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1. Introduction. Tn his 1938 paper [6], Pisot initiated the study of
the sequences of integers, now called Pisot sequences, defined by the
condition

(1) 12 < @, —afa, , <1/2.

Given 0<< a,< 85, (1) determines a sequence F(ag, #;). These sequences
are modelled on sequences of real numbers of the type u, = A" in the
sense that, for such a sequence w, ; = % /%, ;. Pisot showed in fact thab
it @, > ap-+(2a.)? then there are §>1 and A>0 determined by
lim (a,,,/a,) = 0 and lim(ay*'/a], ;) = 4 such that a, = AB*+-g,, where
&, i85 a bounded sequence with limsuple,| < (6—1)72/2. The countable
set of 6 so produced is called E. '

Althongh his motivation was the study of the distribution modulo 1
of sequences of the type 16", Pisot alse congidered the question of whether

the numbers in B are algebraic. In this regard, he showed that F(2, a,)

and B3, a,) satisfy linear recurrence relations and that #(2,e,) and
8(3, a,) are Pisot numbers. Cantor [4] has recently given an extensive
generalization of this result.

Tn general, if H{a,, a,) satisfies a linear recurrence relation, then
g is either a Pisot or Salem number (or § = 1), as shown by Flor [5].
Cantor [3] proposed using Pisot sequences to gearch for Salem numbers,
but cast doubt on the possibility that all Pisot sequences satigfy linear
recurrence Telations by his observation that E(4,13) satisfies no such
relation of degree < 100. The question was gettled in f1], by showing that
the set of 6 in B corresponding to non-recurrent sequences is dense in
[z, o), Where 7 = {52 +1)/2.

* This research was supported in part by a grant from the National Research
Couneil of Canada. :
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It ix possible that the techniques of [1] could yield positive results
about the Salem numbers. For exaniple, if an interval {a, §), with 1 < a < b,
could he found suweh that o << 6(w,, a,) << b implies F(a,, a,) is non-recur-
rent, then it would follow that Tn (@, b) = & and hence that inf? > 1,
by a familisr argument. One difficulty with this approach is that the
methods of [17 work best when 8 > 7, whereas it is more hopeful to deal
with intervals near 1.  This is the motivation for the sequenieces we will
introduce here. Now the niethods of [1] will apply in a natural way so
the entire interval 8 > 1.

We model onr zequences on u, = A" u0~". Noting that

(Upga T 2,) [ty q = f+671 = (U1 T2, i) [ty

we define the F-sequence I'(a,, @y, @) t0 be the sequence of integers
satisfying

2) —~1/2 < oo T Oy — (O [0,) (@) T8y ) <

Thus a@,,, i# uniguely determined unless a, = 0. If this should happen
for n2 2, a natural definition is to take a,,, = —a,_,.
Tt ie imoportant to reslize that we may take a, = 0, s0 for example

F(0,5,11) = 0,5, 11, 19, 30, 46, 70, 106, ...

We call an F-sequence with a, = 0 & special F-gequence. (This is an
appropriate point to mention that Cantor [4] uses the term F-sequence
for a quite different concept.}

In Section 2, we will show, under fairly general assumptions, that
an F-sequence satisfies @, = 16" +eg, for some 1> 0,6> 1, where s,
i= & bounded sequence. Note that the motivating parameter g is not
identifiable sinee an arbitrary term of the form x0~" can be added without
affecting the asymptotic behaviour of ¢,. The advantage of (2) over (1),
for our purposes, is the appearance of an extra factor (F—0-1) in the
“characteristic inequalify” (23) for e,.

It should be mentioned that Pisot [6] studied sequenced of integers
modelled on quite general functions of » parameters. In his case, the
parameters are all determinable from the asymptotic behaviour of a,,
so our F-sequences do not quite fit into his framework.

In Seetion 4, we diseuss the relation between F-gequences and the
Pisot and Balem mumbers. In Section 5, we apply the methods of [1]
to dednce 2 eriterion for an F-sequence to satisfy a T-recurrence; some
examples are discussed there. Finally, in Section 6, we list a few other
related sequences.

/2, =a=1.

