba2m 2 ng+my —2 =n-—-2, by {7.4).
S0 we suppose 7, = 1; and g, = 0, giving oy = 7, = 0 by (8.6), whenee
f: 9, b are all of the shape (7.1) with ¢, null; but oy = 7, = 1 gives g, = 0,
50 none of them has g, null.

It @, (k) is unary we may Suppose

g == de = dw%: VRS a@+27pl+47!"27 f= CZQ+55Q+27P1‘|'4W2,

with 2tad and & normalized as in § 7. From that normalization it eagily
follows that Z, = 142" ang Xy =24, it od = —1l{mod4), X, =0 if
not. Bo we have ¥V < 1+2"™ from which, as above, (14:2) follows.

So we suppose gy(h) binary and

(14.3) 9=4Q, h=aQ+bQ+2y +dy,, 2tabd.

On normalizing f = g+ we see that my(h) =m—1, sec (8.2) ; 80, by the
remark following (9.1), we see that the weaker ineguality ¥V < (1 —2-%)-1
would suffice to prove (14.2). If ab = I{mod4) we see from § 7, (iii) that
Zy =1, giving V< (14271 So suppose ah = —1(mod4). We have
X, =142"" 2, =141 27", and we have what is wanted if the igms
are the same. This follows from (11.2), with @, b, d for the &;; On using
(14.3) and adb = —1{mod4}; see (11.4) and the following remark, So the
proof of (14.2} is eomplete. :
In it, we have not used 5, < 05 80 # 0y = n, = inis 0dd, then {14.2)
holds for 2|d with ¢, for 02, since interchange of g, & then interchanges
the cases 2]d, 2+d, see (3.4) and (7.1). (14.1) can also be improved when
¢s = O;forthen f 5 g4-his obvicusly impossible if g = dat, d =-2{mod 4)

and so the left member is 0. ,

13. Estimation of U,(7, kyp). From (6.11) and (9.4) we see that the
sum in. (3.6} may be taken over 0 <2 <cmin(k, a,) if pid, 0 < 2e 41
< min{k, ny) if pld. So, from {3.6)

]
153)  Ualf, b, 9) = Ty(f, k, p, 0) unless
-min(k, #,) =2 or 3 according as p+d or p|d.
Fork = 2, ptd, we sum over § = 0, 1 and (13.6), (3.7) give
5.2) - Ualf, 2, ) < {(20/19)p7"2 + 3p™ "1} I, (p)
it 2<ptd and n,> 2.
From (13.9) we have

(15.3)  Ualf, 2,2)< (8/3)(2*“14_2_—“2) i 2¢d and n, = Nl fy ) = 2.

o
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We shall now prove that for k> 3, n, = 3, we have

(15.4) O T Al <4 i pla.

We use (6.11) and {9.4) to express ¢, defined by (6.14), as 8s*--2as-+b,
where a, b are integers independent of ¢; and we denote by # the smallest
value of &. We note that # is constant modulo 2 and takes no value mMore
than twice. If 4[a, ¢ is constant modulo 8; if nof, ¢ takes no value twice.
(The foregoing may be cleater if we firet use (6.11), (6.14) to express t
ag 2ki+a'k,+-b, a’, b’ integers depending only on w,%,1) Obvious
upper bounds for the left member of (15.4), iIn the two cases just dis-
tinguished, are _
2pH(AdpTrp L) < e

and p~H14p~t g 4 ...); which is smaller.

(15.4) follows at once if uwn--2, so we suppose that » < n-1;
that is, that some s gives 1< n+1. If min(k,, k) > 3 then £ 3(1, =1
=3123u/2 zn+7, 8o we suppose that ¢ <Cn-1 for some k., ky with
mwin(ky, k) < 2 and 2+k,. Straightforward ealeulation shows that this is
the case only if either %, =3 or & = 8, which we therefore assume.

Now the sum in (15.4) has just two terms, with % =1, 3. For & — 3
these terms have t =n—41tn,>n—1 and = 3n—3n, = n+7, giving
(15.4) with much to spare unless n, = 3. If s0, t = 3n— 34, gives t = n—
—1+20, and (15.4) follows. So suppose n; = 3, k= 4. Now the two
possible ¢ are n+k—4=n and 31> n+7, which crudely gives (15.4).

From (15.4) and (13.1} we have

(18.5) Ualf, by p) <2{R(E, p)} " L +27 9™ if 2< p|d, and 7,522,

It p+d tﬁen § =0 gives ky = 0, ¢ = kn,. Omitting this term from the
som on the left of (15.4), we proceed as above and obtain an estimate
which with {13.1) gives
(15.6)  Ualf, &y p) < 2{R(k, p)} " (p~ "2+ p~)

i 2« p+d and n,2 2.

In fhis section we have used the hypothesis n =14, and k< }n,
#s, <5 375 Wwe shall do so till the end of the proof.

16. Estimation of 85,(f,2) and S8(f,2). We continue the gpecial
treatment of the case & = 2, so as to obtain a substitute for (3.9). It will
be convenient (for all %) to define

(161) D =D(f) = detFA)}, D) =[] 2 malfy0) 7,
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whence D,,,1D,, D, is square-free, D, =1 for r > }n, and D = DD, ...
Clearly we have, from g-l—h ~T,

(16.2) D(f} = Dk,  Dy(f) =Llem.{D,(g), D,(h)}.
Restrieting k to be 2 for the rest of this section, we first show that

(16.3) $(f,2) = 84(f,2) =0

To see this, note that g = D,(g)& for some G of the shape (6.1), (7.1) with
DGy = d by (3.4). Trivially, & ~aj+dusi it d =1 or 2; so & and g are
disjoint and (1.4) fails. The right member of (3.3) vanishes, and (16.3)
follows, by (3.6), (8.7).

We now express the product in (3.7) as IIIIIT;, where II, is taken
-over p+2d, Il, over p|d, and [T, == 1 it 2|4, U(f, 2, 2) if not.

For pt+2d we use (15.1) and (13.68) if n.(f, p} < 1, (15.2) if not. This
gives

Ualf: 2, ) < (X —p~ )7 (1 +p7") Ly(p)p™™

in the firgt cage and a stronger estimate in the second. We extend the product

[] (=047}

taken over p+2d, to all odd » and then estimate it numerically. So,
agsuming ¢ > 3 and using (5.7), as we may by (16.3), and using also (16.2),
we have
(16.4) I, < 0385a [ [ o~ pr2d, piD.}.
Here [], on the right, is D7'd if D, is odd, 2D *d if not.

For 11, we use (15.1) and (13.8), giving
(16.5) ‘ I, < v(@y @, 5,
‘where z(d)
integer d. _

Now IT, is 1 by definition nnless 4 is odd. Tf so, by (13.9), (15.1), (15.3)
it iy at most 8/3 if 24D,, 4/3 if 2|D, but 2+D,, and congiderably smaller
than 4/3 if 2{D,. Replace Il = 1, by 4/3 for the even d, which are less
important; then (16.4) and (16.5) give '

{16.6) : 8ag(f, 2) < 1.027D; (@) @> ¥,

By estimating the infinite series dr(d)d™%, taken over square-free
4 2= 3, we deduce from (16.6), (16.3), (3.3) that

= []{2: pid} is the number of divisors of the square-free

(16.7) : 8(f,2) < 0.0342D -3,
© 'With the obvious 8(f, 2) = 8,(f, 2) it D, = 3, (16.7) gives
~ (16.8) 8{f, 2) < 0.0085-37"1",
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The argument for (16.3) shows that if d = 6 then g I8 eqnivalent

to & multiple of a2{+6a7'4f, @ =1 or 2, whence 8,(f,2) =0 and so
we have, from (16.6),
{16.9) 8(f,2) < 0.0033, 0.0043 for 4= b,

17. Proof of theorem for n > 19. We shall estimate M, (f, k) defined

in (3.8), by using the bounds we have found for U,(f, k, p). We have
to consider the three cases ny(f, p) = 0, =1, > 2. In the first of these
cages the seeond term on the right of (3.8) is 0, beeause &, < ny = 0 and so,
see (9.4), (3.4) I3 impossible if p|d. We shall Verify that the bound 45 always
greatest in the case m., = 0.

Fivst suppose that & = 1 and p > 2. For p1d we refer to (13.4), (18.5),
and (13.1) {with %, =0, ¢ =n, = 2) in the three cases distinguished
ahove. For pid we refer, in the second and third eases, to (13.1) {with

ky =1, # =my 2= 7). And we also need (15.1). Tt is easily seen that the

italicized assertion above is eorrect and so M (f, 1) <<{1—p ™%

Next suppese b = 1 and p = 2. We refer to (14.1), (14.2), and (15.1),
and we similarly find that M,{(f, 1)< 27 +2774+271, _

The product [[(1L —p~ "), taken over all odd p, is easily seen to be
less than 1.0003. Se from the foregoing inequalities, and (3.9}, we have

{17.1) ' S(f, 1) < 0.509.

Fork > 3, and all p, we proceed similarly, referring to (13.3) and (15.1),
(13.1), and (15.1), (18.6), (15.5); with %, = 0 and 50 ¢ = kyly = b, = 0, &
in the first two cases. The obvious ¥y(p, &) > 1 Is enough to show that the
italicized assertion above iz correct, so, with Ty(2, k) = 2,

(17.2) Mo (f, 8) < (P, 9)Y ' To(b, B)  for k>3

We now refer to (13.2) and estimate [ Vy(p, k), taken over p = 3;
we also use (6.5),. The necessary calculations ecan be made finite by notic-
ing that Vy(k, p) < Vo(8, ) for k= 9. So we find from (3.9) and (17.2)
that

{17.3) S(f, k) < 3.31, 4.64, 3.60, 3.90, 3.70, 3.78
for k =3,...,7 and %2> 8 respectively. - _
The foregoing cstimates hold for 7> 14 and so can he used later;

for the rest of this section we suppoge % = 19.
From. (1.2), (2.8), (17.1), (16.9) and {17.3) we find, very crudely, that

A74)  W(f) <0.66(1,n—1)+010(2,n—-2)+

+10 3 {0(k, n—8): 3< k< in}.

