Homogeneous additive equations and Waring's problem

by

R. C. VAUGHAN (London)

1. Introduction. Let $k \geq 3$ be a natural number. Davenport and Lewis [7] define $I^s(k)$ and $G^s(k)$ as follows. If c_1, \ldots, c_s are integers such that for every prime power p^m the congruence

$$c_1x_1^k + c_2x_2^k + \ldots + c_sx_s^k \equiv 0 \pmod{p^m} \quad (1.1)$$

has a solution with x_1, \ldots, x_s not all divisible by p, then c_1, \ldots, c_s are said to satisfy the congruence condition. The number $I^s(k)$ is the least number s such that every set of s integers c_1, \ldots, c_s satisfies the congruence condition, and $G^s(k)$ is the least number such that if $s \geq G^s(k)$ and c_1, \ldots, c_s are any s integers, not all the same sign when k is even, which satisfy the congruence condition, then the equation

$$c_1x_1^k + c_2x_2^k + \ldots + c_sx_s^k = 0 \quad (1.2)$$

has a solution in integers x_1, \ldots, x_s, not all of which are zero.

The major part of their paper is devoted to showing that

$$I^s(k) \leq k^2 + 1, \quad (1.3)$$

with equality whenever $k+1$ is a prime. However, their Theorem 2 implies that when $k \geq 18$

$$G^s(k) \leq k^2 + 1. \quad (1.4)$$

They also indicate that the methods of Davenport ([3], [5]) will give this when $k \leq 6$, and observe that it seems doubtful whether the solubility of (1.2) for $s \geq k^2 + 1$ can be proved for all the intermediate values $k = 7, \ldots, 17$ by existing methods. Our purpose is to reduce the gap.

Theorem. We have $G^s(9) \leq 91$, $G^s(10) \leq 107$, $G^s(11) \leq 122$, $G^s(12) \leq 137$, $G^s(13) \leq 153$, $G^s(14) \leq 168$, $G^s(15) \leq 184$, $G^s(16) \leq 200$, $G^s(17) \leq 216$.

Corollary. When $11 \leq k \leq 17$ we have (1.4).

As far as $k = 7, 8$ are concerned, the method of Davenport [5] when adapted to this problem is still the most effective and gives $G^s(7) \leq 53$ and $G^s(8) \leq 73$.
The argument used here is an adaptation of one of Vinogradov [10], Chapter IV, related to the estimation of $G(k)$ in Waring's problem (see also Chen [1]). For large k it gives

$$\limsup_{k \to \infty} \frac{G^*(k)}{\log k} \leq 3$$

and by comparison the method of Davenport and Lewis gives this with the 3 replaced by 4. By adapting another method of Vinogradov [11] it is possible to show that

$$\limsup_{k \to \infty} \frac{G^*(k)}{\log k} \leq 2.$$

Although there is quite a wide range of choice of the parameters involved in the proof of (1.6), it appears that the argument used here is always more effective when k is less than about 50,000.

We observe that when applied to Waring's problem our method gives the above theorem with G^* replaced by G. In particular this improves on the known bounds for $G(9)$ and $G(10)$ due to Cook [2].

We further note that to prove the theorem it suffices to assume that a_1, \ldots, a_r are all non-zero.

Throughout, δ is a fixed but sufficiently small positive real number in terms of c, c_1, \ldots, c_r and k, where c, c_1, \ldots, c_r are non-zero integers and k is a natural number with $k \geq 0$. Formulae containing ϵ hold for every sufficiently small positive ϵ and the implied constants in the \asymp, O, \ll and \gg symbols depend at most on c, c_1, \ldots, c_r, ϵ and δ.

2. Preliminary lemmas

Lemma 1. Let $a_n (n = M + 1, \ldots, M + N)$ and $b_r (r = 1, \ldots, R)$ be complex numbers, suppose that the π_r $(r = 1, \ldots, R)$ are real numbers which are distinct modulo one, and define

$$\delta = \min|a_n - x_r|$$

where the minimum is taken over all pairs r, t with $r \neq t$, and where $\|u\|$ denotes the distance of u from the nearest integer. Then

$$\sum_{n = M + 1}^{M + N} a_n b_r e(n \pi_r) \ll \sum_{n = M + 1}^{M + N} |a_n|^2 \sum_{r = 1}^{R} |b_r|^2 (N + \delta^{-1})^{1/2}.$$

Proof. At once from Cauchy's inequality and Theorem 1 of Montgomery and Vaughan [9].

Lemma 2. Suppose that $c \neq 0$, X is a real number with $X > 1$, $|a - q| \leq q^{-1}X^{-1/2}$, $a_n ([n] < X^{2k})$ are complex numbers, $|a - q| \geq q^{-1}X^{1/4}$ when $q < X$, and

$$S(a) = \sum_{n \equiv 0 \mod m} a_n e(\alpha p_n f + \beta p_n^m)$$

where the summations are over $|n| < X^{2k}$, $\frac{1}{2} < \frac{1}{r} < X$, $r < X^{0k}$ and $p_1, p_2 < X^{-1/2}$. Then

$$S(a) \ll Y^{2k} \left(\sum_{|n| < X^{2k}} |a_n|^2 \right)^{1/2}.$$

This is essentially Lemma 2 of Vinogradov [10], Chapter IV, but the use of the factor

$$\sum_{p_1, p_2 \leq r} e(\alpha p_1 f + \beta p_2 g)$$

is new. The purpose of the apparently superfluous variable r is to ensure that when the variable x, where x is to be defined, of (1.2) appears in the singular series it is summed over a complete set of residues, rather than a reduced set. This is of paramount importance, for otherwise the congruence condition cannot be met.

