Conspectus materiae tomi XXXV, fasciculi 1

Pagina
W. F. Lunnon, P. A. B. Pleasants and N. M. Stephens, Arithmetic .
properties of Bell numbers to a composite modulus T . . . . . . i-16
J, D, Fulton, Gauss sums and solutions to simultaneous equatmns
over GE(2¥y . .. .. .. ... e 17-24
R. J. Bond, Some results on p- extenswns of locaI and glohal flelds .. 2533
C. D. Walter, Brauer's class number relation . . . . . . . . . . .. 3340
— Kuroda’s class number relation . . . . . . .. .. . .. .. 4151
A. Mallik, A note on Friedlander's paper “011 the class numbers of certam
gquadratic extemsions” . . . . . ... . .. ... L L. L. L. 53~54
G. L. Watson, Existence of an mdeeamposable posxtwe gquadratic form in
agiven genusof rank atleast 14 . . . . . . . ... L, L., 55-100
R. Terras, On the existence of a density . . . .. . . . ... .. 101-102
La revue est consacrée & la Théorie des Nombres -
The journal publishes papers on the Theory of Numbers
Die Zeitschrift verdffentlicht Arbeiten aus der Zahlentheorie
Hypran mocBAmEE TeOpHH UHCEH
I’adresse de Address of the Die Adresse der Agpec pegaxmum

la Rédaction Editorial Board Schrittleitung und

ot de l'échange and of the cxchauge des Austansches | B IOHErooGMena

ACTA ARITHMETICA
ul, Sniadeckich 8, 60-950 Warszawa

Les auteurs sont priés denvoyer leurs manuserits en denx exemplaires
The authors are requested to submit Papers in two copies

Die Antoren sind gebeten wm Zusendung von 2 Exemplaren jeder Arbeit
Pyromicn crateff pefaxuma OpocHT IpejNaTaTh B ABYX BHBEMAAAPAX

© Copyright by Panstwowe Wydawnictwo Naukowe, Warszawa 1979

. ' I8BN 83-01-01224-2 TRSN 0065-1036

PRINTED IN POLAKD

W R OO XL AWSRK A DR UEKE AR NTILIA N A UK 0 W A

TA ARITHMETICA
|ﬁ1‘| XXXV (1879)

Arithmetic properties of Bell numbers
to a composite modulus I

by
W. I, Lunvonw, P. A. B. Predsawrs and N. M. Stepmexg (Cardiff)

1. Introduction. The Bell numbers B{n) may he defined in various ways:

{1.1) DzrmrrioN. Combinatorially: B{n) = the number of partitions
of a set of » distinet objects into nonempty subsets.

{1.2) Drrnrrion. By Dobingki’s formula:

B(n) = et M it

n=0

{1.3) Darmnriron. By exponential generating funection:

e’ -1 = B(n)d"nl.
é; ()"}

Their first few values are tabulated ab (1.8). The survey article [10.
by Rota discusses their elementary properties and has a large bibliography
Several authors ([21, [7], [10], [131-[15]) have investigated their “arith-
metic” behaviour modulo @& prime p, establishing the linear recurrence
of Touchard (5.4)

(1.4) . B{n+p) = B(n+1)+B(n)(modp)
and the periodicity
B(n+1) = B(n){modp)
where
U= (p"=1)(p—1).

Oaleulations [7] have shown that I iz the minimnm period for small p;
however, its minimality for all p remains undecided.

Carlitz [4] (brought to our attention by the referee) investigated
& generalization of B{n) modulo a prime power p°, establishing our (5.9),
{his 6.9), and the npper bound part of our peried (6.2), (his 6.8). Touchard
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also noted some oddments moduolo & compogite m in [14]. We shall estab-
lish in Section 3 that the minimum linesr recurrence satisfied by B(n)
modulo m has degree v, where » is the smallest nmmber such that #! is
divisible by m; and that the coefficients of this recturence may be faken
ag the rth row of the matrix (SC)~!, where 8 and € are formed in the
natural way from Stirling type II numbers and binomial coefficients;
and in Section 6 that the period of B{n) modulo p° divides, with gquotient
coprime to p,

L=p""(p"—1)f(p—-1)
where _

i—{l f p>3orse=1,
0 if p=2ands>1.