. Using the first part of (4.5), (17.4) gives

(A7.5)  W(f) < 0.66(1, n—1)+0.10(2,n—2)+186(3, n —3)+
+180(4, n—4)
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(by estimating separately the sums over ¥ = 5,7,... and & =6, 8,...).

Then with the second part of (4.5), (17.5) gives
{117.6) Wif)<156{1,n—-1)+6(2,n—2).
Now we use (4.2), noting that the right member is greabest for n = 1%
and then equal to =°/8! < 10*/8! < L. So (17.6) gives, with (4.1),
(17.7) W(f)<Li50(L, n—1) = L7587 L (%0}, '
By the remark following (£.2) 7%/ (L4) 18 greatest for # = 19, and less
than (=8 =" I"(in—1). So (17.7) gives
(17.8) W(f) < 1L.78(m/8} 7" /81 < L1=" /81 < 3.5 8!,
which is less than 7/8 since =* < 10 and 8! = 40320.
The proof for » > 19 is now complete; and later, using « < 18, we

shall have bounds for &, which will enable us to mﬂke more uge of (1.4).
We shall see that {17.3) is very weak for 3 < k7.

18. Further inequalities for 8(f, 1). As shown in §17,

1—p~™1  for
wgn<|t

2-lro=Tae-1  for

p=3,

(18.1) Y2

When p]D{f), see (16.1), we need to do better. By (15.1) and '(3.8), for
such p, we have

(18.2) M,(f, 1) = maxFy( f,l B, 0)—3—maXTd(f, , P, 0).

e
Supposing first that p =3 and p|D(f), that i8, ngy = nz(f, 1,
we uge {9.8), with R(1,p) =1 by (5.2} and with &, = 0, L for ;p*]’cl, pid
respectively, whence by (6.11), (6.14) we have ¢t = n,, n;. By Lemmsa 2
the ¥ in (9.8) satisfies (10.1) when k, — 0 and V < 2 for &, = 1. In {10.1)
we have, With ky =0, k; =1, I, = n,—1> 13 —n, giving Vg 1+p
if 20, and V' > 1 —p ™ if not. Crudely, these estimutes give

(18.3) My(f, N<p I +p )1 +2p7) i 1K

(Check this firgt (for =3 14) with the additional assumption p4D,, ),
that ig, n, = r. Then note that the right member of (18.3) is a de-
creaging funetion of #, and that we can obviously do better if 5, = 4.)

Now taking p = 2 we use (14.1) and (14.2), with the remarks ot the
~end of §14. Congidering the cases 9, =1,...,06; #, =7 and »n = 14;
7y =T and » 2= 15; and »n, = 8, Implying » > 16 separately it will be
fownd that

3and 2 < p|D,.

(_184) Mg(f, 1)\{:2—.1447(1—;'2"*6 T L 12) it 1<7' 3 and 2[])

icm
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Now from (3.9), and the above estimates, W.B have an inequality for
8(f,1) which we simplify by estimating [J(1+p75%) and [J(142p"),
taken over all odd p. We find that .

(18.6)  S{f,1

< min {0.509, 0.521D,7", 0.541(D, D,)" 7, 0.585 (D, D, D)~}

We notice now that if f is of the shape (7.1) with ¢, null then fpda;+ b
implies 2|4 and so the first term on the right of (18.2) is zevo. Using (14.1)

to estimate the second term, we can crudely multiply the right member
of (18.5) by 1/4.

19. Further imequalities for S(f, &), 3 < k< 8. We shall show that

(19.1) S(f, k)< 89f, k) for k=3,...,8,

where ,

{19.2) SOf,3) = 357D (D) (D, 2)7,

(19.3)  SO(F, 4) = 522D (DD, 2)7,

(19.4) 8O(f, B) = 548Dy ¢(Dy)(Dy, 2)7,

(19.5) 8O(f, 8) = 3.90 D ¢(Dy)(Dy, 2)7] ] i +p7h plDidy
{19.6) 8OVF, T) = 3.70DT (D) (Dy, 27F,

(19.7) SO(f, 8) = 3. 78_D“’ 2 (DD, 27T

Here D, = D, (f), sce (16.1), is square-Iree, v I8 the divisor function, and
{D,, 2) is the g.e.d. of Dy, 25 50 v(D}/(D, 2} = 2°, where e iy the number
of odd primes dividing Dl.

To prove (19.1) we need

(19.8) My(f, < 2P, P e 47

To prove (19.8) in the case na(f, ) =1, we vefer to {13.1) and (?.5.1),
taking 'k, = 0,1, which by (6. 11) and (6.14) give i =k, 1 respectively.
For #, = 2, (15.6) and (15.5) give

My(f, By < 2 {R(E, )} {p 7"+ p L pt (1470,

from which, with R(]a,p)>( iBYP(k, p) (a5 is casily verified), (.19.8)

follows, crudely. )
We compare (19.8) with the inequality (17.2) used in §17 and zo0

see that (17.3) and (19.8) give, for & 2= 3,
(19.9) S(f, B) < 8D B[] 2+t VR, B 2l

where S is the bound for 8(f, k) given by (17.3), aid Vo(?; ky =
p = 2, is given for odd p by (13.2).

k=3 and p|D;.
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The cases & = 17,8 of (19.1) follow at once from (19.9) on using
Vilp, k) = 1,2 for p =3, p = 2, and k—3n < 0. Similarly for &k =6,
with k— %fn< —1 since n 2> 14 For k =3, 5, the product J] in (19.9)
is at most

T(D)(Dy, 27 [ +2577;
and taking this last product over all p (19.1) follows. For % = 4 we have
Volp,4) = (1+p™)(L—p7" (p # 2)

and this completes the proof of (19.1), sinee it makes [] in (19.9)
< (1425 Pe(D)(Dy, 2)™
We shall now show that
(1910) M, (f, B} <2{P(k, p)} (o™ +p 1N (1 —p )
it 4<<E<< T and p|D,.

-1 = 1+p4—in

K follows easily from (5.1), (5.2) that Rk, p)=

4 << k<< 7, 80 {19.10) follows from, the second part of (13.1) by the argumens

used to deduce (19.8) from the first part, if we prove a snitable inequality

for 7%, with summation over 0 < b, < min(k, u,), see (6.11), with ¢

given in terms of %, by (6.11), (6.14), Omitting the term with %, = 0,

t = kn., which is at most p~* since p|D, implies n, >> 2, what we need is
ke my)} << pl TR pEom

Z{p”“: 1<k < min _
it plD, and 4<h<T.

To prove (19.11), note first that if #n, = 2 then the sum has just two terme,
with § = n—2, 2n— 2k, and that if », = 3 it has three, with ¢ = n-+k—4,
w-+l—4, 3n—3%, =n,n+3, n+8. For n, =4 there-are four terms,
each with # > n-+2. For n, > 4 there are at most seven ferms, each with
> n+4, implying p~¥ < 87", 8o (19.11) is proved and (19.10) follows.

Extimating the ratio of the right member of (19.10) to that of {19.8},
we find that

8(f, k) <

(1911)

{19.12) 8O(f, k) D[ [{(L—p™~ (L +p*73"): p|D.}

if A<k,

20. Use of condition (1.4); proof of theorem for n =~ 18. We shall
prove:

LEMMA 3. (i) Suppose 2 <k <18, D(g) =1, and & # 13 if g is primi-
twe Then either Wi(g) =1 or &k = 8 and

g 5 2(0:0 + @y 0 w505+ 2, ).

(1—p™*)P(k, p) for

icm
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{ii) (i) holds also wilh I, k in place of k, g, in hypothests and conclusion..

Proof., Obviously we need only prove (i), With D{g) =1, g is of the
shape (7.1) with ¢, and », each null; so we write g 3 ¢4 2¢.

Suppose first that g is primitive, that is, ¢ iz not null. Then, see {vil)
of §7, there are at most two possibilities for g up to 3. We may take
these to be

(200)  grdtoi ... bk, elgh, o),

Trom D(g) =1 it follows frivially that (20.1) holds also, for either value of e,
for every prime p > 2. By [4], p. 72, Theorem 43, two forms f, f with
fo [ for every p have signatures with the same residue modulo 8. So
from (20.1), with ¢ positive definite, we have & =1k —24-2¢(mod8),
e = 1. Now (0.3), with g, & for f, n, and 2 << k<13, ¥ # 12, shows that g
iz equivalent to a disjoint form with & umary smmmand. Trivially, this
holds for every g in the genus under consideration, and W, (g) = 1 follows:

Now suppose g imprimitive, that is, g3’ 2y. Then obviously 2|k;
but if & =2({mod4) then D(g) = —1{mod4) gives a contradiction, so

g = =+1.

4k, Now v of the shape (7.3) gives D(g) = — 3 (mod8), so v is of the shape
(7.2), that is,
(20.2) g7 281 @+ Byt - T8 T), ko= 0(mod4}.

This is trivially frue also with 7 for
to excinde ¢ = —1 in (20.1) gives & = 0(mod8),
we have & = §, and the proof 3z complete.

When D{f) = 1, or equivalently D, = D,(f) =1, f =2 g+ implies.
D(g) = D(h) = 1. So an ohvious corollary of the lemma is

(20.3) Dif) =1 = 8(f, B) =0 for E=2,..,7.

%, p > 2. So the argument used
whence with k< 16

“Using (19.1)419.6) if D, > 2, and (20.3) if not, we have

(20.4) 8(f, k) < 1.27, 1.31, 0.97, 0.74, 0.66 for & —=3,...,7

We shall see that (20.4) is very weak, but it snffices to prove the theorem
for » = 18. For taking # =18 in (1.2) and (2.8), and referring to the
fifth column of the table in § 4, we find W{f} < 0.6 on using (20.4) for
E=3,...,7,(173) for k¥ =8, 9, and (17.1), (16.8) for k =1, 2.