Proof. We first of all treat (2.1). Since $|a - q| \leq q^{-1}X^{-1/2}$ and the number of different prime divisors of q is $O(q^{1/3})$ we have

$$\sum_{p_1, p_2 \leq r} e(\alpha p_1 f + \beta p_2 g) = \sum_{p_1, p_2 \leq r} e\left(\frac{q}{\varphi}\left(\frac{1}{p_1 f} + \frac{1}{p_2 g} \right) \right) = O(X^{-\frac{1}{2}}X^{-\frac{1}{2}} + q^{1/2}X^{-1/2}).$$

For a given r, let $a' = a \varphi(r)/q$, $q' = q/(\varphi(r))$ so that $(a', q') = 1$ and $q' \geq q', X^{-1/2}$. If $(b, q') = 1$, then the number of solutions of $n^b = b$ (mod q') with $1 \leq n \leq q'$ is $O(q')$. Hence, by Cauchy's inequality,

$$\sum_{p_1, p_2 \leq r} e\left(\frac{a'}{q} p_1 f + \frac{\beta}{q} p_2 g \right) \ll X^{1/4} q' \sum_{n = 1}^{q'} \sum_{p_1, p_2 \leq r} \left(\frac{\beta}{q} p_2 g \right)^2 \ll X^{1/4} q' (1 + X^{-1/2}/q') \ll X^{1/2} q' (1 + X^{-1/4}) q'^{1/2}.$$

Thus, by (2.2),

$$\sum_{p_1, p_2 \leq r} e(\alpha p_1 f + \beta p_2 g) \ll X^{-1/2} q'^{1/2} + X^{-1/4} q'^{1/2}.$$

The proof now divides into two parts according as $q > X$ or $q < X$. This largely follows Vinogradov. Suppose first that $q > X$. We have

$$\sum_{n, p} a_n e(\alpha n p^k) = \sum_{n = 1}^{q} \sum_{p \equiv 0 \mod q} e\left(\frac{\alpha n p^k}{q} \right) = \sum_{p \equiv 0 \mod q} e\left(\frac{\alpha p^k}{q} \right).$$

Let $\varphi(r)$ be the number of primes p which satisfy $p^k = r (\text{mod } q)$ and enumerate them as $p_1(r), \ldots, p_{\varphi(r)}(r)$. Then

$$\varphi(r) \ll (X^2 q^{-1} + 1) q'^{1/2}.$$
Let \(q = \max \rho(r) \), define \(b^{(j)} \) to be 1 if \(j \leq \rho(r) \) and 0 otherwise, and for convenience define \(p_j(r) \) to be 0 if \(j > \rho(r) \). Then, by (2.4),

\[
(2.6) \quad \sum_{n,p} a_n e(ans) = \sum_{r=1}^q \sum_{n=1}^q \sum_{r=1}^q a_n b^{(j)} e \left(n \left(\frac{a}{q} r + \left(a - \frac{a}{q} \right) p_j(r) s \right) \right).
\]

For a fixed \(j \), consider the numbers

\[
\alpha_r = \frac{a}{q} r + \left(a - \frac{a}{q} \right) p_j(r) s \quad (r = 1, \ldots, q).
\]

Modulo one, the numbers \(\alpha_r \) are distinct and spaced \(1/q \) apart. Moreover

\[
|\alpha - \alpha| p_j(r) s < q^{-1} \theta^{-2k} \left(\frac{q}{X} \right)^2 q^{-2} \leq \frac{1}{q} q^{-1}.
\]

Thus the \(\alpha_r \) are spaced at least \(\frac{1}{q} q^{-1} \) apart modulo one. Hence, by Lemma 1,

\[
(2.5) \quad \sum_{n,p} a_n e(ans) = \left(\sum_{n=1}^q |a_n|^2 \sum_{r=1}^q b^{(j)} e \left(\left(\frac{q}{X} \right)^2 q^{-2} \left(\frac{q}{X} \right)^2 q^{-2} \min(X, q^{1/2}) \right) \right)^{1/2} \leq \left(\sum_{n=1}^q |a_n|^2 \left(X^2 q^{-1} + q^{-2} \right) \min(X, q^{1/2}) \right)^{1/2}.
\]

Hence, by (2.5) and (2.6),

\[
\sum_{n,p} a_n e(ans) = \left(X^3 q^{-1} + 1 \right) q^2 \left(\sum_{n=1}^q |a_n|^2 \left(X^2 q^{-1} + q^{-1} \right) \min(X, q^{1/2}) \right)^{1/2}.
\]

If \(q > X^2 \), then this gives the lemma at once, and if \(X < q < X^2 \), then it follows easily from this and (2.3).

Now suppose that \(q \leq X \). Define \(b^{(j)} \) to be 0 unless \(\frac{1}{2} X^2 < q r + s < \frac{1}{2} X^2 \) and \(q r + s \) is prime in which case define it to be 1. Then

\[
(2.7) \quad \sum_{n,p} a_n e(ans) = \sum_{r=1}^q \sum_{n=1}^q \sum_{r=1}^q a_n b^{(j)} e \left(n \left(\frac{a}{q} r + \left(a - \frac{a}{q} \right) (q r + s) \right) \right).
\]

For a fixed \(s \), take

\[
\alpha_r = \frac{a}{q} r + \left(a - \frac{a}{q} \right) (q r + s) s.
\]

The \(\alpha_r \) are all contained in an interval of length at most \(\frac{1}{q} q^{-1} \). Thus

\[
\| x_r - \alpha_i \| = \left| a - \frac{a}{q} \right| \left| (q r + s) s - (q i + s) s \right|
\]

so that

\[
\min_{r < i} \| x_r - \alpha_i \| \geq X^{-2k},
\]

Thus, by (2.7) and Lemma 1,

\[
\sum_{n,p} a_n e(ans) \ll q^2 \left(\sum_{n=1}^q |a_n|^2 \right)^{1/2} \left(\frac{X^2 q^{-1} + q^{-2}}{}\right)^{1/2} X^{-2k}.
\]

This with (2.3) gives the desired conclusion.

The next lemma is an extension of Theorem 3 of Davenport and Erdös [6]. When \(s > 3 \) it is apparently new.

Lemma 3. Suppose that \(s \geq 3 \), \(a_1, \ldots, a_s \) are non-zero integers,

\[
(2.8) \quad \theta = \frac{1}{k^2} - \frac{1}{k}, \quad \tau_s = \frac{k^2 - \theta^{-3}}{k^2 + k - k \theta^{-3}}, \quad \tau_s = \frac{k^2 - k - 1}{k^2 + k - k \theta^{-3}}
\]

and \(S \) denotes the number of solutions of

\[
\sum_{j=1}^s \gamma_j (r_j - t_j) = 0
\]

with \(X < r_1, t_1 < 2X, X^2 < r_2, t_2 < 2X^2, X^{1/2} < r_j, t_j < 2X^{1/2} \) for \(3 \leq j \leq s \).