A full period of B(n) modulo various m is displayed at (1.7).

“Tmbral® caleulng will be employed to render proofs more readable
and sueccinet: B ig written for B(n), and the regulting polynomials in the
operator B are more or less freely manipulated. For instanece

(1.5) B! = (B-+1)*
{as in (4.2)) means

B+l = ;(:)B(k);
Touchard’s recurrence (henceforth TR) becomes
(TR) B BP—B—1) = 0(modp);
" in which sefting #— 0 yields
(1.6) B? = 2{modp).

We distinguigh three increasingly powerful sorts of wmbral relation.
“RBquations” or “congrnences” such as {1.3), (1.8}, (4.5) are wvalid only
as they stand. “Recurrences” such as (TR), (5.9), (6.1) have a factor
B — often implicit — and are valid for arbitrary n. “ILdentifies” such
as (4.10) are valid for any transcendental » in place of B. Recurrences
modulo m may be added and multiplied just like identities, with
one exception: if A(B) =0{(modm) and A(B)=0(modm’) are
recurrences, then h(B)R (B) = 0{modmm’) is a recurrence only if at least
one of b, ' is an identity. For example, the give-and-take principle (4.8)
works even if f =g is only a recurrence, since (4.7) is an identity (of
degree zero); on the other hand, from (TR) it does not follow that

B (B —B—1)* = 0{modp?).
In fact, the correct exponeﬁt on the left hand side is 3 — see (5.9).

Arithmetic properiies of Bell numbers 3

Within proofs, the factor B* and the congruence modulus # or p°
2y be omitted. A right arrow within the invoeation of a theorem denotes
substitution: e.g. “(TR) with p — 2" means “B*{B*—B—1) = 0(mod2)".

Alphabetic conventions: lower ease italic letters normally vep-
regent natoral numbers, except that: a, b, ¢, ... may be integers where
this makes sense; f, g, » are polynomials, wsually in B; ¢, 7, k& are sub-
seripts whose range, if unstated, may be deduced from the contest; p
i @ prime; 2, ¥, 2 are transcendentals. Boldface upper-case letbers rep-
resent matrices; lower-case, vectors; B, ¢ umbral operators.

(1.7) TABLE. Residues of B(n) modulo m:

#0123456739101112 131415 16 17 18 19

m

2110 ...

Jiti12201210601 0 1 ..

4111213031033 2 .
8111257433437 2 5 5 2 1 3 4 7 1
4111256754061 6 4 1 7 5 5.0 4 5

# 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 .
n

814 7 3 2 .. ‘

91 6 6 1 6 4 1L 1 5 2 6 4 5 46 3 1 6 1

(1.8) TamLE. Values of B(n), 0 <{n<<1b:

100), 1(1), 2(2), 5(3), 15(4), 52(5), 203(6), STT(7), 4140(8), 21147(9),
115975(10), 678570(11), 4213507(12), 27644437(13), 190899322(14),
1382058545(15).

2. Binomial coefficients and Stirling numbers. Here we briefly review
some standard eombinatorial definitions and results, expounded more
fully in (7.9), (7.14). : :

(2.1) (j;) el ()t = ( " )

n—m

denotes the binomial coefficient, with its well-kmown recursion

(2.2) | (Z) = (:;:1) "*“(w;l)’

and .the binomial theorem

(BT) | (ot = g(’;)'mky“-?.
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(2.3)
of size m from a set of size n is (;:)

LmMya, The number of ways fo choose, without repetition, a subset

(2.4) Lmva. With repelition, the number is (n +::~1).

Stirling’s factorial approximation:

n

i i b o~ e "™ 2mn
k=1

8(n, m) denotes the type II Stirling number, the number of ways
b0 partition a set of size » info m nonempfy subsets. By (1.1)

= D'8(n, k).
k

The type I number s{n, m) is defined by matrix inversion,

D) 8(my Bys(k, ) = by
4

(2.6)

(2.7).

Fundamental recursions are

8{n, m) = 8(n—1, m—1)+m8{rn—1, m);
(2.8) :
g(n,m) = s(n-—1, m—1)—(n—1)s(n—1,m).