2. Geometric F-sequences

DerFmNITION. We 8ay that an F-gsequence is geomemc if @, > 0 eventu-
ally, and liminf{a,,, /a,) >

The following three k;mmas generalize results of (6] and [47;
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Lemvia 1. Let @, be a geometric F-sequence. Then Wi (a,.,la,) = 0> 1,
Lm{ay™ fay, ) = 1> 0, and &, = a,— 8" is & bounded segaence
Proof. Write §, = a,,,,/a, and A, = a"*ja? ., =0 6," = a,.,8;"7".
We begin by s:hamg b, =a,., av,ﬂ‘ar,z_I is o bounded sequence, Given
1< a< limint §,, we hawi 8,5 a for nz=m, say. By (2), 1B, —0.2b.!
< 1/2 and henee (b, | < a"%b,]-+1/2 for » > m. Iterating this inequality,
we have
(3) bnfli ST 1!"—&!‘—"(’1 —1}}
K Pl +a)2la—1)) =e, for mzm.

But b, = a,.,(0,,,—0,), henee {3} shows that

(‘L) wnj—lwen! 5 alJuPl'

+1

Ked™ " Ya, for azm.
This shows that 6, converges to 0, say, where 6 > 1 and
{5} 0—8,| < ea, {a—1)7 for
Now write

(6) Pz~ = @07 =87 < (1) @7 10,1 — 6

== (’J’B ':—1) a‘ﬂAz ibn+11 ‘-<\ G('?l—:—-l) awﬂ»—-ﬂ ,

12 M.

so 1, converges o A, say, and i will be obvious later that A > 0.
We next show that a6~ " — i Multiply (5) by a,07** o geb

(1) 07" —a, B L e (@ —1) 2

which shows a,6™" converges to I, say. But [ =1, since

(®) le, 07" —a 6" < na,a " —6,) < ena™" T e —1)2,
by (5). Thus {7) implies '

(9) lan 8" 3 < e~ —1)a—1)" 1,

that is

(10) - le,| < o(f—1) a1}

Sinee ¢, -> oo, and g, is hounded, it is clear that 1> 0.

Teniva 9. Suppose ay > 0 and 6, > 20y, ihen the special F-sequence
F{0, 0, a,) 18 geametnc Furthermore, the set of Zamu‘s 9 f} oM SUCH Sequences
is dense in [1, oo)

Proof. We shall prove by induction that for .5111 nx=l,

{(n4+L/n.
For » = 1, this has been assnmed. From (2), assuming (1

B ( n——ll’a’n}( n-;—l+ a’n—l) i‘
= ( n+1fa'u) (251“ "T'n) """lj-’ = 2an-'r1 -1 ”1/2 2

(11) S @y 28, ta, =8 and @, /8, >

1), we have

(12) a‘n,%: T n
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which proves a,.,—2a,,,+a, = n-+1, since the left member of (12) is
an integer. This in turn implies that

“n+2/a'n+1 > znau/an-}—i +(ﬂ+1)[a’n+l >3 _%/(ﬂ’_é‘l) = (W’ +2)/(”’+1):

5o the induetion is complete.
Summing (11) twice gives

(13) t, = (n ;H) ey > (%;—1).
By (2), we have

(14) Ha'u-)-z @) [y — (Gyyq - G} ] < (B 0q)

Summing (14) and using (13) shows that (a,,.+@,_,)/a, — g, Wwith

(15) lgm(a’ii+1+a11‘~1)/a’ng < 31’(211‘(‘”' +l))
By (11), we have
(16) (an+l ) e, —2 = [y,

g0 that o> 2. But, if p = 2, then (15) and (16} imply that
a7 - a, > me(n+1)[3 > 4(”;1).

This improvement of {13) can be used as above giving a corresponding
n—+

improvement of (15), and by induction a, > 4’f( ; 1) for all k, which is
not possible.

Binee lim((a,., +a, ;)fa,) >2 and @, ja, <1, it follows that
liminf(a, ,,/4,) > 1 50 @, is geometrie.