Then

\[
S \ll X^{1 + \theta + \tau_1 + \tau_2 + \cdots + \tau_s + \theta^2 - 1 + \epsilon}.
\]

Proof. Let \(S_m \) denote the number of solutions of

\[
\sum_{j=1}^m \gamma_j (r_j - t_j) = 0
\]

with \(r_m \neq t_m \). Since \(S_1 = 0 \) we have

\[
(2.9) \quad S = \sum_{m=2}^s S_m X^{\tau_1 + \tau_2 + \cdots + \tau_s + \theta^2 - 1} + O(X^{1 + \theta + \tau_1 + \tau_2 + \cdots + \tau_s + \theta^2 - 1}).
\]

Moreover,

\[
(2.10) \quad S_1 \ll X^{1 + \theta + \tau_1} \ll X^{1 + \theta + \tau_2}.
\]

We write

\[
(2.11) \quad S_m = S'_m + 2S''_m \quad (m \geq 3)
\]

where \(S'_m \) is the number of solutions with \(r_1 = t_1 \) and \(S''_m \) the number with \(r_1 > t_1 \). Then

\[
(2.12) \quad S'_m \ll XT_m
\]

where \(T_m \) is the number of solutions of

\[
(2.13) \quad \sum_{j=1}^m \gamma_j (r_j - t_j) = 0.
\]
If \(m = 3 \), then at once
\[
T_3 \ll X^{3 \nu_3 + 1}.
\]

If \(m > 3 \), then since \(r_3 \leq r_2 \theta^2 \), given any set of \(t_1, t_2, \ldots, t_m \), the number of choices for \(r_1, r_2, \ldots, r_m \) for which (2.13) holds is \(\ll 1 \). Hence
\[
T_m \ll X^{r_3 + r_2 + \cdots + r_m \theta^{m-2}} \quad (m > 3).
\]

We now turn to the treatment of \(S_m' \). The number of choices for \(r_3, t_3 \) is \(\ll X^{r_3^2} \). For any such choice we have
\[
A + c_1 (r_3^2 - t_3^2) + \sum_{j=3}^m c_j (r_j^2 - t_j^2) = 0
\]
where \(A \) is fixed. Let \(h = r_3 - t_3 \). Then \(r_3^2 - t_3^2 > h X^{r_3-1} \). Also
\[
A + \sum_{j=3}^m c_j (r_j^2 - t_j^2) \ll X^{r_3^2/2}.
\]

Hence \(0 < h \ll X^{r_3^2-k+1} \), and (2.16) can be rewritten in the form
\[
A + c_1 (t_3 + h)^2 - t_3^2 \ll X^{r_3^2}.
\]

For a given \(h \), let \(t \) and \(t+j \) be two possible values of \(t_3 \) for which (2.17) holds. Then
\[
(t+j+h)^2 - (t+j)^2 - (t+h)^2 + t^2 \ll X^{r_3^2},
\]
whence \(h X^{r_3^2-1} \ll X^{r_3^2} \). Thus the number of possible choices for \(t_3 \) is
\[
\ll 1 + X^{r_3^2-k+1}.
\]

For given \(r_3, t_3 \), (2.16) becomes
\[
A_3 + \sum_{j=3}^m c_j (r_j^2 - t_j^2) = 0
\]
where \(A_3 \) is fixed. The number of choices for \(t_3, \ldots, t_{m-1} \) is \(\ll X^{r_3^2 + \cdots + r_m \theta^{m-4}} \) and for any such choice the number of choices for \(r_3, \ldots, r_{m-1} \) is \(\ll 1 \).

Given \(t_3, \ldots, t_{m-1}, r_3, \ldots, r_{m-1} \), (2.18) becomes
\[
A + c_m (r_m^2 - t_m^2) = 0
\]
and since \(r_m \neq t_m \) the number of choices for \(r_m, t_m \) is \(\ll X^r \). Thus
\[
S_m' \ll X^{r_3^2} \sum_{0 < h < X^{r_3^2-k+1}} (1 + X^{r_3^2-k+2} h^{-1}) X^{r_3^2 + \cdots + r_m \theta^{m-4} + h}.
\]

The lemma now follows from this, (2.9), ..., (2.12), (2.14) and (2.15).

For future reference we note that by (2.8),
\[
(2.20) \quad 1 + r_3 + r_3 + \cdots + r_3 \theta^{m-2} = \kappa \left(\frac{k^2 - 2k} {k^2 + 2} \theta^{m-2} \theta^2 \right).
\]

Lemma 4. Suppose that \(1 \leq r \leq k - 2 \), \(0 < r < 1 \), \(\mathcal{X} \) and \(\mathcal{Y} \) are finite subsets of \(X^n \), \(f : \mathcal{X} \times \mathcal{Y} \rightarrow \{-X^r, X^{r-k} \} \times \{X^{r-k} - 1 \} \times \mathbb{Z} \) and write
\[
r(m, v) = \left| \{(x, y) : x < x < 2X, u \in \mathcal{X}, v \in \mathcal{Y}, f(x, y) = m \} \right|,
\]
\[
R(m, v) = \left| \{(u, v) : u \in \mathcal{X}, f(u, v) = m \} \right|,
\]
\[
S = \sum_{m} r(m, v) \quad \text{and} \quad T = \sum_{m} R(m, v).
\]

Then
\[
S \ll XT + X^{r+1} + \sum_{m} r(m, v) \quad \text{and} \quad T \ll \sum_{m} R(m, v).
\]

where \(|\mathcal{X}|, |\mathcal{Y}| \) denote the cardinalities of \(\mathcal{X} \) and \(\mathcal{Y} \) respectively.

Proof. This follows that of Theorem 1 of Davenport [4] with one important modification, due to the fact that \(f \) may not be one-to-one.

It suffices to prove the result when \(|\mathcal{Y}| = 1 \). For then the more general result follows by summing over all possible \(v \) and applying Hölder's inequality to the last expression on the right. We henceforth suppress the \(v \). Let
\[
\mathcal{X}_j = \{ h : h = (h_1, \ldots, h_j) ; h_j > 0 ; h_j \leq X^r ; h_2, \ldots, h_j \leq X \}
\]
and
\[
\mathcal{X}_f(h, m) = \left| \{(x, y) : x \leq x < 2X, u \in \mathcal{X}, v \in \mathcal{Y}, f(x, y) = m \} \right|
\]
where \(\mathcal{X}_f \) is the usual \(j \)th iterate of the forward difference operator. Now let
\[
N_j = \sum_{h \in \mathcal{X}_j} R(h \cdot m).
\]

Then
\[
S \ll XT + N_1
\]
and, by Cauchy's inequality,
\[
N_j \ll X^{r+1} T \sum_{h \in \mathcal{X}_j} \mathcal{X}_f(h, m)^{1/2} \ll X^{r+1} T (X^{r+1} + N_{j+1}).
\]

Therefore
\[
N_j \ll X^{r+1} T \sum_{h \in \mathcal{X}_j} \mathcal{X}_f(h, m)^{1/2} \ll X^{r+1} T (X^{r+1} + N_{j+1}).
\]

Hence, by induction on \(r \),
\[
N_1 \ll X^{r+1} T \sum_{h \in \mathcal{X}_j} \mathcal{X}_f(h, m)^{1/2} \ll X^{r+1} T (X^{r+1} + N_{j+1}).
\]
By (2.21) and (2.22),
\[N_{r+1} \ll X^r \left(\sum_m R(m)^2 \right)^{\frac{1}{2}} = X^r |\mathcal{A}|^2. \]

This with (2.23) and (2.24) gives the desired conclusion.

