A note on Friedlander’s paper “On the class numbers of certain quadratic extensions”

by

A. Mallik (Nottingham)

1. J. B. Friedlander [1] has recently proved the following

Theorem. Let K be an algebraic number field of degree n for which $\zeta_K(\frac{1}{2}) = 0$. Let E be a quadratic extension of K having discriminant d_E and Dedekind zeta function $\zeta_E(s) = \zeta_K(s)L(s, \chi)$. Let $\varepsilon > 0$ be arbitrary. Then,

$$L(1, \chi) \gg |d_E|^{-1/2(\log |d_E|)^{2-\varepsilon}},$$

where \gg indicates an effectively computable constant depending (at most) on ε and K.

Corollary. Assume in addition that K is a totally real field and that E is a totally imaginary quadratic extension of K. Then, if $h(E)$ denotes the class number of E,

$$h(E) \gg (\log |d_E|)^{2-\varepsilon}.$$

In a remark at the end of [1] he suggests it should be possible to improve the exponent of $\log |d_E|$ occurring in the above results. We show here that using an old method of Hecke a substantial improvement of the above Theorem is possible, viz.

Theorem’. Under the same assumptions of the Theorem above,

$$L(1, \chi) \gg |d_E|^{-1/4},$$

where \gg indicates here (and below) an effectively computable constant depending on K at most.

Corollary’. Again under the same assumptions of the Corollary above,

$$h(E) \gg |d_E|^{1/4}.$$

For the case $K = \mathbb{Q}$ Hecke proved that if $L(s, \chi) \neq 0$, for $1 - \frac{\sigma}{\log |d|} < s < 1$, then $h(d) \gg \frac{|d|^{1/2}}{\log |d|}$. A proof appears in [2].

Using this method we are able to prove Theorem’.
2. Proofs. Let \(\kappa(F) \), \(\kappa(K) \) be the residues of \(\zeta_F(s) \), \(\zeta_K(s) \) respectively at \(s = 1 \). Then since
\[
\zeta_F(s) = \zeta_K(s) L(s, \chi)
\]
we have
\[
L(1, \chi) = \frac{\kappa(F)}{\kappa(K)}.
\]
Under the assumptions of the Theorem, \(L(s, \chi) \) is an entire function, it follows that if \(\zeta_K(\frac{1}{2}) = 0 \) then \(\zeta_F(\frac{1}{2}) = 0 \). We use this fact to obtain a lower bound for \(\kappa(F) \), and since an upper bound for \(\kappa(K) \) is easily got we can prove Theorem 1.

Lemma 1. If \(K \) is an algebraic number field of degree \(n \geq 2 \), then
\[
\kappa(K) \leq 2^{2n-n^2} \pi e (1.3)^{n+1} (\log |d_K|)^{n-1}.
\]
And if \(K \) is a totally real field, then
\[
\kappa(K) \leq 2^{n} \pi e (1.3)^{n+1} (\log |d_K|)^{n-1}.
\]

Proof. This is Lemma 2.1 of [4].

Lemma 2. If \(\zeta_F(\frac{1}{2}) = 0 \), then
\[
\kappa(F) \geq 2^{-2n(n+1)} e^{-\epsilon_0} |d_F|^{-1/4}.
\]

Proof. Take \(s_0 = \frac{1}{2}, N = [F:Q] = 2n \) in Lemma 3, p. 323 of [3]. Thus together Lemmas 1 and 2 give
\[
L(1, \chi) \gg |d_F|^{-1/4},
\]
and under the further assumptions of the Corollary we have from the first part of the proof of Theorem 4.1 of [4] (see (7)) that
\[
L(1, \chi) \leq (2\pi)^n \frac{h(F)}{h(K)} |d_K|^{1/2} |d_F|^{1/2},
\]
and so
\[
h(F) \gg L(1, \chi) |d_K|^{1/2} \gg |d_F|^{1/4}.
\]