Arithmetic behaviour modulo p* is disenssed in [2], [4].

Weo now define some special matrices. The row and eolumn subscripths 4
and j shall run from 0 to » or co. For clarity the initial segments of size
B x5, that is 0 <4, j < 4 = #, are shown at (2.11).

S iy defined to be [[8(¢, )], and ity inverse 81 is got from (2.7).

C iz “(;)“, and its inverse is got from

S =

proved by considering the eoefﬁelent of #* in ((m -1) —|-1) Bis 1B+,
a,nd F i the diagonal of factorials [j! . Fma]ly D = 80; egplicitly,
= ||dyll and D' = Jléyll where

a, _ ); S(i,'k)(?)}

(2.9)

(2.10)

o= i),

{2.11)

Arithmetis properties of Bell numbers

1 1 2
1 2 3
2 5 13
5 15 52
15 32 203
B = {B(i+j)
1
11
12 1
18 8 1
104 6 4 1
13
¢ =
1
0 1
01 1
01 3 1
01 7 6 1
S = i8¢, Nl
1
11
9 3 1
510 6 1
5373110 1
D = |idy) = 8¢

b 15
5 52
2 203
3 87T
T 4140
1
-1 1
1 -2
-1 3
1 —4

o =t

1
1
2
6
24
F = |[j! 0yl
1
—4 1

1
—3
6

1
0 1
0 —1 1.
0o 2 -3 1
0 —6 11 -6
8§71 = |js(3, )]
1
-1 1
1 -3 1
-1 3 —6 1
1 -24 20 -10
D-l — ”61,]” = C—lS—l

is & vector @ = {a;) such that, for all n,

(3.1)

3. Minimal recurrences for B(n). A linear recurrence for B {n) modulo m

:yh #B(n-4-j) = O(modm);
3

or in the mafrix notation of Section 2,

(3.2)

aB = 0({modm}.

Alternatively, we may regard it as an umbral polynomial

such. that, for all »,

= Z o; B

B*f (3) = 0 (modm}.
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Improper solutions, i.e. multiples of recurrences modulo some
proper divisor of m, are excluded by insisting that the a; have HOF
coprime to m. In this section, & and b are 1 x (9‘—5—1) and B and F are
(r+1) X oo. :

(8.3) TmmomrEM. Let r = #(m) be the least + for which m divides rl. Then
@ =row 7 of D' is a proper solution of (3.2) of minimal degree: that 8,
a4 = & 15 a recusrrence fulfilling {3.1) (see definition (2.10)).

Proof by Gaussian elimination on (3.2), employing (3.6): since the
transpose 2 has integer coefficients and determinant unity, (3.2) is
equivalent to

aBD'"! =00 =

:
or to _
aDF =0 by (3.6), o
or o
bF =0

where b = aD;

that is, §! b; = O0(modm) for all j. Evidently there is no proper solution b
unless m divides r!; when b; = 4, is a proper solution, and correspondingly
a=bD0""'=rowrof Dl m '

By examining all possible solutions b in this proof, we see further
that '

(3.4) ComOrLARY. A polynomial basis for the set of all reourrences satisfy-
ing (8.1) is the set

(> @B x m/HOF (m, "J!)) where ¢ = 0(L)s.
7. .

- 8o the minimal recurrence is not unique, even to within a congtant
: fa.ctor, unless m = p is prime.

(3.5) Exawpres of minimal recurrences:
B*(1—8B+BY) = 0(mod2), by row 2 of D ‘
B™(1—24B+29B* —10B° +B%) = 0(mod4) and (mod8), by row 4;
B"(B*+B*—1) = 0(mod4), by adding 2(B-+1)B*(B'—3B+1).

To complete the. proof_ of (3.3) it remains to show that we ean
magonahse B.