As an immediate corollary we have

Lemma 5. In addition to the premises of Lemma 4 suppose that
\[T \ll X^r |\mathcal{A}| |\mathcal{A}'|, \quad |\mathcal{A}| \ll X^{(r+\varepsilon)\cdot}, \quad r \ll 2^{-r} \]
and
\[r \ll (r+1-a(k-1))/(2^{-r}+a) \]
where \(0 < a < 1\). Then
\[S \ll X^r |\mathcal{A}| |\mathcal{A}'|. \]

The next lemma follows by adapting the proof of Theorem 4 of Davenport [4] in the same way that we adapted the proof of his Theorem 1 to give our Lemma 4.

Lemma 6. We assume the hypothesis of Lemma 4 with \(k = 9\) and suppose further that \(r = 6\) or \(r \leq 6\) and \(r \) is odd, that
\[r(m, p, v) = |\{(x, u), x < x < 2X, p|x, u \in \mathcal{U}, c^3 + p^2f(u, v) = m\}| \]
and that
\[S' = \sum_{m \in \mathcal{U}} \sum_{v} \sum_{r} r(m, p, v)^2. \]

Then
\[S' \ll X^r T_1 + X^{r+\varepsilon} T_1 + X^{r+\varepsilon} T_1 + X^{r+\varepsilon} T_1 + X^{r+\varepsilon} T_1 |\mathcal{A}| |\mathcal{A}'| \]
where \(r = (10-r)/9\).

Lemma 7. In addition to the premises of Lemma 6 we assume that
\[T \ll X^r |\mathcal{A}| |\mathcal{A}'|, \quad |\mathcal{A}| \ll X^{(r+\varepsilon)\cdot}, \quad r \ll 2^{-r} \]
and
\[r \ll 9r + 10 - 72 \alpha \]
where \(0 < \alpha < 1\). Then
\[S' \ll X^{(r-\varepsilon)\cdot} |\mathcal{A}| |\mathcal{A}'|. \]

Proof. Immediate by Lemma 6.

3. Definitions. The case \(k > 9\). Let
\[\theta = 1 - \frac{1}{k} \]
and
\[s_1 = s + \left[\frac{\log \left(\frac{6k-24 + 443}{14k} \right)}{-\log \theta} \right]. \]

We shall form the variables \(x_1, \ldots, x_s\) into four groups, the first two containing \(s_1\) variables each, the third \(s_2+1\) where \(s_2\) is yet to be defined, and the fourth the remainder.

Let
\[t = 20 (k = 10), \quad t = 24 (k = 11), \quad t = 27 (k = 12), \]
\[t = 4 + \left(\frac{\log \left(\frac{k^2-2 - k^2 + 2k^2 + 9}{k^2 + k^2} \right)}{-\log \theta} \right) (k \geq 13), \]
\[\alpha(m) = 1 - \frac{k^2 - 3k^2 + k^2 + 2k^2}{k^2 + k^2 - k^2} \theta^{m-3}, \]
\[t = \min(t_1, t), \]
\[s_1 = 1 - (2k^2 - k^2) + \left(\frac{k^2 - 2k^2 + 1 + k^2 - 1}{1 - \alpha(t_1)} - k^2 \right)^{-1}, \]
\[s_2 = 1 - \frac{1}{k} + 4(1 - \alpha_2), \]
\[s_3 = 1 - \frac{1}{k} + 4(1 - \alpha_2), \]
\[s_4 = \left[\frac{\log \left(\frac{k^2 - 2k^2 + 1}{k^2 - 2k^2 + 1} \right)}{-\log \theta} \right] (\alpha_2 > \alpha(t)), \]
\[4 + \left(\frac{\log \left(\frac{k^2 - 2k^2 + 1}{k^2 + k^2} \right)}{-\log \theta} \right) (\alpha_2 \leq \alpha(t)). \]

In particular this gives \(s_1(10) = 107\), \(s_1(11) = 122\), \(s_1(12) = 137\), \(s_1(13) = 133\), \(s_1(14) = 168\), \(s_1(15) = 184\), \(s_1(16) = 200\), \(s_1(17) = 216\), and we shall show that for \(a > s_1, (1.2)\) has a non-trivial solution providing that the congruence condition is satisfied, and this establishes the theorem when \(k > 9\).
\[\theta_m = \Theta \quad (s_1 - t_1 + 4 \leq m \leq s_1), \]
\[\theta_{t_1 - t_1 + \delta} = \frac{k^2 - \delta}{k^2 - \delta^{i+3}}, \]
\[\theta_{\eta - t_1 + \delta} = \frac{k^2 - \delta^{i+3}}{k^2 + k - \delta^{i+3}}. \]

and define inductively on \(s_1 - t_1 + 2 - i \) for \(s_1 - t_1 + 1 \geq i \geq 1 \)

\[\mu_i = \frac{1}{k} \sum_{j=1}^{s_1} \prod_{r=i+1}^{j} \theta_r, \]
and
\[\theta_i = \frac{\delta^{2k-1}}{2^{k-1} - 1 + \mu_i}. \]

Now define
\[\lambda_{2s_1 - 1} = \lambda_{2s_1} = \prod_{j=2}^{s_1} \theta_j \quad (i = 1, \ldots, s_1) \]
and
\[\lambda_i = \frac{1}{2} \prod_{j=1}^{i-2s_1} \theta_{j+2s_1}, \quad (i = 2s_1 + 1, \ldots, 2s_1 + s_2). \]

When \(k \) is even we are given that not all the \(c_j \) are of the same sign.
We can also assume this when \(k \) is odd, since we can always replace \(c_j \) by \(-c_j\) and \(-s_j^k\) by \((-s_j^k)\). Then by relabeling we can further suppose that
\[c_1 > 0, \quad c_2 < 0. \]

Let \(P \) be a large real number and write
\[P_1 = |c_1|^{1/2}P, \quad P_2 = c_0^{1/2}P, \quad P_3 = P^{3/4}. \]

\[f_{1-4}(a) = \sum_{a \leq 2s_1 + j < 2s_1 + 2} e(a c_{2s_1 - j} x^k), \quad (i = 1, \ldots, s_1; j = 1, 2), \]
and
\[F(a) = \prod_{i=1}^{2s_1} f_i(a), \]
\[g_i(a) = \sum_{a \leq 2s_1 + 1 < 2s_1 + s_2} e(a c_i x^k), \quad (i = 2s_1 + 1, \ldots, 2s_1 + s_2). \]

Clearly \(\mathcal{N}(P) \) is the number of solutions of (1.2) with the variables restricted in various ways. We shall show that the congruence condition implies that \(\mathcal{N}(P) \to P \) as \(P \to \infty \). This will establish the theorem when \(k > 9 \).