1. Improvement on (19.1)-(19.6). We begin by defining N, (f, &),
for 8 < k < 7, in the same way as M, (f, k), sce (3.8}, but with the additional
summation condition p|D{g); and we prove
(21.1) Ny(f B<2{Pk,p)}"p

If p+D(f) this is trivial, sinee p|D{g) is impossible. If n, == ny(f, p) = 1,
then (21.1) follows from (19.8) by suppressing the term involving p"*"
which corresponds to %, = 0, implying p|D(yg). For n2_>2 we Suppress

H—in
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the term in p~% again corresponding to ks = 0, in the formula used to
- prove (19.8) for n,> 2. ‘ '

Next, for any integer m = 2, define 8™ (f, k) in the same way as
8(f, k), see (2.7), but with the additional condition m|D{g). Then, of.
(3.9), we have obviously '

(2.2) SN B <[] (07, B): ptm} [JV,(7, B plm).

If we compare (21.1) with {19.8), which sufficed to prove (19.1), we see
that {21.2) gives
(21.3) S (f, 8) < 8O, ) [ | (o plm.
More precisely, the factor p** in (21.8) may be replaced by
P4 p" L T6 iy worth while to do so if & — 6 ; for then the
factor 1+p~* in (19.5), which could have been replaced by L4 ph=in
can be omitbed, for pim. Similarly, it & — 7, for some factors 2 in (19.6)
which could also be replaced by 14 p*=i,

XNow let . be a finite sef of integers each > 2 such that

{21.4) (1.4} = m|D(g) for some m ¥

~(for fixed f, k with 3 < k< 7). Then, becanse of the condition (1.4)in (2.7)
we have

(21.5) BRI D) {8M(F, k) moe ).

Temma 3 now shows that (21.4) holds if .# is taken to be the set of primet

dividing D(f), or D,(f); for then, with D(NID(f), (21.4) is equivalens
to D{g) > 1. 8o we have

(21.6) - S(F, <8O R Y "9 piD), for S<HT.

We now improve on the case & = 3 of (21.6) by proving:

LEmva 4. If & = 3 and either D, (g) < 6.0r Dy (g) = 10,then Wilg) =1

Proof. We have to prove that every S-ary g with Di(g) <6 or =10
iy equivalent to & disjoint form, with one summand necessarily of rank 1.
Obviously, see (16.1), D(g)|{D,(9)}*; but by taking out the divisor of g
we may suppose D(g)[{D:{g)}* By considering the reciprocal of f, W6 may
suppose 41D(g). Tt p2(D(g), p = 3 or B, we construct a form Gy, with
D&,y = p7'D(g), which is equivalent to a digjoint form if and only it g
18 so. This is done a8 in [67, pp. 179-181; oz [T], p. 2.

We may therefore suppose D{g) = D,(g). It is well known that ming,
the minimum of g, satisfies .(ming)3\\<\21)(g)-<27, 56 ming = 1 or 2.
I ming =1 We may suppese g = mf-l_-%fv1ma+ﬂamlms+g(0, gy D),
with each g, =0 or 1, and each 0 sin_ce g is of the shape (7.1). Then g

bJ
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is disjoint; so suppose ming = 2. Transforming ¢ vationally into 2 -

" -k g' (s, @), with D{g") < B, we have ming’ =0 or ${mod1), else g could

not be of the shape (7.1}, and ming’ < {(4/3) D{g') < 203, by a well known
Inequality. Tt follows that ming’ < 5 /2; whence, if we sappose g redunced,
we have at most three possibilities for its leading binary section. Border-
ing each of these binary forms we find easily that every possible reduced 7
of the shape (7.1), is disjoint.

Lemma 4 gives us that, for & = 3, (1.4) implies that D(g) is divisible
by a prime » = 7, or by 15. So in {21.4) we may take .# to be the set of
primes > 7 that divide Dy = Dy{f), together with 15, if 15 D;. Then
(21.3) and (21.5) give us that (21.6) remaing valid, for k= 3, if the factor >
is modified by excluding the terms with 2 <5, but adding a term 153
it 15|D,. The resulting inequality for S(f ; 3) 18 clearly weakest if n = 14
and Dy(f) == 7; and then, see (19.1) and (19.2), we find

(21.7) , S(f, 3) < 0.00017,

with S(f, 8) = 0 if D;(f)< 6 or = 10, by Lemma 4.

We shall pursue this argnment twrther, for & =4, ..., 7, after we
have proved the theorem for # 3> 16 and so got rid of the ferm with & = 8
in (1.2), It will be useful later to note that

(21.8)  N,{f, )< 2{P(E, P)}“I(1—10’2}”1(171"*“.—%?""“)
H4<k<7 and p|D,.

This follows from (19.11) by the argument used for (19.10), omitting the
term with %, = 0 by the definition of Np(f, ). '

22. Proof of theorem for % =16, 17. The sum in (1.2) has to be
taken over & =1, ..., 8 and we estimate its terms by (2.8) and columns 3, 4
of the table in § 4. Comparing these two columns we see that (2.8) is always
weaker for g == 18 than for # = 17, From (18.5) we have :

(22.1) W1(f) < min{0.963, 0.985 D72, 1.023(D, D,)~ ).

From (16.8) and (21.7) we have

- (22.9) : Walf)+W4(F) < 0.002.

Fork =4, ..., 8, let 9, be the numerieal constant on the right of (19.3), ...
-+vy {18.7) respectively. To save the labour of estimating §(f, %) and then
multiplying by the bound given by the table for (1+sgn(n— 2k)) 8k, n—k),
note that
(22.3)  {1+sgnin—2%)}6(k, n—k)8, < 7.21, 4.61, 2.19, 1.83, 0.76

for B =4,..., 8.

. 6 — Actz Arithmetica XXXV.1
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Suppose first that D;>= 3. We use (21.6) for k =4, ..., 7, (19.1)
for & = 8, also (22.3). The resulting estimate is easily seen to be weakest
for D, =3, and we ealculate that

(22.4)  Wi(f) < 0.020, 0.022, 0.025, 0.047, 0.038 for % =4, ...,

From (22.1), giving W,(f) < 0.6, and (22.2), (22.4), the desired result
W{f) < 1 follows with much to spare; so we may suppose D, < 2.

Next suppose D, = 2. Hstimating W,(f) for & =4, ..., 8 ag above,
we have in place of (22.4) the weaker

(92.5)  W,(f) < 0.113, 0.103, 0.103, 0.147, 0.095 for % =4,..., 8.

This with (22.2) gives W,( ) ... +-Wa{f) < 0.561. This estimate iy too

wealk; but erudely, by comparing columns 3, 4 of the table, we counld

dnnde it by 4 in case » = 17, and then (22.1) would give W( fi<1, so
Wwe suppose # = 16.

If we suppose Dy = D, = 2, we can improve on (22.5) by comparing
the estimates (21.1), (21.8), for P =2, 4<k<T, n =16. Thereby we
see that (21.6) remains valid with a factor (4/3)(2“*"’—{—9*"‘) on the
right. This factor is <§ for £ =4,5,<} for k¥ =6,7; so we find
Walf)+ ... +Wy(f) < 0.382. With this, the third part of (22.1) gives
W(f) < 0.936. 80 we suppose Dy =1, D(f) =D, =32,

With this f o~ ¢+ implies D{(g)D(h) = 2, whence one of D(g), D (k)
is 1. By Lemma 3, (1.4) fails for & = 5, 6,7 if 1)( )=1,and for I =n—k
=16—k = 11,10, 9 if D(h) =1; 50 Wk(f) =0 for k = 5, 6, 7. With the
cases & = 4, 8 of (22.5), thiy gives W,(f)+ ... +W,(f) < 0.21; and with.
(22.1) we have W(f) < 0.948. So the case D, > 1 is disposed of.

Finally, suppose D; = D(f) =1. Then f~rg--h imp]ies Digy
= D(g) = 1. This, by Lemma 3, contradicts (1.4) for & = 2,...,7; and
also, in case # =17, for & = 8,1 =9, Wlth W{fi<l by (22 1) this
gives W(f)<1if n =217, and W{f) = W, (f)+Wu(f) if n = 16. And
we have W,(f)< 0.76 <1 Dby (19.1), (19.7), (22.3). Referring again to
Lemma 3, we sec that (1.4) is impossible for & = I = § unless I 2(mm,+
.o -y5). As observed at the end of § 18, this makes f ~ g-+h im-

possible for k = 1, giving W, (f) = 0. With W,(f), W,(f) each < 1 and not

both positive, we have W(f) < 0.963 and the proof is complete. .

23. Prehmmanes for n = 14, 15. We begin ag in § 22; the sum in (1.2)

overk =1, , and the first and second: colwmns of the table in § 4

show that (2. 8) 1S weakel for each ]a, for m = 14 thd,n for n = 15. From
{18.5) we have’ ‘

(23.1) Wl( f) < min{2.20D7*%, 2.28(D, 1,)-", 2.46 (D, 1)2 D)=,
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and from (16.8) and (21.7),
(23.2) Wo(f) < min{0.135, 0.542 D71}, TWL{f) < 0.004.
In place of (22.3) we have

(28.3)  {L-}sgn(n—2k)}0(k, n—k)S, < 111,113, 77,36 for
kb =4,56,7

We first show that the theorem is true if D; has af least three prime
factors; we shall do so by using (23.1), (23.2) for < 3, (21.6) for k =4, 5,
and (18.1) for k& = 6, 7. The bound resulting is easily seen to be weakest
when 1), == 2-3-5 = 30, and we find that W, (f) is less than 0.422, 0.019,
for & =1, 2,0.082, 0.037, 0.028, 0.008 for % =4,..., T, which with the
second part of (23.2) gives W(f) < 1 with mueh to spare.

We next show that the theorem is true if D, is the produet of twe
distinet odd primes; we do so as above except that we use (21.6) instead
of {19.1) for k& = 6. Again the resulting bounds are wealkest for the smalless
Dy =15, We find Wk(j) less than 0.593, 0.037, 0.023, 0 078, 0.078, 0.011
for £ =1,2,4,5,6,7, and W(f)< 0.824.