To see that the set of 6 is dense in [1, oo), it suffices 1o prove

(18) NO+67) —aafon] < (log ) f(4a,) +3/(2 (ay— &™)

To do this, we have from (13} that a, > n}-&x(ﬂal, (n_;l)) Hence it
m = [a}/*], {14) implies

(19) lo—agfarl < Y @na) T+ 3 3fl(n+1)n(n—1))

He=m-1
< logm{(2a,) + 3 /(2m(m +1}},
which imyplies (18).
Luvma 3. Suppose that a,— 26, -+a, > (2a)? end a, =a,. Then

Flag, ay, 0} 48 geomeiric. Furthermore &, = a,.;, —2a,+a, , > (2a,)2
for all », and

(20) O +67) — (thgpy + G) (8] < 1 (A + (5 — 20,)'7%).
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Proof. By the assumptions, there iz o ¢ > 0 satisfying

{21) dn = a’n-}—l — 2@7& -+ [ = 28 ;’(2@3 -+ ¢,

for # = 1; namely ¢ = a,/(d; +(d} — 2a,*). We shall prove by induction
that (21) and e, > @,_; hold for all n. For, by (2)
(22) dn-}—l 2 (a’rl+1f'ar¢) dﬁ. _1;2 2 (an-‘rlfan)(a‘n“‘?c)‘jr C) '1/2
2y [(20) 4 {0,y Jo,) e —1 12,

However, a,3> @, ; S0 that (21) implies a,., > (1+(26)7Ya,+¢, and
this combines with (22) to show {21) for 4, ;. It also shows that o, > @,
g0 the induetion is complete.
By Lemmsa 1, @,,./a, +0>1. We obtain {20) by using (14)
and a2 (1+(2¢) ' "a, for kx>n, where now we can use ¢
= a, /(d, + (&, — 2a,)").

3. The characteristic inequality

TEHEOREM 1. {(a) Suppose a, = A+, 18 a geomelric F-segquence.
Then

{23) ' limsup [(B— 0 (B —07")e,| <1/2,

%

where BE, = £,,, denoles the (backward) shift operator.
() Conversely, if a, = A"+, with 2> 0 and 0> 1 and z, bownded,
and if '
(24) Hmsup {B—6*(F -0 Ye,| < 1]2,
then a, satisfies (2) for all sufficienily large n.

{e} The inequality (23) implies -

(25) Limsup fe,| < 6/(2(6—1)%),
and (24) is implied by
(26) Limsup Je,} << 6208 -+1)).

Proof. Write D, (6) = {828, — Byoa {8y F0y). Then (2)

implies D, ()] < ¢, /2. But _
Dy (a) = A0(E—6) (B~ 67" 5,1} + Dyle),
which immediately implies (a} and {b). :

To prove (6), we write (¥ —8)*(E—b6")e, = £,, so that limsup{l,|
< 1/2. Since ¥ is an operator of norm 1 on bounded sequences, we can
immediately conclude that B—0 = —6(1—§""E) is invertible and

(B 8){(B—0e, = — (671 +62 B+ )L,
g0 that _
* limsup (B —0) (B—6Ye,! < (6—1)7 limsup |5} < (6-1)7"/3.

3 — Arta Arithmetica XXXIV.4
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A repetition of this gives limsup [(F—8"")¢,| < 1/(2(6 —1)). The operator
E-—§7 is not invertible but has a one-dimensional nmll space. Thus if
£ = g 15 preseribed, we may solve g,.,— 87 's, = 17,, say by successive
substitution to obtain

Epa1 T 77n+6ﬂ11]’n.—1—: +9—“n7?0+{ua—n-17

from which limsup le,! << /(6 —1) limsup |z, follows.
The proof that (26) hmplies (24) is straightforward.
Remarks. The inequality for E~sequences corresponding to (23) is

27) Hmsup (B —-0)e,} < 1/2
which implies Pisot’s regult that limsupfe,] gl/{2(6—1)2], a5 above.

4. Linear recurrence relations satisfied by F-sequences. Thiy section
contains generalizations of some of Flor’s [B] results to F-sequences.
The proof of Theorem 2 is familiar but is included for completeness.
~ In Theorem 3, we use Dirichlet’s theorem rather than Minkowski’s lemma
_to obtain a somewhat more congtructive result.

THEOREM 2. Suppose a, = L0"+s, 45 a geomelric F-sequence which
satisfies a linear recurrence velution. Then 8§ ts o Pisot or Solem number.