(3.6) THEOREM.B_ = DFD', that i3,

='2k!dﬁdﬂ.
k

(3.7) : B(i+f)

icm
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Proof. Notice that d; =0 for j< 0 or j >4 Ifi> 0,

4y = Y8, B(]) by 210
f k '
=2(;‘) (8—1, h—1)+ Z‘L(")Sa-l %) by (2.8);
2 )

< ¥\
E-1\ o
=;( ; )S(zu—l,k 1) +;(] ) (i—1, B—1)+
+ 3 (j) 861, B
== z‘—1,§+d‘—l,j—1+jfz'—],j+(j+1)di-1,j-;-1 by (2-10)5
that is, for 4> 0,

(3-8) dij = d’i—l,j-—l + (.? +1) (di-],j -+ d-;—~1,1+1) .
Now temporarily write by for the right hand side of (3.7). Then

by = S’k By, = ZI» i By o+ (B 1+ (B +1)d 1) DY (3.8);

) ;50 sti—1, 7 by @), (2:2);
k

= Zl’!dﬁa d:v‘,k—z‘l" E (k'Fl)!d{kdjk_}_Z k!djk A
% O ‘ z

setting £ — k-1 in the last term;
= b;y1; Since the previous expression is symmetric in ¢ and j.

So b; ,—; is independent of ¢; and sefting # =i +],

b.‘-j = bi+j,0 == di-}-j,ﬂ by definition of bij;

= 28(@+j, k) by (2.10) with §-»4¢4-§,7 > 03
%

= B(i+j) by (2.6). m
Similarly may be shown
(3.9) Oy =6y — 4 —(E—1)e
which is useful for tabmlating B, ' '
Finally, from (3.6) can be extracted the curiosity

{3.10) CorOLLARY. |B| = [F| = Ir] k!, where B is now {r--1}x(r+1).
. k=90

Prooi [P =1.

4. Properties of B(n); congruence lemmata. From now on we ta.k.e
the modulus to be a prime power, m = p°. Nothing is thereby lost, since if

_m=”’m'k
L]
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is the factorisation of m into powers m;, of distinct primes, then B (%) (modm)
is determined from the set of B(n)(modmy,) and vice versa, via the Chinese
remainder thearem ([6], Theorem 121):

(4.1) B(n){modm) = 2(B(-n)(modmk))(m/mk) ((m[mk)‘i(modmk)).
%

And the period (modsn) is the LCM of the periods (modm,,).
We require the following elementary properties of B(n), expounded
more fully in any of [10], [13]-[15]

(4.2) B = (B

which follows from the definition (1.1), by eclassifying the partitions
according to the subset containing the (m-+-1)-th element. Hence for
a polynomial f(B),

(4.3) Bf(B) = f(B+1).
Replacing f(B) by (B—1)(B—2)... (B— k+1)f(B),

: k—1 X
(4.4) 1) [ [ (B—i) = j(B+);
whence, sefting f(B) =1,
. k-1
(4.5) [[B—9 =1

=0

Also, setfing f(B)—(B--1)" in (4.3) gives the handy computational
formula (where 4 is the forward difference operator)

(4.6) B* = B(B—1)" = 4"(B).
We also require the following congruence properties.

(4.7)  Tmsna. (}jﬁ") = 0(modp*~*) if v = 0{modp).

Shown by counting powers of p in (2.1). There iz a quantity of similar
results in [12]. '

(4.8)  Levwma. The “give-and-take” principle: if f(@), g(»), h(z) are
Junctions such that, for all n, t such that r <t < 3,

P = a7 (modgh),
. umbrally, then ’

(1T = Mg+ 1) (mod ).

Arithmetic properties of Bell numbers 9

Proof by (BT) and (4.7) with 8—>§—r t>1—r, noting thab m"f”"t“r
is essentially a power of a™f*"™" g '
(4.9)  Lmvwa. (a+bp)* " = 0% (modp?).

Proof by (4.8) noting that p*~'> ¢ w

An identity of Lagrange { [6], Theorem 112):

(410)  LEeara, 1]3?1(3;—1.:} =" —g(modp).
k=0

(411)  LeMwma. If for all » B*f(B) = O(modm) then for any &k and all n

B*f(B+k) = 0(modm).
Proof. '
k=1
BYB+E) = [[ (B—i)-(B—R)J(B) by (£.4);

=0 sinee f is a recurrence. ®

3. Some extensions of Touchard’s recurrence. These comprise explicit
formulae (5.5) for minimal recurrences equivalent to those of Section 3,
and bounds on the exponents » and % such that (BP~B—1)" =0 (5.9),
and B = (B--1)* (5.10). For brevity we shall set ¢ = B* —~B—1.