Next, we define NO(f, &), for r =1, as in (21.1) if r = 1, but with
the condition p|D(g) replaced by p"D(g), or equivalently by pl|D.(g),
gee {16.1). We prove that

(23.4)  NO(, B <2{PE, ) L—p NP 5<E<T.

Thiy is wivially trne unless p2D(f), that is, p|Dy(f), or wny(f, p) =2
gee (16.2). Assuming n, > 2, the argument used to dedmce (19.10) from
{19.11) shows that {23.4) followa from

(23.5) )"’ - 0 <k, <min(k, ny)} < PP i piD,

and 5=k<T.
This is proved in the same way as (19.11). Similarly but more simply,

reducing the sum in (23.5) fo o single term with &, = &by == 2, § = 2[; -+
421, = 21 = 2n—8, we have

(23.6) NP, 4) - NP, 9 <2 P, P o1 —p7

Now, comparing columns 1, 2 of the table in § £ again, we note that
the nwmerical constants in (23.1) may be replaced for » =15 by 1.31,
1.56, 1.69. Similarly, the constants in (23.2) may be replaced by 0.066,
0.262; and those in (23.3} by 31, 26, 15, 12.

24.. Sharper estimates for S(f, %), k> 4. We need the following
improvement on some cases of Lemma 3. _
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Limnra B, Suppose that f ~=g+h and (1.4) holds; then (i}-(v) below
follow:

(iy If L =4 then D(g) %+ 9 aond D(g) <6 implies that D(g) = 4
or 3 and 2|y (meaning that ¢ has divisor 3).

(i) If & =5 then D(g) = 1,2,3,4,5 or 9.

(iii) If & = 6 then D(g) < 6 implies D(g) = 3 or 4 and 2|g.

(iv) If & = 7 then D (g} = 1, 3 or 6 and D(g) = 2 implies 2|g.

(v) (iv) holds with T, k for k, g; end if I = 8 then D(Rh) +# 2.

Proof. We shall dedunce (i) from Lemma 4; then precisely similar
arguments give (ii)—(v) inductively. Buppose therefore & = 4 and D(g) < 6,
or = 9, and as in Lemma 4, suppose ming > 1. The well known inequality
mintg < 4D{yg), with equality only when (ming) g is equivalent to a cer-
tain form B, which has integer coefficients, gives a contradiction for
Dig) < 3;and for D{g) = 4 it givesming = 2, g ~ 2H,. So we may suppose
Dig) =5, 6 or 9.

Applying the above inequality to adjg, the adjoint formi of ¢, we

have D(adjg) = {D(g)}% minadjg < 7 always, <5 if D(g)<6. Now g

has a 3-ary section, 5ay g, with D(g) == minadjg. Since ¢ is of the shape
{6.1), with # = 3, we have 3|D(g,) if D(g) = 9, and so D{yg,) < 6 always.
We have )

(24.1} g ~ Ga{@ + 118y, oy Byt 7a@5) + {D () 1D (g5)} 2%

where the 7, are rational numbers with each Jr,| < 4, and with denomi-
nators dividing D(g,). We also have ming, > ming > 2; and the product
terms in g, all have even coefficients.

I we suppose that g, is of the shape {7.1), and note that it is trivially
of the shape (6.1) for every odd p, since if not then p2|D{g,) < 6, then we
can appeal to Lemma 4, and with mings > 2 it i3 eagy to see that g = 225 L
“+2{u; - w,m,+a3) is the only possibility up to equivalence. Then in
(24.1)r;, =0 or 7, =0 or +4 for ¢ =2,3;and r, =0 or vy =95 =0

makes ¢ disjoint. 7, = 1/2, », = 1/3 gives only D{g) = 5, 2ig.
' So suppose ¢, not of the shape (7.1). We can only have g > 29-+4and, o
odd. ming, = 2 gives ¢; ~ 2H,, B, an exfreme 3-ary form. We may suppose
g5 identically congruent modulo 32 to 2¢--12#;, v of the shape (7.3).
Then in (24.1) we must have #, ==, =0,y = 0, L}, or &}, g %0,
to avoid a disjoint g. The first term on the right of (24.1) is now = &3
or §73(mod?2), and we have to have D(g) — 4 or b and 2|g. This disposes
of (i); for (ii)—(v) see above.

We now use Lemmas 3, 5 to obtain inequalities for S(f, k), ¥ = 4, 5,
6, 7. Since we have disposed of all other cases, in' §§ 17, 20, 22, 23, we
#hall agsume # =14 or 156 and

(24.2) Di(fy =1,2,p or 2p, p>3.
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Suppose first that k& — 4; assume f ~¢g+% and (1.4) satistied, and
note that (16.2) gives D {g)| {D,(f)}*. Lemma 5(i) shows that D(f) % 1, 2;
but by transforming g as in the proof of Lemma 4 we have alse D(f) = 8, 16.
8o either D(g) = 4(mod8) ot plD{g), the latter possibility being exclunded
it Dy(f) =1 or 2, It follows, el. {21.5), that
(24.3) B(fy &) < B9(f, 4)— 8O (F, 4) + 8P)(F, 4),
with the last term omitted it D,(f) =1 or 2. We notice that for p = 2,
I =4, n = 14 the ratio of the right member of (23.6) to that of {19.8)
is 1/216. So, by the argument used for (21.6), with (23.6) in place of (21.1),
we have

(24.4) S (f, 4)— 8O F, 4) < %é_g(ﬂ)(f? 4.

The left member of (24.4) iz cbviously zero if £4D(f), or 2¢D,(f), which
makes 4]D(g) impossible. For D, (f} = 2 it is zero unless 21D3(‘f), hecause,
with I = 10 or 11, Lemina 3 gives D(h) > 1.

For D,{f) =3 or 6, we ean improve on the third term on the right
of {24.3), s0 we use
(24.5) BP(f, 4) < 580 (F, 4),
see (21.3), only for p > 5. When Dy{f) = 3, we transform g as above
and so see that all possibilities for D(g) are excluded. If D,(f) = 6 then
D(g) = 2°8" with 0 < a, b < 4, and if D(g) = 223" is possible then so too
are D(g) = 2*78% and D(g) = 2%3*7% 8o with & = b =1 excluded by
Lemma 5 we must have 2|ab, and if & — 0 or 4-all the b are excluded.
The first two terms on the right of (24.3) take care of ¢ = 2. So consider
a =1 or3 and & = 2; and we have
(24.6) S(f,4) <897, )-8V (f, £)+80(f,4) i Di(f) =3 or 6,
with the last term on the right omitted it Dy(f) = 3. To make use of
'(24.6) we have, see (21.3),

(24.7)  8UB(F, 4) < 8EF, 4)4%8‘”(1& 4y i Dy(f)=6.

Combining these results we have

0 it D ({f)=1or 3, ‘
10 it Dy(f) =2 and Dy(f) =1,
1/216 # Dy(f) =2,
(0}
(248) 8(f, HIS(f, 0 < 17108 it Dy(f) =6,
7 i Dy(f)y=p=5,
1216Lp~ #  Dy(f) = 2p >10.
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There are obviousty some possibilities for improvement by further distine-
tion of - cases.

The case k = b is simpler. Transforming ¢ as above, we see that by
Lemma 5 (if) we cannot have D{g) a power of 2 or of 3, se all possibilities
are excluded if D, (f) < 3, and all but those with 6D (g) if D, =6, orp| Dy
i p=5and D(f) =p or 2p. Taking A4 = {6} or {p} in (21.5), we see
as above that .

. 0 i Dy(f)<3,
(24.9) S8(f, 5)[8O(f, 5) < 1/36 it Di(f) = 6,
p~* it Dy(f) =9 or 2p, p =5,

Again, sinee I = 9 or 10 and so Lemma 3 glves D(h}> 1, there are possi-
bilities for improvement.

- Now take k = 6. From (24.2) and Lemma 5(ili) we have either 4D (g)
or p|D(g), whence
(24.10) _ (£, 6) < 89(F, 6)+89)(f, 6).
By the argument for (24.4), but usmg (23.4) instead of (23.6), we find

(24.11) S(‘ﬂ f’ < e S(G) f; 6},

tihe left member heing however zero unless 2|D,(f).

The second term on the right of (24.10) may be omitted unless D, ( N
= p or 2p. By (21.3} with m = p it is at most p~*; but if 41D (), or 21D, (f),
we can do better by using (21.2) and estimating the factor M,(f, 6).

- We note that the ratio of the right member of (19.10) to that of (19.8),
with 2, 6 for 9, k, is £, 8o

(2412)  S9(f, 6)/89(F, 6) < p7", (4p)~" .
for 24D,(f), 21D,(f) respectively.

Lastly, take & = 7. From (iv), (v) of Lemma 5, the latter giving
(h) > 1 i »n =14, we find by taking .# in (21.4), (21 5} to be empty if
D(f) =1, = {2}1fl)1 (f) = 2, that

0 it Dif =1,

+ i Dyf) =2,
27 i Di(f) =2 and n = 14.
The third of these is essentially (21.6), with a factor % put in by wsing the

remark following (21.3). To save 1/2 Y2 in the fourth case, in which 4/D(g)

and 2|D.{f), compare (21. 1) and (21.8). We shall improve on (24.13)
later.

(24.13) S(f,?)fﬁ"“’(f,’f)éio D) =2, n=1d, end Da(f) =1,
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For k = T i is difficult to improve on (19.1) when D,(f) = 2p = 10.
{21.6), improved as above, gives

3 i Duf) =p=3,
(24.14) S(f, HSOf, T) < 3(L—p™)'p~°
if also either » = 14 or p|D,{f).
When p =8, D(g) = 8 is impossible and so with D,(f) =3 we have

tio have 91D(f), 3|Dg(f}; and similarly for n = 14 we have 9D (h), 3\1D.(f).
8o (24.13) may for # = 3 be replaced by

(2418)  S(ATSOG D<LT2 H Dy(f) =3,

_the left member being 0 unless D, ,, = 3.