Conversely, if 0 is a Pisot or Salem number then there is an F-sequence
with 6 = lim(ay,,,/a,).

Proof. If a, has generating function f(z) = A ()@ (z), with @(0) = 1,
then Fatou’s lemmsa implies that @ has integer coefficients. Thus ﬁP(z}

=2"Q(z "), k = deg @, then the roots of P are algebraic integers. Clearly f
hag & simple pole at # = 67, since @, = 16" }-¢,. Since e, is bounded
the remaining poles are outside or on the unit cirele with those on the
circle being simple. Thus P has exactly one root 8 outside the unit cirele
which thus must be in § or 7. The roots inside the circle must be con-
jugates of § henee are also simple roots. The roots on the clrcle are either
roots of unity or conjugates of 6, if 8 is in 7.

Conversely if § is in § or 7, then one can find 4 in Q{6) ro that |67}
< B(841)212 for all =3 0, and hence by Theorem 1, a, = Tr{18")
aventually satigfies (2).

TEROREM 3. Let § be o Salem number or a reciprocal quadratic Pisot
number. Then theve is o special T-sequence F(0, a,, a,) with im{a, ., /a,) = 6.

Proof. Let T(z (2), of degree 2m, be the minimal polynomial of 6.
Then T'(2) is reciprocal, and we may write T (z) = PR, with & =242
We will construet a polynomial B(£) of degree m—1 so that if 4(z)

= @"'B({), then 24 (2)/T(2) will he the generating fonetion of a special
F-gequence, i.e.

{28) : sAR)T(2) = ayz a2+ ...
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Let 8, 6-1, ay, &y, ..., d,, be the zeros of T(z) go that the real numbers
g = 8+071, py = ay-}8p, ...y By = &, &, are the zeroz of R{({). The
relation (28) implies

(29) &, = M -p67"+ Y (Brof 4B s
k=2
where
30) A= —0A(OH)T(67) = (6—67)B(o)/E (o) = —p,
while
(81) B = (o —) " Bleg) (B (o) = —Fi;

80 f, is pure imaginary.
Writing (29} as a, = A*— i7" 6,, we see from (2) that the eon-
dition to be satisfied iz

(32)  (E—0)(F— 618,y — 0 (B—0)(B— 071 b,y + Dy (8) 47767
<2872, for a1,

nging the notation of Theorem 1. This can clearly be satistied by making
Bos vy e sufficiently small {thus foreing 1 to be large). To be more ex-
plicit, letb

R(2) = RIDOIE—0) = I b erl™  + s F e

where ¢y, ..., €,_, are certain real numbers. By Dirichlet'’s theorem, there
are arbitrarily large integers a; and Ny, ..., Ry, &0 that

iy — | < @~ for  k=1,2,..,m—1.
Let
B() = 0" 4 m I s
and then determine 4, ..., ,6‘,,, by (30) and (31). Then B {g;) =0 s0
(83) |Blox) IR (gl = [[Blee) ~ a1 Bol ) I (ea)] < a7 1’{’“‘1’2”713 (€x)-

By taking a, sufficiently large, f,, ..., f, may be made a5 small as de-
sired. Note that i ~a, (8—07Y).
Exaswrie. The F-sequence F(0, 5, 11) can be shown to be of the type

disoussed in Theorem 8, with A(2) = 5+ 624828468 +5¢%, and T(2)

=] —2— 28— 25+ 2%, 80 Gy, — 0 = L.5061856795, a Salem number.
Tn this case B(L) = Bt2+4-67 —2, while BR,(l) ~ B7*+5.85[—2.30. Using
(31), one verifies that g, = 053260 and 1Byl = .000382. To cheek {32),
one needs : :

(B— 08— 676, = 2Re| ¥ f(a—B)eu—0}af ™},
k=2

cod



302 D. W. Boyd
so that

y = supi(B— 0 (H—67"8,] =2 X Bl lop— bl (0 — o)
1) k=2

We can estimate

sup (B — 0) (B —671)%6,| < 8{8+1)(6 1)~

] .

In this case, y = .492015 so that (32) is readily established for nz9,
and (2) can be verified divectly for n < 9.