4. Definitions. The case \(k = 9 \). Let
\[\theta = \Theta, \quad t = 8, \quad s_1 = 32, \quad s_2 = 26, \quad s_3 = 91, \]
\[\theta_m = \Theta \quad (28 \leq m \leq 32), \]
\[\theta_{2t} = \frac{71}{81 - \Theta^9}, \]
\[\theta_{2t} = \frac{81 - \Theta^9}{90 - \Theta^9}, \]
and inductively on \(26 - i \),
\[\mu_i = \frac{1}{9} \sum_{j=i}^{32} \prod_{r=i+1}^{j} \theta_r \quad (1 \leq i \leq 25). \]
and
\[\theta_i = \begin{cases} \frac{8}{9} + \frac{1}{9} \min \left(\frac{1}{32}, \frac{55}{280 + 9\mu_i} \right), & (i = 25, 24), \\ \frac{8}{9} + \frac{1}{9} \min \left(\frac{1}{64}, \frac{64 - 72\mu_i}{568 + 9\mu_i} \right), & (i = 23, \ldots, 20), \\ \frac{8}{9} + \frac{1}{9} \min \left(\frac{1}{128}, \frac{8(1-\mu_i)}{127 + \mu_i} \right), & (i = 19, \ldots, 2). \end{cases} \]
and the summations are over

\[P_{1}^2 < q_i < 2P_{1}^2, \quad p_i < Q_i, \quad p_i + q_i, \quad 9 | p_i + 1, \quad \frac{1}{2}P_{1/2} < p < \frac{1}{2}P_{1/2}. \]

Further, let

\[h_i(a) = \sum_{e < P_{1/2}} e(aq, e^2) \quad (92 \leq i \leq a), \]

and

\[\mathcal{N}(P) = \int E(a) \psi(a) h(a) E(a) da. \]

5. The Farey dissection. Let

\[\mathfrak{M}(q, a) = \{ a; \ | a - a/q | < q^{-1}P_{1/2-k} \} \]

denote a typical major arc and write

\[\mathfrak{M} = \bigcup_{q \in P_{1/2}} \mathfrak{M}(q, a) \]

to denote their union and

\[m = (P_{1/2-k}, 1 + P_{1/2-k}) \setminus \mathfrak{M} \]

to denote their complement, the minor arcs.

Let

\[\eta = \delta^k \]

define

\[R(q, a) = \{ a; \ | a - a/q | < q^{-1}P_{1/2-k} \} \]

to be a truncated major arc and

\[R = \bigcup_{q \in P_{1/2} \setminus \mathfrak{M}(q, a)} R(q, a) \]

to denote their union.

4 -- Acta Arithmetica XXXIII.3
The point of our definitions in §§ 3 and 4 is to make the most effective use of the lemmas of § 2 on the minor arcs, and to keep the variables a_1, \ldots, a_n of (1.2) explicit.

The estimation of the major arcs are, as usual, nothing more than a matter of technique.

We proceed now to examine the minor arcs.

Lemma 8. We have

$$\int_0^1 |F(a)| \, da \ll P^{-k\alpha_0} F(0).$$

Proof. We first of all consider the case $k > 9$. By Schwarz's inequality (3.19), (3.20) and Parseval's identity the square of the integral on the left of (5.7) is majorized by the product of the two expressions

$$\sum_{m} r_j(m)^2 \quad (j = 1, 2),$$

where

$$r_j(m) = \left| \left(x_1, \ldots, x_n \right); \sum_{r \geq s} c_{i_0-i+r} a_i^k = m, \ P_j^{2k} < x_i < 2P_j^{2k} \right|.$$

By first of all invoking Lemma 3 with $s = t_1$ and then successively applying Lemma 5 with $r = k - 2$ we find, providing that

$$k - 1 < k \theta_3 \leq k - 1 + 2^{2-k} \quad (2 \leq i \leq s_1 - t_1),$$

that

$$\sum_{m} r_j(m)^2 \ll P_j^{2k+4} \cdots + 2s_1 + 4 \ll P^{-k\alpha_0} F(0).$$

This gives the desired conclusion when $k > 9$ on establishing (5.9). For $k = 10, 11$ and 12 it can be checked by direct calculation. For $k > 12$ we observe that

$$\min \left(k^{2-k} + k - 2k^2 + 2, (k^2 + k) \left(\frac{k-1}{k} \right) \left(6k - 24 + \frac{44k}{14k} \right) \right) > k^2 - 4k^2 + 5k^2 + k - 2 + 2^{2-k}(k^2 - 3k^2 + k + 2).$$

Thus, by (3.2), (3.3) and (3.3),

$$(k^2 + k) \theta^{3-k} > k^2 - 4k^2 + 5k^2 + k - 2 + 2^{2-k}(k^2 - 3k^2 + k + 2).$$

Therefore

$$(k - 1 + 2^{2-k})(k^2 - 3k^2 + k + 2) \theta^{3-k} < k^2 + k^2 - k^2 \theta^{3-k}.$$

Hence, by (2.8), (2.20), (3.10), \ldots, (3.13),

$$0 < 1 - \mu_{s_1 - t_1 + 1} = \frac{k^2 - 3k^2 + k + 2}{k^2 + k^2 - k^2 \theta^{3-k} + k - 1} \frac{1}{k - 1 + 2^{2-k}}$$

and this with (3.14) gives (5.9) for $i = s_1 - t_1$. Since μ_i is a decreasing function of i it follows at once that (3.9) also holds when $i \leq s_1 - t_1$.

The proof in the case $k = 9$ is similar. We first of all observe that by (4.11) and (4.12) the integral in question is bounded by

$$\int \sum_{p_{19}} \cdots \sum_{p_{24}} |F_i| \, p_{19} \cdots p_{24} \left(\prod_{i} \left| f_i \right| \right) \left(\prod_{l \leq \alpha_0} \left| f_l \right| \right)$$

where F_i contains the x_i with i odd and F_{2j} the ones with i even.