With 2 =7 and D; =6, Lemma 5 gives D{g) =1, 3 and so
Dig) =2 or 91D{g), giving

(2416)  SU, TSSO, NH8NF, T i Dy(f) =6

The last term is zero unless 31D,(f), and by the methods used above
we have

(24.17) SOF, TYSO(F, T) < L/48VE it Dy(f) =
(24.18)  SO(f, T)/SO(F, )< 1/2V2,5/48V3  for  2\Dy, 3|D,

{and D, = 6), respeetively. The case Dy(f} = 1 remains. Bub with Dg‘ = },
D{g)D(h) = 6, we must have D(g) = 2 and then D(h} == 3, which I8
impossible for I = 7, giving S(f,7) =0 if » =14, Dy =6, Dy = L.

25. Completion of proof for composite D, (f). In this section we suppose

D, =D {f) =2p, p =3, and n = 14 or 15.
© Suppose first p 2> 5. Then by (23.1) and (23.2) we have W1 (f)+W(f) +

+W,(f) < 0.755. Using (23.3) for & =4, ..., 7, we have W,(f) < 0.014
by (24.8) and W,(f) < 0.018 by (24.9). From (24.10)-(24.12), and the
vemark following (24.11), we have Wy(f) < 0. 056, and from (19.1) we have
W, {f) < 0.076. W(f) < 0.094 < 1 follows.

Now suppose p =3, D, = 6, and consider first the case # =15.
We have W,(f) < 0.615 by (23.1), with the smaller constant mentioned
at the end of § 23, and W,(f) < 0.033 by (16.9) and the table in § 4. W,(f)
=0 by Lemma 6. For &k =4,...,7, we use (23.3) with 31, ?6, 15, 12,
again see the end of § 23, in pl&ee of 111, ... . TWith (24.8) this gives W,(f)
< 0.018; and with (24.9) we hawve W5(f ) << 0.017. From (24.10)-{24.12)
wWe 5ee thqt S(f, 6)/8(f, 6) does not exceed max(1/3,1/36-+1/12) =1/3,
whence by (19.1), (19.5) we have Wg(f) < 0.092. (19.1) and (19.6) give
Wo{f) < 0182; and now W(f)<0. 955 < 1 follows (and could be much

. improved by the arguments for n = 14 below).
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Now suppose Dy =6 and »n = 14; we have Dy =1,2,3, or 6 by
(16.1). Suppose first that D, = 6. Then we can argue for b =1,...,5
23 for #» =15 and we find Wi (f) < 0.380, 0.069, 0, 0.058, 0.071 for
k=1, ...,5 Fork = 6, (24.10)~(24.12) give S(f, 6)/8O(f, 6) < 1/9, which
gives Wo(f) < 0.159. (24.16)-(24.18) give W, (f) < 0.040, and we hsave
W(f) < 1. ‘

It D, =1 then D(f) = D(g)D(h) = 6. With (1.4) and Lemma 3,
this is impossible for % = 4 and implies D(g) =6, 3,2, D(h) = 1,23
for k¥ = 5,6,7, 00 1 =9, 8, 7, which can be excluded by Lemma 3 and
Lemma 5(v). So W.(f) = 0for k = 4y ..., 73 and as above algo for  — 3.
On ecaleulating that W,(f) < 0.9 and Walf) < 0.069 we have W(f) < 1.

Next suppose D, = 2. We have Wi(f) < 0.658 by (23.1), and we
can estimate W,(f) for ¥ =2,...,5 as for Dy =6, giving W, (f)+ ...
- +Ws(f) < 0.854. For k = 6, with D(g) = 3, 6 excluded by Lemma 5,
and 9/D(g) by 3|D,(f), (24.10) is valid without the second term on the
right, and using (24.11) we find W,( )< 0.040. Omitting the second term
on the right of (24.16), (24.17) gives W,(f) < 1/3 V3 < 0.193. If we assume
Dylf) = 2, giving W(f) < 0.503 by the last part of (23.1), then W (f) < 1;
80 suppose Dy(f) =1, giving D{f) = Dig)D(h) =12. With k=1 =7
this contradicts (1.4), by Lemma 5; so Wo(f) =0 and W(f) < 1.

Finally suppose D, = 8. We find as above that W (f} < 0.538 and
Wi + ... —I—Ws_(f) < 0.736. From (24.16)-(24.18) we find S(f, T)f
I89(F, ) <1/8V3, which gives W,(f) < 0.040. S0 we need to prove
Wi(f) < 0.224, whereas {24.10), with the first term on the right zero,
and (24.12) give only W, (f) < 77 /162. Very crudely, the improvement
we need can be obtained by referring to (21.3), with m = 3, &k = 6, and
using (21.8) o estimate N,(f, 6}, in place of the much wealker (21.0) which
is all we needed for (24.12). .

It now remains only to prove the theorem for D (f) =1 or 2 prime,
whenee by (16.2) Dy(f) =1 or Dy(f), and » = 14, 15,

26. The case D,(f) = Dy(f) = p=3. In this case, see (28.1) and
- the end of § 23, we have : '

(26.1) Wi(f)<228p7% 151p™"  for = =14, 15.

From (3.3), taking d = 1, p, (16.3) and (16.6), and reforring to the table
in §4, we have

o

(26.2) Walf) < 33p7% 16p™2  for g — 14,15,

Hrom (21.7) we have Wa(f) < 0.004, as in (23.2}; and W,(f) = 0 by Lemms
4 it p<5. ' '
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For k= 4,...,7 we have (21.4), (21.5) with .# — {r}. Using (21.2),
with m = p, and (21.8), we may replace (21.6) by

(26.3)  S{f, BSOS, ) < p P (1 o ghmtoiay (1 gyt gy

The right member of (26.3) is the ratio of that of (21.8} to that of (19.8).
It is obviously less than (1—p=%)~ip*#=in hyut for the larger & we can
do better.

Using (23.3), and simplifying (19.3)~(19.6) by putting D, = », r{ D)
=2, (Dy, 2} =1, we tind from (26.3) that (for » — 14)

P71 —pTH206 1 4F) for k=45,
(26.4) Wy () <1847 (1—p™) "1 +p7%)  for & =6,
2p7f (1 —p~Ht for k=7,

Similaily, with the smaller eonstants given at the end of §23, we find
that for & = 4,5 and » =15, (26.4) holds with p~ in place of p~¢,
and 102 —10% in place of 2064 4% For &k = 6, » =15 we find W4(f)
< 30p™B*(1-—p V', and with a little simplification we find W,(f)
< 24p™ ™" for n = 15; and now (26.4) holds for n = 15.

A gimple ealculation shows that these inegualities imply W(f) < 0.6
i p 2> 5. We therefore suppose p = 3. This gives W,( f) = 0 as noted ahove,
and also Wi(f) = W;(f) =40, since as nobed earlier, see (24.9) and the
remark following (24.6), W{g) =1 for k = 4, 5 if D{g) is a power of 3,
ag it must be here since D{f) is so. We now find Wif) < 0.7if n =15,
50 We Suppose n — 14. '

Estimating W,(f) as above for k = 2,6 we find W(f) < W, i+
+0.136 +0.265 +W,(f), and W,(f) < 0.149. This last estimate can be
greatly improved. ¥or Lemma & shows that (1.4) fails, for B =1 =17
and I}(g), D(h) each a power of 3, unless 9|D(g) and D(h), implying that
%y = ny(f, 3} > 4. This shows that for ¥ =7, p = 3, (21.2) holds with
NO(f, 7} in place of N,(f, 7) on the right, whence in the argument lea-
ding to (26.4) we may work with (23.4) instead of {21.8). Comparing these
inequalities we Improve the above estimate for W,(f) by a factor +, giving
W(f} < Wa(f}-1-0.440.

With W, (f) < 0.760 by (26.1), this is gtll not sufficient. But if we
suppose n3(f, 3) 2= 3 we may use (23.1}, with D, = D, = D, = p, giving
Wi (f} < 0.474 and W{f) < 1. And if f is imprimitive we have crudely
W, (f) < 0.190, again giving W(f) < 1, by the remark at the end of § 18.

Bo we suppose Dy(f) =1, giving W,{f) = 0 as noted above, and f
primitive. From (6.1) it is clear that there are just two possibilities for
the 3-adic class of f, and from § 7, {vii) the same holds for the 2-adic class,
giving at most four possibilities for the genus. Two of these may be ex-
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cluded by the argument used at the beginning of the proof of Lemma 3,
and the others are '

(26.6) FoQt .. +Q+H3Q+3Q, w =14,
(26.6) F=Q+ ... +Q+30+2B, n=14

where £) is & unary form with coefficient 1, and B is the case m = 1 of (7.3).
‘We leave these two cases for the present.

27. The case D,{f) = p = 3 and D,(f) = 1. In this case (with n = 14
or 1B) we have D{f) = p and f o= g+h gives D(g)l)(_h) =p, D({g) =1
or p. By Lemma 3(i), (1.4) now gives D(g) = p, D(h) =1, for B=2,...,7
Now using Lemma 3(ii), (1.4) gives ! =n—k #7,9,10,11,13. Bx-
cluding from (1.2) the terms that are zero by thiz argument, .

W(f) = Wi(H)+ 18 —a)W5(f) +(n— 1) Wy (f)+-
+ (15 —n)Wq(f) + (n— 1AW (f);

{27.1)

and D(h) # 1, implying D{g) = 1, when I =13, gives

(27.2)  Walf) < 0{1,13)8,(f, 1) < 4208,(f,1) for n =14,

from (2.8) and the fable in § 4, with ¢ = 1 in (3.3).