Remark. We have not attempted a complete investigation of non-
geometric F-sequences. For symmetry, if a, is allowed to be negative,
the rule (2) should be modified to “reund down” to the nearest integer
if @,,,<C0. The proof of Lemma 2 shows that if a, exhibits a rate of

ﬂ—]—k)

growth greaber than n?, then a, iz geometric, This is gharp since @, = ( M

is an F-sequence for k= 5, since a,,,—2a, Fa, ; =1

For special F-sequences, it may be true that a superlinear rate of
growth implies a, is geometric. By Lewmma 2, (0, a, 2a--b) is geomebric
it > 0, and clearly F(0, a, 24) is linear. But, for exmnple, F(0,20,39)
iz periodic (with period 26), while F(0, 21, 41) tends to —oo linearly,
after a single positive excursion.

5. A criterion for pure T-recurrence. The following result is proved
using the techniques of [1]. The only basic change is that we now have (23)
rather than (27), so we avoid the estimate

limsup {(B— 6y (B — 67%e,| << (14 67%) limsup |(F— 0)s,,|.

Agin [1], we say that a, safisfies a pure recurrence if ity generating function
4/Q has degd < deg@. We say it iz T-recurrent if Q(z) = T(2)K(»),
where T ig the minimal pelynomial of a Salem number and K is eyclo-
tomie with simple roots.

Using the estimates obtainable from Lemma 1, and the techniques
of Theorem 1 of [1], it is possible to effectively deal with 7-recurrences
which are not pure, and thus show that there are F-sequences satisfying
no linear recurreiice whatsoever. However, because of Theorem 3, the
following result is sufficient for the application suggested in the intro-
duction. In fact, the convergence results of Section 2 are not really needed
for this purpose, except to suggest that the method will be tairly efficient.

As in [1], we note that it F(a,, a,, a,) satisfies & pure T-recurrence
then .

(34) e, =M pe s,

icm
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where &, i3 a linear combination of powers of mumbers of modulus 1,

‘and hence is almost perjodic in # ([1], p. 92). The equation (34) may be

used to define a, for # < 0, and since the leading coefficient of @ is 1,
it follows that a, is an integer for all =, -

TamoreM 4. Suppose that Fla,, a,, a,) salisfies & pure T-recurrence
corresponding to the Salem number §. Then 0 salisfies

(35} 10+07"—(a,., +a,_ ) a,| <1/(2le,/(8 1)) for all n.
Furthermore, if Ag(2,y, 2) = {o6(2 0% —y (1 +26%)+26)/§, then for
all m, positive or negaiive,
(36) — As{Oi1y Turns ia)] < 1{(20).

Proof. Sinee &, = u0 "4-48,, we have (E—0"1s, = (B—871)4,,

0 (23) implies that limsup (B —8Y(B—6d, <1
almost periodic we have.

/2, and since 8, is

(87) (E—8¥(B—-015,]<1/2 for all &n.
This implies, ag in Theorem 1, that
(88) {E—0)(B—0714,i<1/2(6-1)) for all n.

But (BE—6)(BE— 6718, = (F—0){E—8"}a,, 50 {38) implies (35). Simila;rly,
{(37) implies (36) since (E—6)HE— 0 Y)a, = 0{dg(t, 1y, Gpyray Gnis) —,)-

ApprrcATION. Teo test Fla,, 6., ;) for pure T-recurrence, one gener-
ates ay, ..., ay for large N, then uses (35} to estimate 6. For (35) to be
effective, one needs a crude lower bound # = a>1, since § =1 sabis-
fies {35). This bound may be obtained from the results of Lemma 2 or
Lemma 3, or from the estimate [(B—8)*(H—6")a,]<1/2, regarded as
a poivnomial in 8. Given 8 = g, (35) allows 6 to be computed with arbi-
trary (and known) accuracy. One uses this approximation in 4, and then
uses (36) to compute @_;, d s, ..., &_a, Which can be done accurately
for an M which tends to infinity with N, since 1/(26) < 1/2. If {38) Iails
(to within the known accuracy) for any n, then F{a,, a;, a;) does not
satisfy a pure T-recurrence,

For example F(0, 30, 61) has 6 = 1. 184‘)14547464 and is not pure
T-reeurrent sinec (36) fﬁ;]ls for m — —8. In fact, since << minf, it is
not hard to show that F(0, 30, 61) satisfies no recurrence Whatsoever.