By the Cauchy–Schwarz inequality this is bounded by the square root of the product of the two expressions

$$\int \sum_{p_{19}} \cdots \sum_{p_{24}} |F_i|^2 \, p_{19} \cdots p_{24} \left(\prod_{i} \left| f_i \right|^2 \right) \left(\prod_{l \leq \alpha_0} \left| f_l \right|^2 \right) \quad (j = 1, 2)$$

and by Parseval's identity this is

$$\sum_{p_{19}} \cdots \sum_{p_{24}} \sum_{m} r_j(m, p, \ldots, p_{24})^2$$

with

$$r_j(m, p_{19}, \ldots, p_{24}) = \left| \left(x; c \right); c_1 a_1^{k_1} + \cdots + c_{t_j} a_{t_j}^{k_{t_j}} + p_{19} c_{t_j + 1} a_{t_j + 1}^{k_{t_j + 1}} + \cdots + p_{24} c_{t_j + s} a_{t_j + s}^{k_{t_j + s}} \right| = m, \ P_{2j+1}^{2k} < x_{2j} < 2P_{2j+1}^{2k}, \ P_j \, c \right|$$

with a similar expression for r_{2j}. We first of all use Lemma 3 with $s = 8$, then apply Lemma 7 twice with $r = 5$ and four times with $r = 6$. Finally we apply Lemma 5 successively eighteen times with $r = 7$. The choice of the parameters in (4.2), \ldots, (4.6) ensures that the hypotheses of the lemmas are satisfied.

Thus we have

$$\sum_{p_{19}} \cdots \sum_{p_{24}} \sum_{m} r_j(m, p_{19}, \ldots, p_{24})^2 \ll Q_{24} Q_{48} Q_{96} P_{48}^{1/2} \cdots P_{50}^{1/2} \cred \ll P^{-k\alpha_0} F(0).$$

This completes the proof of the lemma.

Lemma 9. We have $\mu_1 = a_1$ (k > 9), $\mu_2 > 0.96149$ (k = 9) and $\mu_2 > 0.95185$ (k = 9).

Proof. Consider first $k > 9$. By (3.1), (3.10), \ldots, (3.13),

$$k \mu_{s_1 - t_1 + 1} = 1 + \frac{k^2 - \theta^{3-k}}{k^2 + k - k \theta^{3-k} + k^2}$$

and this with (3.14) gives (5.9) for $i = s_1 - t_1$. Since μ_i is a decreasing function of i it follows at once that (3.9) also holds when $i \leq s_1 - t_1$.
and thus, by (3.4),
\[\mu_{t_1-t} = c(t). \]

If \(s_1 \leq t \), then by (3.5) and (3.6) we have \(\mu_1 = a_1 \). Thus we can suppose that \(s_1 > t = t_1 \). By (3.13) and (3.14), for \(s_1 \leq s_1 \equiv t_1 \),

\[\mu_s = \frac{1}{k} + \theta_{t_1} \mu_{t_1} = \frac{1}{k} + \left(1 - \frac{1}{k} \right) \frac{2^{k-1} \mu_{t_1}}{2^{k-2} - 1 + \mu_{t_1}}. \]

On rearrangement this becomes

\[\frac{2^{k-2} - 1 + k\mu_s}{1 - \mu_s} = \frac{2^{k-2} - 1 + k\mu_{t_1}}{2^{k-2} - 1}. \]

Hence, by (3.5) and (5.10),

\[\frac{2^{k-2} - 1 + k\mu_s}{1 - \mu_s} = \left(\frac{2^{k-2} - 1 + k\mu_{t_1}}{2^{k-2} - 1} \right)^{s_1-t}. \]

On rearrangement and comparison with (3.6) we obtain \(\mu_2 = a_1 \) once more.

Now consider \(k = 9 \). By (4.1), ..., (4.5)

\[\mu_{95} = \frac{14444593}{22857741}. \]

By (4.5),

\[\mu_s = 1/9 + \theta_{t_1} \mu_{t_1}. \]

We now use this with (4.6) to successively calculate the value of \(\mu_9 \). We find that

\[\mu_{95} < 0.88136. \]

Then, since \(1034(1 - \mu_9) < 127 + \mu_9 \) for \(i \leq 16 \) we can use the formula

\[\frac{1 - \mu_9}{127 + 9\mu_9} = \frac{127}{144} \]

to give the desired lower bounds for \(\mu_9 \) and \(\mu_{95} \).

LEMMA 10. Let \(k \in \mathbb{N} \). Then

\[H(a) \cdot h(a) \ll D^{11-k-\alpha} H(0) h(0). \]

Proof. Suppose first of all that \(k > 0 \). Choose \(a, q \) so that \((a, q) = 1, |a - a/q| \ll P^{-k/2} \) and \(q \ll P^{\alpha/2} \). Then, by (5.1), (5.2) and (5.3), whenever \(q \ll P^{\alpha/2} \) we have

\[|a - a/q| \gg q^{-1} P^{-k+3/2}. \]

Hence, by (3.16), (3.18), (3.21), (3.22) and (3.23), the hypothesis of Lemma 2 is satisfied with \(X = P^{14} \) and \(S(a) = H(a) \cdot h(a) \).

Thus

\[H(a) \cdot h(a) \ll P^{11-k+\alpha} \sum_m r(m)^2 \]

where

\[r(m) = \sum_{\xi I} c_i \alpha_i \xi = m, P_{\xi I} < x_1 < 2P_{\xi I}. \]

The sum \(\sum_m r(m)^2 \) is estimated in the same way as the analogous sums arising in the proof of Lemma 8. Thus

\[\sum_m r(m)^2 \ll P^{11-k+\alpha} \sum_{\xi I} P_{\xi I}^2 \sum_{\xi I} P_{\xi I}^2 \]

whence, by (3.8), (3.18) and the same argument as in the first part of the proof of Lemma 9,

\[\sum_m r(m)^2 \ll P^{11-k+\alpha} \sum_{\xi I} P_{\xi I}^2 \sum_{\xi I} P_{\xi I}^2. \]

Hence, by (3.21), (3.22), (3.23) and (5.11),

\[H(a) \cdot h(a) \ll P^{11-k+\alpha} \sum_{\xi I} P_{\xi I}^2 \sum_{\xi I} P_{\xi I}^2. \]

The desired result then follows from (3.7) and Lemma 9.