Suppose first n = 16. Then S(f, 7)< p 80 (f, 7) by (21.6), and
8OF, 7) = 8.70x 4p~ ™" Dby (19.6). Using the improvement on (23.3)
given at the end of § 23, W,(f) < 48p~* We have W,(f) < 1.51p™"* by
the corresponding improvement on (23.1); and W,(f} < 0.004, see (23.2).
For p > B these inequalities, with (27.1), give W(f) <1 very crudely;
80 suppose p = 3. Now W,(f) = 0 because, by Lemma 5, we eannot have
{14) and D(g) =3 when k =7; and again we have W(f) <1 very
crudely.

Now take # = 14. We have W, (f) < 2.20p™" by (23.1), and W,(f)
< 33p~% since D.(f) =p was not used fo obtain (26.2). Using (23.3)
and (19.5), we find W,(f) < 154p (1 4+p"). Now (27.1) gives W(f) <1
with much to spare if p 22 11; s0 we suppoge p < 7, and digtinguish two
cases. '

(i) It £ is Imprimitive, then (7.1) rednees, with D(f) odd, to f 2y,
whence f 3 ¢+% is impossible unless g, h are of even rank, giving W,(f)
=0, and W(f)< § unless p =3, and also for p = 3, unless W¢(f) > 0.
But then, see Lemmas 3, 3, we have

(27.3) J =~ 20, + 20,

‘where E; and F; are extreme forms, with non-Gaussian determinants 3, 1.
We return to this case later.

icm
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(ii) Suppose f primitive. Thenfor k, I = 6, 8 we must have & Imprimitive,
28 noted above, and so g must be primitive. This is excluded by Lemma
5(iii}, giving We(f) = 0,if p =3 or 5. For p =7 we need a slight im-
provement on Lemma 5 (iii): if & = 6 and D(g) = 7 we have W(y) = 1
unless g is imaprimitive. Thiz dees not follow from Lemms 5(i1), by the
method used in the proof of Lemma 5, but it can be verified by nsing
Hermite rednction as, e.g., in [5], p. 13, § 9; I leave it to the Teader.

Now we may suppose W (f} = 0, and {27.1) gives W(f) < 2.20p ¥ 1
+33p~%, whence W(f)< 1 for p =5, 7. With p = 3, there are just two
possible genera, ag in § 26:

(27.4) FeeQ+... +Q 130,
(27.5) fe~Q+..+Q+-2B,

n =14, D(f) = 3
n =14, D(f) =3

?
H

with B = a3, +@3my, -0}, 88 in (26.6). We return to these two cases
Iafer.

28. The case n = 14 or 15 and D(f) a power of 2. Denote by F, (or ;)
an absolutely extreme form with minimnm 1 and rank % (or I). E,, B., E,
oceur a8 exceptional cases in Lemmsa 5, and have D = 4, 2, 1. Tt is well
known, and is an easy eorollary of Lemma 5, that E, 7 (1.3)+2(7.3),
By —Q-+(7.2), By 7 (7.2), with the notation of §7, and ¢ =a? as
above. We deduce that in the present case the possibilities for the genus
of f are given by '

{(28.1) fe=@Q+ ... +Q--2Q+ ... +20 (n, = log, D(f) = 0),
(282)  feQl. FQE2H4 .. +2E,  (2n>2),
(28.3)  f2Q-F ... +20-20— ... —2G+20 (2, n.>2),

with [$n,+1] — signs, and ¢, with rank =, of the shape (7.2), and

(28.4) fe 2B, +2F, (n, =1,n = 15).

To see thizs we count the possibilities np to =~ for f when =, #, and
¢, = sgnrankg,, 0, = sgnranke, are given, see (7.1). From §7, (i)-{vil),
we find at most 2 possibilities, but only one when n, = 1 and # = 15,
and none when g, == g, = 0, for as in the proof of Lemma 3 that wounld
give the contradiction n = 14 and D(f) = 4°D' with ¢ = {n,and D' = —1
(mod 4). Then the only possibilities except (28.1)-(28.4) are derived from
(28.1)~(28.3) by changing two --igns to —, or vice verse; and these cages
can be excluded by the argument used to prove ¢ = 1 in (20.1), We note
next that, by (16.3), Lemma 4, and Lemma 5(ii),

(28.5) WAfy=0 for k=2,3,5.
(For &k = 5, consider the reciprocal of g in case D(g) = 8, 16 or 32.)
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Now sappose (28.4) holds. We have W, (f) == 0 becanse with k =1
f=@Q+h is obviously impossible, and f ~2Q+h would imply A v 2%,
which we showed above to e impossible. From Lemma § it is easily see
that W(f) = 0, and that [~ g-+h is possible with % =7 only with
g ~ 28, b ~2H, With (28.5), noting that &, and F; have class-number 1,
it follows that the right member of (28.4) it the only disjoint elass in the
genug of f. So if the theorem is falge, then f has clags-number 1; which,
see [9], gives the contradiction » < 10. So the theorem is true in case (28.4).

O'Menra hag shown in [1] that there exists a forma f' with D (') = D(f)
which i§ not equivalent to & disjoint form. If we can prove f' o~ f the
theorem follows. That iz, the theorem is frue if for given D(f) we have
only one possibility for the genus of f. Looking at (28.1)-(28.3), we see
that (28.1) (with an empby sum of terms 2¢) is the only possibility if
D(f) =1, or ny, = 0; also if n =14 and =, #, are both odd. We may
therefore assume that one of (28.1)-(28.3) holds, and that

(28.6) 2,22 i n =14, ny21lifn =15.
We . next show that

(28.7) W(f) <0, 111/864, 31/864 for my <2, n =14, n =15

respectively. For the first of these note that Lemma 5 and (1.4) imply,

for k = 4 and I =10 or 11, 41D{g), 21D(h), B|D{f). For the second, we use

(23.3) and (24.4); for the third, replace 111 by 36, see end of § 23.
Similarly, using (24.10} and (24.11) in place of (24.4),

(28.8)
(28.9)

Wify =0 if
W(f) < T77/192, 15/192  for

nzéazél?’,

7 = 14, 15 respectively.

We can however improve on. (28,9) if we assume 7, > 3. For (24.11) comes
from (23.4), and so from (23.5); and (23.5) is weak for n, > 3. A simple
caleulation shows that for % = 6, p = 2 the left member of (23.5) is at
most 27027, 27027127 for n = 15, 14, if we assume n, > 3,
implying n,> 4 in case n =14, see (28.6). Comparing these estimates
- with (23.5) as it is, we have

(28.10) Wi (f)< 0127, 0.043 for u =14,15,if ny> 3.

For k = 7, note first that the proof of (19.1) remains valid if (19.8)
is weakened Dy putting p~* for p~¥# on the right; a factor t(D,)
on the right of (19.6) arises in this way. Pufting k = 7, p = 2, the right
member of (19.8) reduces to 2P~"-27"%, P = P(7,2). By the argument
leading t0 the case & = 7, p = 2 of (21.6), we can sharpen (19.1) by a factor
2°°P times the right member of (21.8) (with p = 2), if we suppose 2|D,,
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or #p 2= 2. More generally, s as to get a better estimate if n, >3, the
argument gives the first of

(28.11) S, NSO <P I T = 7, ky 24},

with » =1 or 2 according as {L.4) is or I8 not consistent with

Dig)y =2 (for & = 7).
The sum on the right of (28.11) is that of {19.11) or (23.5), with & =7,
P = 2, according as » = 1 or 2. The improvement in case # = 2 ig obvious;
and we have r = 2 in case (98.2) since Dig) = 2 implies g ~ 28, ~ — 20 +
+2(7.2), and ~2¢ cannot split off Z-adically from (28.2).
Now using (23.3), with 12 for 36 in case n = 15, we find from (28.11)
that, with SO(f, 7) = 2758, by (19.6)

7

(28.12)  W,(f)<12(31—2m) ¥ 27%: & =7, by > 1}

with + =2 in case (28.2), 1 otherwise.

A simple calculation now shows, using {28.6) to exclude Ny = 3 ‘When
n = 14, that

(28.13)  W,(f) < 0.008, 0.043 for n = 14,15, if 7,3 3.

We have W,(f) = 0 if », < 1; for all cases with #, < 1 have been digposed
of except (28.1) with n, =1, n = 15. In that case fovg+h with k = 7
i3 possible only with ¢ =28, D{g) =2, D(h) =1, h primitive, so
Wik) =1 by Lemma 3.

For k = 1 we caleulate the product over odd p in § 18 more precisely
and simply, sinee no such p divides Dy, and so, vsing the table in § 4, we
have '

(2814)  W,(f) < 4.21M,(f,1), 2.88M,(f,1) for n = 14,15.

We note also, see the remark at the end 0f § 18, and (14.1), that

{28.15) M,(f, 1)< 2™ in case (28.3).

29. The cases {28.1)—(28.3). Suppose first that (28.3) holds, with #, > 3.
Then by (28.14) and (28.15), with 2ln, > i» giving #,> 8, we have
Wi (f) < 0.827. With {28.5) and (28.7), this gives W, (f)-- ... +W.[f)
< 0.656, By (28.10) and (28.13) we have W,(f)+W.(f) < 0.170, and
W(f) <1 follows. _

Next suppose that (28.3) holds with n, = 2 and # = 15. We estimate
Wi(f) as above for k =1,2,3,5, and we have W,(f) =0 by (28.7),
Wel(f) < 0.07% by (28.9). {28.12) gives W,{f) < 12(27®P1L27% and
W(f) < 1 follows crudely. We may therefore suppose that # = 14, ny =2
in case (28.3) and then il is easily seen that

(20.1) f2E, 128, (n =14, D(f) =4).
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In case (29.1) we have W,{f) = 0 for 2 <<k <5 as above. F01: E=1we
obviously cannot have g = @, and we cannof have g = 2¢, for if we conld
we should find f~ 2Q+4-2Q--2¢, which we have excluded. So f ~g+h
is possible only for k = 6,7. We shall return to (29.1) later, and use this
remark.