The divided difference operator 4 is defined, for given prime p and
polynomial f(B), by

(5.1) - Af = {(f(B+p)—f(B))p. _
By Taylor’s theorem, if f has integer coefficients then so has Af. Basily,
(5.2)  Lemwma. Afg = f(B-+p)dg+g45.

Given any recurrence for B modulo 3°°%, we can boofistrap ourselves
up to p° thus:

(5.3) LeMuA. If B"f = 0(modp*) then

B0 —p A)f = 0(modp*).

Proof.
p—1
B 0f(B) = B" ( []® — k)~ 1)f(B) by (4.10);
k=0

= (B+p)*f(B+p)—-B"f(B} by (4.4);
= B Af by (BT), {.1), and noticing that
S(B+p) = 0(modp*™Y) by {4.11) with m-p*"%, k-p. B
(5.4) CoroLriwry (Touchard’s recurrence).
¢ = 0(modyp) by (5.3) with s+ 1, f—1,
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With the aid of (5.3) the following recurrences g,(B) = 0(modp?)
may be constructed. By (3.3) they are minimal when > s; but they ave
1ot identical to the rows of D2,

g =1,
g =0,
fa :GE+?J

gs = °-+3pC—p?*,
gs = O+ 6p0° —4p°C +p" (P + 3),
g5 = O°-+10p - 10p° % + 5p° (p+3) 0 — p*(p+10).

Recurrences which are powers of ¢ are most easily investigated via
@ more general expression. Let #, temporarily denote an arbitrary poly-
nomial of the form

(5.6) h = [JO+0f)
- =1

‘where the f; ave arbitrary polynomials in B,
(8.7) LEemMMA, Given r and s, if '
B"h,_, = 0(modp*Y)  for all h,_q,
then
B*h, = B"C"(mod p®y for all h,.
Proof by induction on r: for any h, there is an h,_, such that
by = (O+0f) By s
Bo h,—Ch,_, =3f,h,_, =0 by assumption; that 13, h, = Ch,_,. We
can similarly eliminate the rest of the f;, 80 &, = C".
(B.8)  LEMMA. Bl _; = 0{modp®) for all hy,_,.
Proof by induction on s: let = 2s—1, and suppose h,_, =0
(modp*~'); then h,_, = 0(modp*Y), being a multiple of &,_,. Now
h, = ("(mod p®) by (5.7);
=pAC™" Dy (5.3) with f— ¢
r—2
=pACx Y O0(B+p),
i=0
where C(B-+p) means (B+p)® —(B+p)—1, by repeated application
" of (5.2); _

=pd0x Zh—3 =0 by (5.8) with s »s—1.
7
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For s -1, the result is immediate by (TR). m
(6.9)  THEOREM. B"C*! =0(modp®) by (5.8).

These results are not optimal: for instance, if 2¢—3 = p > 3 they
may be sharpened — see [8] — to

boggn =0 and =3 =y,

Finally, a congruence which is a power of € split between right and
left siden:

(8.10)  THEOREM. If p is an odd prime,
BB = BB1)" " modp”) exscly;
that is, modulo p°** there is some n for which the recurrence Juils.

Proof by induetion on s: we firsh restate (5.10) in the stronger form
{5.11) (B+1)"7 = B” — 0¥ pg(BY,

Where g = 0(modp*™") exactly. This is sufficient by (5.9) with §—+s+1,
if 9" = 2841, that is
{5.12) p=5and 82,7 or p=3 and s> 3.
For ¢ > 2,
(B+1y" 7 = (B+1)P" 7P = (B 0¥ L pfy? by (5.11)jwith 5 = s—1,
where  f = 0(modp"™?) exactly; .