In the case \(k = 9 \) we follow the same argument to begin with. This gives (5.11) with

\[r(m) = \sum_{\xi I} r(m, \xi, \ldots, \xi). \]

where

\[r(m, \xi, \ldots, \xi) = \left(\sum_{\xi I} c_i \alpha_i \xi = m, P_{\xi I} < x_1 < 2P_{\xi I} \right)^2. \]

Hence, by Cauchy's inequality,

\[\sum_m r(m)^2 \ll \sum_{\xi I} Q_{\xi I} \sum_{\xi I} r(m, \xi, \ldots, \xi)^2. \]

We now follow the argument of the case \(k = 9 \) of Lemma 8. This gives

\[\sum_m r(m)^2 \ll \sum_{\xi I} P_{\xi I}^2 \sum_{\xi I} P_{\xi I}^2. \]

Thus, by (4.5) and (4.7),

\[\sum_m r(m)^2 \ll P_{\xi I}^2 \sum_{\xi I} Q_{\xi I} \sum_{\xi I} P_{\xi I}^2. \]
Hence, by (5.11), (4.14), (4.15) and (4.18),
\[H(a) h(a) \leq P^{\delta - 2} P_{3}^{\delta - 8} H(0) h(0). \]
The proof is now completed by appealing to Lemma 9.
Combining Lemmas 8 and 10 establishes
\[\int_{a} F(a) H(a) h(a) E(a) da \leq P^{-\delta - 4} F(0) H(0) h(0) E(0), \]
and concludes the discussion of the minor arcs.

6. The truncation of the major arcs. Let
\[S_{i}(g, a) = \sum_{r_{i} = 1}^{g} e(a r_{i}^{k} / q), \]
\[W_{i}(\beta) = \sum_{\delta_{i} k_{i} x_{i} + a \leq \beta} \frac{1}{k_{i}!} e(\beta x_{i}) \quad (2i - j, i \leq 2s_{i}, j = 1, 2), \]
\[f_{i}^{*}(a, q, a) = q^{-1} S_{i}(g, a) W_{i}(a - a / q) \]
and
\[f_{i}^{*}(a) = f_{i}^{*}(a, q, a) \quad (a \in \mathfrak{M}(g, a)), \]
\[0 \quad (a \notin \mathfrak{M}). \]

We note that by (3.2) and (4.1), \(s_{i} > k \).

Lemma 11. We have
\[\int_{\mathfrak{M}} \left| \prod_{i=1}^{2k+2} f_{i}(a) - \prod_{i=1}^{2k+2} f_{i}^{*}(a) \right| da \leq P^{-\delta - 2k} \prod_{i=1}^{2k+2} f_{i}(0). \]

Proof. Let \(a \in \mathfrak{M}(g, a) \). Since \(\delta_{i} \geq g^{(1 - \frac{1}{k(k - 1)})} > \frac{1}{k} \) (\(i \leq 2k + 2 \)) it follows from Lemma 8 of Davenport [3] that
\[f_{i}(a) - f_{i}^{*}(a) \leq q^{2k+2}. \]
By Lemma 3 of Hardy and Littlewood [8],
\[S_{i}(g, a) \leq q^{1 - \delta k}, \quad (a, q) = 1. \]
Thus, by (6.3), ..., (6.5), for \(q \leq P^{\delta k} \),
\[f_{i}(a), f_{i}^{*}(a) \leq q^{-1} P^{\delta k} \quad (i \leq 2k + 2). \]

By Lemma 9 of Davenport [3],
\[f_{i}(a), f_{i}^{*}(a) \leq q^{-1} P^{1 + P^{\delta k} a - a / q} \quad (i = 1, 2). \]
Thus, by (6.5) and (6.7),
\[\left(\prod_{i=1}^{2k+2} f_{i}(a) \right) - \left(\prod_{i=1}^{2k+2} f_{i}^{*}(a) \right) \leq q^{-1 - \delta k} \left(1 + P^{\delta k} a - a / q \right)^{-1} \left(\prod_{i=1}^{2k+2} f_{i}(0) \right). \]
The lemma follows easily from this.

Lemma 12. We have
\[\int_{\mathfrak{M} \setminus \mathfrak{N}} \prod_{i=1}^{2k+2} |f_{i}(a)| da \leq P^{-\delta - 2k} \prod_{i=1}^{2k+2} f_{i}(0). \]

Proof. Let \(a \in \mathfrak{M} \setminus \mathfrak{N} \). Then, by (5.2) and (5.6), there exist \(\alpha, \eta \) such that \(|a - a / q| < q^{-1} P^{-k/12} \), \((a, q) = 1 \) and \(1 \leq a \leq q \leq P^{\delta k} \) and moreover such that if \(q \leq P^{\delta k} \), then \(|a - a / q| \geq q^{-1} P^{-k/2} \). By (6.7) and (6.8),
\[\int_{\mathfrak{M} \setminus \mathfrak{N}} \prod_{i=1}^{2k+2} |f_{i}(a)| \leq q^{-1 - \delta k} \left(1 + P^{\delta k} a - a / q \right)^{-1} \left(\prod_{i=1}^{2k+2} f_{i}(0) \right). \]

Thus the integral in question is
\[\ll \left(\sum_{a \in \mathfrak{N}} q^{-1 - \delta k} P^{-s} \right) \int_{-\infty}^{\infty} \left| \sum_{a \in \mathfrak{N}} q^{1 - \delta k} P^{-k} \prod_{i=1}^{2k+2} f_{i}(0) \right| \]
and this gives the lemma.

By Lemmas 11 and 12 we see that
\[\int_{\mathfrak{N} \setminus \mathfrak{R}} F(a) H(a) h(a) E(a) da \leq P^{-\delta - 4} F(0) H(0) h(0) E(0). \]

7. The truncated major arcs. Let
\[\mathcal{S}_{i}(n, X) = \sum_{a \in \mathfrak{N}} q^{-1 - \delta k} \sum_{a \in \mathfrak{N}} q^{1 - \delta k} P^{\delta k} \prod_{i=1}^{2k+2} S_{i}(g, a). \]

Lemma 13. Suppose that \(|n| \leq P^{\delta k} \). Then
\[\int_{\mathfrak{N} \setminus \mathfrak{R}} \left(\sum_{a \in \mathfrak{N}} f_{i}(a) \right) da = (J(P) \mathcal{S}_{i}(n, P^{\delta k}) + O(P^{-\delta})) \prod_{i=1}^{2k+2} f_{i}(0) \]
where \(J(P) \approx 1 \).
Proof. By Lemma 11 it suffices to prove the result with each \(f_i \) in the integrand replaced by \(f_i^* \). Let \(a \in \mathbb{R}(q, a) \). By (5.5), (6.7) and (6.8),

\[
\sum_{a \in \mathbb{R}(q, a)} \left(\sum_{i=1}^{\frac{2k+3}{2}} f_i(a) \right) da = \int \left(\sum_{a \in \mathbb{R}(q, a)} \right) \left(\sum_{i=1}^{\frac{2k+3}{2}} f_i(a) \right) da + O \left(\left(q^{-1/2} \sum_{i=1}^{\frac{2k+3}{2}} f_i(0) \right) \right).
\]