We uged a combination of Theorem 4 and the method of Cantor [3]
to test a large number of special F-sequences for pure T'-recurrence. If
a sequence passes the test (36) for a reasonably large interval of n, we use
the algorithm of [3] to determine the possible recurrence relation. The
ideas discugsed for the example F{0, 5, 11) can then be used to test the
validity of the recurrence so determmed :
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For example {0,185, 375) is recurrent with 6 = ¢y, the smallest
known Salemn number [2]. An interesting example iy F(0, 46, 05) which
satisfies (36) for —80<n < —1 and appears to have the generating
funetion 24 (2)/T(z) = B({)/R(E) where T{z) = "—#&—2*—2°+1, B(8)
= 463 L9572 4127029, R(D) = £ —482— 71, and A(z) =2* B(z-Fz1).
Here 8 = o,, in the notation of [2]. However, computations show that
sup (B —0)2(E—§7%) 6, | = .525458 so that 24 (=) /T (2} does not generate
an F-sequence. On the other hand, if we write a4, = Tr(A6") then it may
be shown that Tr(lef™ and Tr({A¢*6") are the F-sequences F(0, 95,196)
and (0, 196, 404). Tt is perhaps worth recording that 196 8,({) — 19678+
+404.05{% - 48.96 £ — 95.08,

6. Some other sequences. Let N (2) =[2-41 /2] denote the “nearest?
integer to #. The following are some interesting integer sequences, their
“typical® behaviour, and their characberisfic inequalifies:

(8) Dty m):  ayyy = N (a4, 0> m,

a, = "¢,
limsup |(B— 0)e,| <
by = N(ay[a,_,), n

a, = 40" +e¢,,
. limsup (B — 0)%s,] < 1/2.
(c) D@y s ap,m): G, = N{aPTWerglt=D g ), nzm,

a, = 607 "¢,
Imsup (B —6)(E—6Ye, ] <1/2.
oy = @y (@ +ays) [0y y—a, ), 522,
Gy = 20"+l "+ g,,

hmsup |(B— 0 (F—0Ye,| < 1/2.

(e) Glay, 0y, 4y, a5):

2.

1
(b) H{ay, ai): =2,

(d) F(a_o: fyy @)t

By == N({“i+1+2'(”’n+1a'nw1,“a‘i)_ (ana'n—2"_a121—1)}l’a’n)? nz2,
a, = A0®+pub "+ g,
Emsup {E 0 {H — 0", | < 1/2.

Of these, (a) and (b) were considered by Pizot [6]. In (a), it can be shown
that a, grows geometrically if and only if e > (a,, +1/2)™. The relation
between the H-, F- and (Fgequences is that in each case a certain finite
difference of a,,,a, ;—a;, is made as small as possible. An analogue
of Theorem 2 applies to all theée sequences, but for D and D’ sufficiently
large Salem numbers are ruled out by the fact that 6" is dense modulo.l
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it 6 13 a Salem pumber. An analogue of Theorem 4 can be proved for
&-sequences but the analogue of (36) now gives no effective test for n < 0,
since the final coetficient of the polynomial {F— 8 (F— 1) is 1.

A sequence of a somewhat different sort is obtained by analogy with
the fact that the F-seguence recursion is

(a'!H—E - 2an+1 =+ a’n-)' - Ay'(an-}-l'.‘fan) (a'n-I-l - 2'5"11 + &y l)) .

Namely
() Apye = Ean{—l +¥ ((au ~‘!a‘n—-1)(an+1 _2&:;})3

by = ‘;,;Hn_%_‘u(g__a)ﬂ_;_eﬂ,

limsup (B—8)}H -+ 6—2)s,] < 1/2.

Tn contrast to (¢) —{e), the seecond term u(2 —8)" has a real meaning if
8 > 2. The set of limits # includes, in addition to § and T, such quadratics
2s 1+5Y2 which is obtained from the sequence 4, 13,42, 136,...
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