= (BP0 s p (BT - 07 T g
by (BT), where b = O(modp ) sinee it is a multiple of p*f;

= B (7" | pipet o 0f +ph

a—1

by (BT) and (5.9): the other terms, all multiples of pO’P , may be ab-
sorbed into ph provided p** = 25 —1, that is

{6.13) pz=b5and 23, or p =23 and sx4.
Now et
g = pB" b

since f = 0 (modp®?) exactly and h = 0(modp%), g = 0{modp®~’) exactly.
This is the inductive step. _

It remainsg o treat the initial cases execluded by (5. L), {5.13). For
{6.11) with § = 2, by definition of C,

(B+1)P = (B?—C)F = B¥ (P -+pg by (BT),
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where g = BPP~U[ _BP( -+ 1(p—1)0*] +C%F. Since €* = 0(mod p?) by (5.9),
we have to show that the expression [ ] is zero (modp) exactly.
‘The method involves a basis (3.4) for the recurrences modulo p? and p
in turn. If s<p (5.5} gives the convenmient basis (g,p° 9,4 = 0{1)s.
Reducing the expression modulo these bases should yield non-zero and
zero residues respectively. In this ease the bases are

(p% p0, C*+p) and (p, O);
and the residues of the expression are
—(B+1)0—3;p(p—3) # 0 (modp?) by (3.3),
= ( (modp).

Similarly, omitfing ecompufational details, for (5.11) with s =3
and p =3,
(B+1) = B"—C+py;
with residues . :
B = —p0(B+1)*+p*B (modp?),

= 0 (mod p?).
For (5.10) with § = 2 and p = 3, the regidues of
(Br1p—-p*

turn out the same as for B~ '*¢ above.
For (5.10} with s =1, nse {TR) and (3.3). m

6. The periodicity of B(n). Firstly, et p be an odd prime. Continu-
ing on from (5.10} we shall establish a binomial recurrence (6.2) giving
a period of B(n). .

(61) Immra. BB = BB+ (modp®), p odd.

Proof by induction on i: trivial for 0. For ¢ > 0,

= (¢"7y* by (5.9), sice 9’ = 2s—1;

=B Bp“ 1P by (BT, (49);
= t)ass t by (6.1) with t—£—1, (4.8) with

TowB? 1, fro —BP T, gos oo (B opt—1), 71
$0 (6.1) holds by (4.8), with r =1, f—B* —B—t, g0, h=B4t. m
(6.2) THEOREM. For odd p let I = I{p%) =p3"(p?—1)/(p —1). Then
' B*H = B*(mod p) | for all n;

BrHD o Bﬂ(mo&ps) ' Jor some n (5= 2).

icm
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Proof. Notiee that, for 5 =
Biro (g 1)105‘ —B”F-P“ ‘(B +p—1""" by (4.9);

= BF iy apitr—t by (6.1) with - p—1;
-1

= (BJ-L-)”K—1 by (6.1) with t— E;
E=

= (B =B by (4.10), (4.9);
(4.

=1 by (4.8) with r— 1, f=C, g0, k=1, and (5.9)

noticing that 2i—1 < p™L.
It follows that B¥ = 1 is equivalent to

or

g1 -2
(B—1y""" =B"",

B* = (B4+1y" by (411) with k-1,

This last is false modunlo p® but true modulo p°7%, by (5.10). ®

(6.3)

i—1

COROLLARY. D B{n+k) = 0(modp®), I =1(p%.

fe=10

- Prooi. Evidently

D B(n+k) = 23(n+1+k)-— (B(n+1)—B(n)}
& k

= ¢, a constant by (6.2).

Then for any polynomial f(B)

DIBEf(B) =o-f(1);

&

choosing f(B)~+C*7, f{l)—(—1*" = 1,

—c = %‘Bﬁazs—l =0 Dby (5.9). ®

Secondly, let p =
THEOREM. Let I =1{2%) =3-2° for s222; 3 for 8 =1. Then-

(6.4)

B = B"(mod 2%,

and 1 is minimal.
Proof. For s = 2,

B =

By
= (L4+(B+1)0 2B =1+ (B+1) 0

1+(23 1)(B+]_) G ( )(B—rl)g'(}" by (BT), (4.7), (5.9);

by (4.9);
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that is,
BI}Z —] =983 (23*1 _ 1)9,

where We now have to exainine the recurrence status of
g =2(B+1PC+3(2572 1) (2 —3) (B 1) ¢4
modulo 2% and 2% Suppose s > 5; then |
g E2(B+1)203+(B+1)404(mod2_3).