Next suppose that (28.1) or (28.2) holds, with #»,2 3; whence by,
(28.6) m, = 4 or 6 if m =14. Using (23.5), (28.7), (28.10) and (28.13)
we have Wy(f)+ ... - W,(f) < 0.264, 0.122 for n — 14,15, (18.4), with
r =38, gives M,(f) < 0.201. Then if # = 15 (28.14) gives Wl(f.) < 0.579
and W (f) < 1 follows. For #n = 14 we need a slightly better.estlma%;e iqr
M,{f,1). The argument leading toc (18.4) shows that that inequality is
valil withont the restrietion r< 3 if we suppose further that 24D,,,,
or 7 = ng. Then with » =4 we find M,(f, 1} <2427 +2" and
with r = 6 we find a better inequality, and (28.14) gives W,(f) < 0.662,
and again W(f)'< 1. _

Now suppose that {28.1) or (28.2) holds with n, <{ 2. Then W, (f) = &
by (28.7), Wy(f) =0 since with & =6 we could only have D(g) = 4,
2ig, and Dk} =1, giving 2|k ~ 2, by Lemma 5, whenee 2if. If we furthe
suppose % = 15 then for k¥ = 7 we can only have D{g) =2 or 4, D(h) = 2
or 1, D(k) =1 and & ~2F; by Lemms 5, and D(g) = 4, g%ving 21¢g.
So W,(f) is zero, and with (28.5) we have W(f) = W,(f). Now if n, — 2,
(18.4) gives M,(f,1) < 0.3 and (28.14) gives W(f) < 1. So

(29.2) S =2 1 +0@+4-2Q  (n =15)

iz the only ountstanding case with # > 14; and for n = 14 we have only
{29.3) f=Q4 . +Q+2042Q (n=14),

(29.4) FQ+ . 4Q+2B, (v =14).

Besides these four genera (29.1)—(29.4), we shall have to consider
(26.5), (26.6), (27.4) and (27.53). (The argunment used for (28.4) disposes
of (27.3).) :

I will be useful later o notice that when (29.3) holds the two congT-
ences f(z, ..., #,) =1, —1{mod4) have equally many solutions in infe-
gers m;(mod4), but when (29.4) holds the second congruence has more
solutions than the first, For (29.3) this is clear, since each ferm 24 is
'0,'2(1110(14) equally often. In the other case, see [8], p. 98, Lemma 1 and
note that [~ —Q@—Q+2(7.2) +4(7.2).

30. Proof for some special cases. Wo consider first the two cases
(26.5), (26.6), each with » =14 and D{f) =9. The argnments of §26
show that in either case we have Wi (f)=0 for &k = 3, 4, 5, 7, and Wy(f)
<0.76, Wi(f) < 014, W,(f) < 0.265. It would suffice to improve this
last inequality to W, (f) < 0.1. In estimating W,(f)} < 0.265 we have
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excluded (for % = 8) the Dossibilify D(g)
gy = 9. But becauge of the possibility
we have not excluded Ii(g) — 3,

Now another possibility with Dig) =8, & = 6, iIs ¢ ~@, where &
is the diagonal form Q- ... +@+3¢; and by (1.4) we may exclude this
case. It in easily seen that 28; and @ have each class number 1, Further,
we have 24, ~ @ for every odd P; this is tefvial for P > 3 and easily veri-
fied for p = 3. By using § 7, (i), it may be seen that 2E6+aQ;vG—z_aQ
for every odd e It follows thas 2B+ h =GR for avery prilﬂiﬁve k.
So if (26.5) or {26.6) holds, and f = 28 +h, necessarily with Primitive h,
then we have also f o~ G+ ‘

By excluding the latier alternative wa sharpen the estimate for W{fy
by a factor << w(2E;)/w(@). This factor is bja, where ¢ i3 the number
of integral automorphs of 2E¢, and b the corresponding numper for @.
Now b = 2%!, by counting permutations and changes of sign; and
= 144-6!, see [10], p. 325. 8o bla << 1/10, W (f) < 0.03, and W(f) < 1.

Now take the case {29.1), and. denote by F the perfect 9-ary form
Haf+ai+ .ol + L (a4 .. +25)" with minimum 1, see 4], p. 558,
(6.1}. The (non-Gaussian) determinant of 7 is 10, and it is easily verified
from (29.1) that f vepresents 8F over the p-adic iutegers for every P.
It follows that the genus (29.1) contains a form, say 2, which hag a S-ary
section ~ 2F. Now suppose ' equivalent to a digjoint form ¢+ 7. As
shown in [9], p. 556, Lemma 3, ¢'+ %' cannot represent # unless one of
¢, k' vepresents F. Then, crudely, either ¢’ or A’ has rank z 9. By the
remark following (29.1), ¢’ and %’ have ranks 6 and 8 or 7 and 7; 5o we
have a contradiction which shows. that 2f" is not equivalent to a disjoint
form, and the theorem s proved for case [29.1),

We next consider the case (20.4). By the case n = 14, D(f) =1,
whieh we have disposed of above, by reference to [1], thers exists o form 7
which is in the genus of Q4 ... @ and indecomposable; whenee trivially
min I 2 2. Noting that @+ +0+¢ goes into o -2 o + (2, @, + o, +
+2)* ~ 21, by a transformation with determinant 2, we see that by
such a trangformation we ean take F into [ satisfying (9.4), obviously
with minf > 2. Wo suppose this £ equivalent to 2 digjointform ‘g -~k and.
dednee o eontradiction, ' ‘

Clearly ming = 2, mink > 2, and we have D(g)D(h) = 4. By (28.5),
wo have § = L4, 60r V. h="T7thenl =7 and by Lemma 5 we mugh
have D(g) = D(h} = 2, and then 2lg, 2|k, 2|f, contradicting (20.4). H % = 4
or 6 then Lemma 5 gives D(g) = 4, 2]g, and D) =1,1 =10 or 81 = 8§,
2lh, and again 2|f. So & =1, and obviousty g = 2@. But then in (7.1)
we have @, not null, again contradicting (29.4), and thiy contradiction
completes the proof. '

=1; and we could exclude
7 ~2E5, See Lemma 5(iii),

L
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In the four remaining cases (27.4), (27.5), (29.2), (29.3), we shall as
above construct the form whose existence iy asserted by the theorem butb
we shall do so more explicitly.

31. The cases (29.2), (29.3). In the first of these cases we begin by
defining
. 12 ,
(311)  f= 2 (¥ + 50+ Gy + Fns) 4 (0 + )+
=1

2 »
A (B + S0y ) - o,

‘where the accent means that the sign of @, iz to be changed in the fwelfth
term, and the g, are restricted to satisfy Y1t ... F¥a = 0(mod2), We
could write ¢; = w; for ¢ < 11 and g, =@, -+ ... 1y 4245 Tt is easily
seen that (31.1) implies D(f) =2 and f = (15 + )% (mod 2), identically,
whence it is clear that f satisfies {29.2).

The leading 12-ary section of (31.1) takes its minimum value 2 at
132 pairs of points at which £ (yy, ..., ¥5.) isa permutationof (1,1, ¢,...,0)
or of (1, —1,0, ..., 0). With |z,;] > 2 we have just one pair of points,
one of them with #,; = 2, 4,; = 3, = — 1, and the y; uniquely determined,
at which f takes the value 2; and none with f — 1. Tf g, = 1 and <2,
then clearly @, &, has to be odd, 8o f =1, and &, #,, = 0, —Lor —1,0;
and then g, ..., 9 =0,...,0,1, contradicting 2| Yy;. So f= 3 when
s =+1. If @; =0, f =2 implies @, =0 or +1, 3, =0 or -1,
and o5+, even. So we have one pair of points with =, = 2, = +1
and each y; = —p,, and one with ¥y = — &y, = 1, each y; zerve, and

f=2

We see therefore that f has minimum 2, with 135 pairs of minimum

points, and that there is just one homogeneous linear equation, namely
@5+ %y = 0, which is satisfied by exactly 134 of the pairs of minimum
points.

Suppose now that f ~ ¢-+-h. Then obviously ming > 2, mink > 2,
and D(g) D(h) = 2. With ¢ of rank % < 7, Lemma 5 shows that D(g) =1
Iz impossible, and D(g) = 2, giving D(h) = 1, is possible only for &k — 1
or 7, with g = 20 or 2F,. In the latter cage [ = 8 and D(h) =1 makes h
decomposable unless b = 27, making f imprimitive, see (28.4). 8o k == 1,
g =20, f ~20-+h. Now 20-+% reduces to b, and loses just one 15&1'1'
of minimum points, on putting z, = 0,

From this, and what we have proved above the minimum poinby
of (31.1), it follows that on putting @, = —z; (31.1) (if decomposable)
must reduce to a form equivalent to 4. But on making this substitution
we gee at onee that (31.1) rednces to a form with D — 4, whereas D(h) = 1.