Thus, by (6.3) and on summing over all the \(\mathbb{R}(q, a) \), we have

\[
(7.2) \quad \sum_{a \in \mathbb{R}(q, a)} \left(\sum_{i=1}^{\frac{2k+3}{2}} f_i(a) \right) da = J_1(P) \Xi_1(n, P^{\alpha_2}) + O \left(\left(P^{-3/2} \sum_{i=1}^{\frac{2k+3}{2}} f_i(0) \right) \right).
\]

By (6.2),

\[
J_1(P) = \sum_{a_1} \ldots \sum_{a_{2k+3}} \left(x_{a_1} \ldots x_{a_{2k+3}} \right)^{1/k-1}
\]

where the summations are over

\[
P_{2k+4} < a_{2k+2} < a_{2k+3}
\]

subject to \(c_1 a_1 + \ldots + c_{2k+3} a_{2k+3} = 0 \). It now follows from (3.17), (3.18) and (4.8) that

\[
J_1(P) \approx P^{-k} \sum_{i=1}^{\frac{2k+3}{2}} f_i(0).
\]

This with (7.2) gives the lemma.

Lemma 14. We have

\[
(7.3) \quad \int \left(F(a) H(a) h(a) E(a) \right) da = \left(J_1(P) \right) \Xi_1 \left(P^{-1} \right) F(0) H(0) E(0)
\]

where

\[
\Xi_1 = \sum_{i=1}^{\lambda_i} q^{-\alpha_2} \sum_{a \in \mathbb{R}(q, a)} \prod_{i=1}^{n} S_i(q, a).
\]

Proof. We consider the case \(k = 9 \). The case \(k > 9 \) is similar but simpler. By Lemma 13 the integral on the left of (7.3) is

\[
(7.5) \quad J_1(P) P^{-1} \left(\sum_{i=1}^{\lambda_i} f_i(0) \right) = \sum_{a \in \mathbb{R}(q, a)} \left(D(x, p), P^{\alpha_2} \right) + \left(0, P^{-1} F(0) H(0) E(0) \right)
\]

where

\[
D(x, p) = c_1 x_1 + \ldots + c_{2k} x_{2k} + A(x', p') + x_{2k+1} \left(c_{2k+1} x_{2k+1} + \ldots + c_{2k+3} x_{2k+3} \right) + \ldots + x_{2k+3} \left(c_{2k+3} x_{2k+3} + \ldots + c_{2k+6} x_{2k+6} \right).
\]

\(A \) and \(B \) are given by (4.13) and (4.16), and the summations are over

\[
P_{2k+1} < a_{2k+1} < 2P_{2k+1}^{-1}, \quad P_{2k+2} < a_{2k+2} < 2P_{2k+2}^{-1} \quad (i \leq 22),
\]

\[
p_{i+1} < a_{n+1} \quad (19 \leq i \leq 24),
\]

\[
p_{i} < q, \quad 9 \leq i < 32,
\]

and \(a_{2k+1} < 2P_{2k+1}^{-1} \quad (65 \leq i < 90) \).

By (7.1), the multiple sum in (7.5) can be written in the form

\[
\sum_{q | n \prod q} q^{-\alpha_2} \sum_{a \in \mathbb{R}(q, a)} \prod_{i=1}^{n} S_i(q, a) \Xi_1(a, P^{\alpha_2}).
\]

For each variable \(x_i \), we can replace the sum over the \(x_i \) by an expression of the form

\[
P_i q^{-1} S_i(q, a m_i^p) + O(q)
\]

(\(\lambda_i \) is 1/2 when \(i \geq 92 \) and \(3/8 \) when \(i = 91 \), and \(P_i \) is \(P \) when \(i \geq 91 \)) unless \(37 \leq i \leq 48 \) or \(77 \leq i \leq 82 \). In which case we obtain an expression of the form

\[
P_i q^{-1} \left(S_i(q, a m_i^p) - \frac{1}{P_i} S_i(q, a (m_i P_i)^p) \right) + O(q).
\]

The number \(m_i \) is either 1 or a product of prime numbers. In view of (6.6) and (5.6) the contribution from the \(O \) terms can be accommodated in the error term in (7.5). Since the number of different prime divisors of \(q \) is \(O(q) \) we can, for each \(q \) in the range, neglect those \(P \) for which at least one element divides \(q \). But then for the \(P \) that remain we can replace all the \(m_i \) and \(m_i P_i \) by one. We can then add back those \(P \) we neglected, the total error in doing so being easily accommodated in the error term of (7.5).
Now we observe that
\[P_i^k = \sum_{r_i^k < x_i < r_i^{k+1}} 1 + O(1) = \sum_{x_i < r_i^k} 1 + O(1) \]
and
\[P_i^k P_i^{k-1} = \sum_{r_i^k < x_i < r_i^{k+1}} 1 + O(1) . \]
The \(O \) terms are again easily accommodated in the error term in (7.5) and the resulting main term is
\[J(P)P^{-s}E(0)H(0)\varphi(0)E(0) \sum_{q < P^{\alpha}} q^{-s} \sum_{\sigma=1 \atop (\sigma, 2) = 1} \prod_{l=1}^{s} S_{\sigma}(q, \alpha) . \]

By (6.6) we can complete the summation to infinity with a negligible error term, and this gives the lemma.

8. Completion of the proof. By (3.26), (4.21), (5.3) and (5.12),
\[\mathcal{N}(P) = \int \frac{P(a)H(a)\varphi(a)E(a)d\alpha}{\xi} + O(P^{-s})P^{-s}E(0)H(0)\varphi(0)E(0) \]
and by (6.9) and Lemma 14
\[\int \frac{P(a)H(a)\varphi(a)E(a)d\alpha}{\xi} = (J(P)\Xi + O(P^{-s})P^{-s}E(0)H(0)\varphi(0)E(0) . \]
The hypothesis that the congruence condition is satisfied ensures that by standard arguments \(\Xi > 1 \). Thus \(\mathcal{N}(P) \to \infty \) as \(P \to \infty \) which proves the theorem.

References