Then, as in the proof of (5.10), we reduce modulo the sets (5.5) (which suf-.
fice; even though in principle we might need the minimal recurrences (3.4))

(8, 4C, 202+ 4, (°+60 —4)

i (4, 20, C2+2) .
to get regidues '
: g = 4(mod 2%) = 0(mod2?).

So B = 1(modp*) but not (modp®), $>5. For s — 2, 3, 4 the argu-
ment can be modified, or brute force used (1.7) sinee the period cannot
exceed 1(2°). For s =1 the period is actually 8 (1.7), so no divisor of I
is redundant and (6.4) is proved. =m :
-1
(6.5) COROLLARY. kEB(nJrk) = 0(mod?2*%),
=0
Proof. As in (6.3). ®m
We have shown (6.2)—(6.4) that I(p®)/p is never a period of B(n)
(mod p®). Bvidently the true period modulo p divides that modulo % 80 to
complete the proof of the minimality of I{p°) we should have to show that
no proper factor of I(p) is a period modulo p. This has been verified for
£ <17 in [7], but remains unsolved in general. We do, however, have a
lower bound: '

(6.6) TomorEM. The period of B(n)(modp) is ai least
3(F) ~arampyi,
Proof. Gdnéider the set of polynomials
. ' p-1
(6.) R B
B .

= B"[ [ (B+if*i(mod p)

=0

Arithmelie propertics of Bell numbers 15
by (6.1) with s — 1; where the sequences (k) satisfy

7

(6.8) CDk=p—1 and 0<k<p.

£=0
Observe that k, appears in (6.8) but not in {6.7). Looking at the right
hand side of (6.7), no two of these polynomials can be congruent to each
other as recurrences for all #: if they were, their difference would yield
a-recurrence of degree << p, contradicting (3.3). So looking at the left
hand side of (6.7), among the powers of B there are at least 25 many
incongruent as there are sequences (k) satistying {6.8). Each sequence
corresponds toa choice with repetifion of p --1 values for ¢ from among the
p-+1 numbers (0, ..., p), where k; specifies how often symbol ¢ is chosen,
80 by (2.4) their number is

(7o) = (%) vv e,

The 47 estimate follows from (2.1), (2.5). = _
The 4* of {6.6) compares poorly with the p* of (6.2). The method
appears to be capable of refinement, but only with some difficulty [8].
Tinally, it is worth mentioning that the question of the minimality
of the period is equivalent to a problem in the theory of finite fields; to
determine whether I(p) is the order of o in Fﬂ,,, where o —a—1 =0
— see [1] for the background. {6.8) gives a lower bound ox this order.
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Gauss snms and solutions to
simultaneous equations over GF@EY

by

Joax D. Fortow (Clernzon, 8.C.)

1. Introduction. Tet ¢ =2% 4y =1, and let ¥ — GF (g}, the finite
field of order 4. For a e 7, i(a) =a+a*+ ... " defines o homomor-
phism # of the additive group (¥, +) onto the additive group of the prime
subfield {0, 1} of 7, and e(a) = ¢**@ gofines a homomorphism e of (F, )
onto the multiplicative group of integers {1, —13}([3], p. 29). '

Thus, it can be seen that

1) Sotary = | 270
= 0, as20.

Let F¥* denote the vector space over I congisting of vectors y
= (1, B3y ..., @) Let @ be a quadratic form of full Tank & on FH** and
let g be its associated bilinear form. Then there oxisty a bagig for e
(131, p. 197) such that if y == (@1, %o, ...y 2,) € ™, then Q{y) equals
precisely one of the following

(1.2) By + Bayynt ooo + W@+ 25, ., &8 =2k+1,
(1.3) Byl g~ Balp ot oo By, 8= 2k,
(1.4) Gy BBy oo + Cpllyp By - Tagy Bagyn + Plprs

s = 9b42,

where in {1.4), 8 is any element of F such that the polynomial 2+ e + fo?
Is irredueible in the polynomisl ring Flu, v]. .

We say that quadratic form @ has type .= 0,1, or —1 aceording
a8 ¢ 18 equivalent under change of basis for F¥** to (1.2), (L.3), or (L.4),
Tregpectively. :
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