So we have a contradiction which completes the proof for case (29.2),
and so for # > 15.
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For the case (29.3), we define
: 5

(31.2) f= 2(@/«;"r“%‘1’13)2‘[“(?/6‘}“%3"13‘5‘5”14)2“;‘

i=]

5

P 5 3
+ (2 3000)* + (25 -+ 015+ §0y) + §aky + dal,,
it

(3

with o+ ... bus = 2k ..+ 2, = 0(mod2). Tt is easily verified that
this gives D(f) = 4 and f identically congruent to (#6134 #14)* modulo 2,
whence f satisfies cither (29.3) or (29.4). Suppose we give a fixed set of
values, with @,;+4-2,, odd, to all the variables except Yy, Whose parity is
thereby determiined. The term involving y, in (31.2) then takes the shape
1(2w+1)% with w an integer, and is congruent to 1, {(mod4) equally
often; the other terms reduee to constants. So we see that f = 1, — 1(mod4)
have equally many solutions, which by the remark at the end of § 29 gives
us that f defined by (31.2) satisties (29.3),

It is clear from {31.2) that at integer points with f odd we have o4y,
odd and f 2 3, s0 f has minimum 2. If we put ;3 = ,, = 0, (31.2) reduces
to a digjoint form taking its minimum value 2 at 30 430 pairs of minimum
points, with the y; a permutation of +1, 41,0, ..., 0 and the z all 0, or
vice versa. With w3, @, 50,0 we have f> 2 unless @2, 18 even,
and one of @y, @y, is -2, the other 0; and this gives just 2 more pairs
of minimmm points. _

Now there are just two linear homogeneons equations, namely
213 = 0,8, = 0, which arc satisfied by exactly 61 of the 62 pairs of
minimum points. ,

Suppose now that f defined by (31.2) is equivalent to g+ 5, obvionsly
with ming > 2, mink > 2, and D{(g}D(h) = 4. One possibility, g = 20,
{.=13, D(h) = 2, can be exclnded by noticing that on putting #,, or 2, = 0
(31.2) reduces to & form. with D = 8, and so not equivalent to . Lemma 5
shows that we cannot have k =2,3, or 5. If & =4, D(g} = 4, L =10,
D(h) =1, also excluded by Lemma 5. ¥k = 6, D(g) = 4, 2|g, D(h) =1,
I =38, and 2|k, 2{f, by Lerama 5. If & =1 = 7 then Lemma 5 gives D(g)
= D(h) =2, 2|g, 2|k, 2|f. Since 2|f contradicts (29.3), f ~g-+h gives
a contradiction which completes the proof of the theorem in case (29.3).

32. The cases (27.4), (27.5). We begin by noticing that there exists
& positive form F, with det A(Fy) == 4 and

(32.1) . Fy = an@y 0300, + 250 + 2, 0 (04 16),

and that the extreme form B, may, by a suitable infegral unimodular
transformation, be supposed to satisty -

(32.2) By = .5, + (2} + 250, + 27) — 625 (mod 16)

7 — Acta Arithmetica XXXV,1
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both congrmences holding identically in fthe variables. 2#, is equivalent
%0 the leading 8-ary section of (31.1); but to show that ¥, exists, with deter-
minant 4 and. satisfying (32.1), it is simpler to appeal to [4], p. 72, The-
orem 43, 2F; is the leading 5-ary seetion of (31.1); by putting y,
= — ¥+ .-- +1,) we obtain a 4-ary section of the shape 2(7.3), whence
(52.2), and detd (#) = 2. We now define

(32.3) = §F(2y, ..., 20, By, 20y 0yy) +
3
+ 3B (28, ooy 2Wpay @+ 2019+ F0q,) S0,

Straightforward caleulation shows that det 4 (f) =3-2", ‘also that f
hag integer coetficients and is identically congruent to 22 modulo 2. So
D{f) =3 and fis of the shape (7.1) with g, not null. By the argnments
of § 27 f satisfies either (27.4) or (27.5); obvionsly the former, since (32.3)
shows that fy Q4+ ... +0+3Q. I flr,...,s,) =1 for integers @,
then #, is odd, the first term on the right of (32.3) is non-zero and so at
least §, 8o oy, must be zero. Then each of the first two terms on the right

of (32.3) is a positive integer, so f > 1, contradiction, and we have minf > 2.

Now suppose that f satisfies either of (27.4}, (27.5), and minf = 2,
and that f ~g4h As in §27, k¥ =rankg =1, 2, or 6. But Lemma 5
gives D{g) = 3,if k = 6, because ming > 2, and then 2|g, I =8, D(h) = 1,
2[h, 2|f, contradietion. S0 ¥ =1 or 2. It %k = I then g = 3¢ since ming > 1;
s0 D(h) =1, | = 13, which is excluded, see Lemma 3. So & = 2; but now
with D(g) =1 or 8 we can take g to be disjoint, with minimum 1, unless
Dig) =3 and g ~2B = 20} |20, , + 2u & —®—3Q, which contra-
diets (27.4). So in that case (32.3) is indecomposable and the theorem is
proved. It remains to dispose of case (27.5) by constructing f, in that genus,
with minf = 2, which does not satisfy

(32.4) f~%B+h, rankh =12, b ~Q+...+0.
We transform the extreme form %, so as to make it satisty

(32.5) : By = 0,0, + 58, - 2,5, — o (mod 8).

We use also a form F; with non-Gaussian determinant + and

(32.6) ' By = 10,0y + 24w, — 25— 7 (M0A §).

2F, is the leading 6-ary section of (31.1); it s also the g with D(g) = 4
of Lemma 5(iii). Now we define

(32.7)  f = 35,2, ..., 20, @+ @) +

+3F(2mg, ..y 2005, 2wpn -y, Byt gy ~+ 2005) +207,.
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It is easily verified that f has integer cocfficients and is identicully congra-
ent to £ modulo 2, and %o satigties (2T.5). I f =1 for integers #, then
#y = 0, @, is 0dd, and the first term on the right of (32.7) is econgrueut
t0 —F(mod4) and so > 1. This contradietion gives minf = 2,

It remaing only to disprove (32.4); s0 suppose it true. Transforming F,
we may suppose b ==} (mod2), identically. Putting %, for Iy and then
dividing by 2, (32.4) goes into & form of the shape B - H. Similarly, putting
2, for @, and then dividing by 2, (32.7) goes into & form which must be
equivalent to B+ H, and which rednees to H;+F; on putting 2z, = 0.
S0
(32.8) B H vepresents B, L+ F,.

Now H, and 7'y are well known to be perfect formy, each with mini-
mum 1; so from [9], p. 557, Lemma 4, (32.8) implies that either B represents
one of W, ¥, and H represents the other, or one of B, H represents E,+ H,.
Obviously B, of rank 2, represents neither of B, By so H represents
Ha+ Fg. This givey the contradiction 12 = rank # = tank}h Zrank(H, - F )
=135 which completes the proof of the theorem in the lash oudstanding
case.

33. Conclusion. Looking ab (17.7), where the constant factor 1.75

could be greatly improved by what we have done Iater, we see that for
forms of the shape (6.1), {7.1} we have proved that

(33.1) max {W(f): rankf = n} = 0(1) ag n-» co.

That is, for large s, almost all the weight of a positive n-gly genus arises
from classes that do not contain disjoint forms. I think it is true that Wi{f
does not decrease when a general form is put into the shape {6.1), (7.1) by
the transformations of [6]. If so, (83.1) is true for all positive I

Now suppose that we count the classes instead of weighing them;
let ¢(f) be the number of classes in the genus of S and Ieb o' (f) < e(f)
be the nwmber of these off) elasses, that contain digjoint forms. Then
define O(f) = ¢'(f)/e(f). Is it true that

(33.2) max {0(f): tankf = n} =o0(1) as n-»co?
I do not see how o prove (33.2), with or without the restrictions {6.1),

(7.1). It may be false; if so, the reason for (33.1) is that the disjoint forms
have many automorphs and low weight. -

References

[11 0. T. O'Meara, The conslruction of indecomposable positive definite quadratic
Jorms, Journ. fitr Math. 276 (1975), pp. 99-123.

[2] G. Pall, The weight of ¢ genus of positive n-gry quadratic forms, Proc. Sympos.
.Pure Math, VIII (1965} (Amer. Math. Soe., Providence, R. L), pp. $5-105,



100 G. L. Watson

(8] C.L.Siegel, Uber die analytische Theoric der quadratischen Formen, Ann. of Math.
36 (1935), pp. 527-606.

4] G. L. Watson, Integral quadratic forms, Cambridge 1960.

[8] — Ome-class genera of positive quadratic forms 41 at Teast five variables, Acta Arith.
26 (1975), pp. 308-327. _

(6] — Tronsformations of o quadralic form which do not ineresse the class-number,
II, ibid., 27 (1975), pp. 171-189.

[71 — One-class gemera of positive fernary quadiatic forins — I7, Mathematika 22
(1978), pp- 1-11.

[8] — The Z-adic density of o quadratic form, ibid., 23 (197G), pp. 94-100.

[91 — The class-number of ¢ positive quadrabic form, Proc, London Math. Soc. (8) 13
(1963), pp. 549-576.

[10] E. S. Barnes, The perfect and ewiveme senary forms, Canad. J. Math. 9 {1057),
pp. 235-242. :

UNIVERSITY COLLEGE
London, England '

Received on 26. 10. 1976 (888)

ACTA ARITIMETICA
XXXV (1979)

On the existence of a density
by

. Rigo TErraAY (La Jolla, Calif)

We shall give the details which demonstrate a formula for & number
theoretical density which played o vital role in our paper [2], but doubts
about exigtence and correctness of the formula have been expressed by
A. Garsia, H. Moeller, and the editors. In the meantime Evereft [1] has
nged our encoding idea to derive & new proof for one of oir assertions.

“We ghall recall some of the conventions and symbolisms in our paper.
We considered a function T, mapping the positive integers into themselves,
given by '

. (1) Tn = (3%00y + X (n)}/2,

where X (n) = 1 when # is odd and X(n) =0 when » is even.

Given an integer » we considered iterated partities m, Tn, T%n, ..
..., T%n and we agreed to stop the iberation at the very firgt instanee
when T*n < n. This stopping time was denoted by x(n) = k. Infinite -
values for the stopping time were permitted. We also introduced & second
stopping time t{n) which had a periodicity property. The gquantity
P[v = k] was defined to be the proportion of integers in [1, 2%7 which
satisfy the relation =(n) =%. The quantities Plr< k] and Plr= k]
wers defined similarly in the same block of integers.

Tt A is a set of pogitive integers then the density of 4 is defined in
terms of the counting function p to be
(2) S(A) = lim (1fm)u{n <m| ned}

=D

provided this limib exists. We now set [x =F] ={n=0] y{n) = kY,
and we define [z < %] and [v > %] in a similar manner.

Trmorm. The denisty of the set [y = k] ewists and is given by

(3) ' S[y=k] =Plv=kl.

Proof. The trick invohfed is to get this formmula withoub foiming
any infinite sums. In [2] we established the formula [y = k] =Pz = k]
Finite additivity of density gives d[y <kl = P[r < k]. Since the sets



