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does not eoincide with K. On the other hand, Gal(L/K) is a F-submodule
of AJA,, henee, in virtue of the F—nreduclbﬂlty of A/4,, it must be
isomorphic to A/4,. In this way, the solution  defines a third imbedding
problem:

//6
v J{E
‘(/
(3) {1} A,—> @ G4, = Fy—— {1}
}——sA—¢ > F—s {1}

F, acts via the canonical epimorphism F,—¥ on the F-module 4,. The
F.length of the Fy-modnle 4, is not greater than (m —1). Now by induc-
tion the proof is complete because for the new module 4, the field k(4,, {,)
is contained in the field k{4, {,).

T would like to thank H.-J. Fitzner (Berlin) who critically read a
preliminary version of this paper.
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A new equidistribution property of norms of ideals
in given classes

by
k. W. K. OponI (Exeter)
0. Introduction. ¥n. [4] the author obtained. the following theorem:

Let K be a finite extension of Q, the rational field. If (€} 15 any
non-emply collection of narrow ideal classes of K, then the number of natural

numbers < @ which are norms of integral ideals in | ¥; is asymptotically

feJ
(0.1) DK, Ty (loge B {1 4 OK,J(log-:l?)_c’(E"n},

where D(K, J) and C{K, J) are positive and E(K) is the Dirichlet density
of the set of rational primes admitling in K at least one prime ideal factor
of residual degree wunity.

Owing to the great comyplexity of the proof of (0.1) it was not feasible
in [4] to attempt a discussion of the relations between the D(E, J), as J
varies. It is natural to expect that DK, J,) equals D(K, J,) if J; and J,
are singletons, since the weighted sums

(0.2) | P!

ne, Nas{r
are well-lmown to be asymptotically the same for all classes ¥. However,
the unweighted sums in (0.1) are much more difficult to handle. In this
paper, we shall prove the following results:
THEOREM 1. For singletons J,, D(X,J;) = D(E, J,).
TewoREM 2. If K /O is normal, then all but a proportion '

: OK((luglogm)A(K)/(logw)E(K))

of the imtegers < x which are norms of integral ideals in & given dass € are
norms of integral ideals of each class in the cosel % H, where H is the group
of narvow classes containing fractional ideals of norm wnity. (The constant
B(E) is pogitive.)

We remark that if n = Na = Nb, where ae% and b2, then ¥9~'<H,
s0o ¥H = 2H, and this indicates the strength of Theorem 2. We also
prove
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THEOREM 3. If K[Q is cubie, then the conclusions of Theorem 2 are
still valid.

The proof of Theorem 3 relies on a special argniment, and there is
no zubstantial evidence for the conjecture that Theorem 3 extends to
arbitrary K.

The methods of proof in this paper arve for the most part different
from those of [4], and were inspived to some extent by a reading of the
fine dissertation of Bernays [1] on the values of binary integral quadratic
forms; T am indebted to Prof. A. Schinzel for drawing my attention to
this sadly neglected work.

Tt.is of some interest to note that Theorem 1 is still valid if the narrow
ideal class group is replaced by any congruence divisor class group in K;
Theorem 2 also carries over, provided that the corresponding identity
clags is invariant under the action of the Galois group of K /Q. Minor
modifications of the latter extension of Theorems 1 and 2 yield all the
results of Bernays [1] and aIso an interesting result on genera of forms,
stated in § 5.

In §1 we obta,m some general results on the ranges of norms (cf. [4]),
upon which we draw at various points in the paper; § 2 is devoted to the
proof of Theorem 1. Tn § 3 we specialize to normal extensions and obtain
Theorem 2. Theorem 3 is treated in § 4 by a special device which is unlikely
to be fruitful if [K: Q] > 3. ’

1. Properties of ranges. In [4] we considered natural numbers #
which were norms of integral ideals; for such #» we defined the range E(n)
to be the set of all narrow classes & for which n = Nq, a<% is soluble.
Here, as there, it is convenient to consider the collection < of all non-
empty subsets of the narrow ideal class group Iy, defining the product AB
of members of & to be {ab; acd, beB}. The fundamental property of
ranges iy (ef. [4], (1.2))+

Levmyva 1.0. E{mn) 2 Rm)R(n), with equality if (m,n) = 1.

We shall oceasionally need to use the following elementary result:

Lewvna 1.2, et Ae of. There exists o natiral number ny(4) and a sub-
group 8 = 8{4) of Ix such that, for all nzn,(4), A® = a8 for every
aecd; in fact, 8 =gpla,a5';a;e A}

Proof. Choose any aed. Then 4 = aB, where 1<B. Consequently
we have an ascending chain B = B = B® < .., of subsets of I, which
must terminate, so that B™ = B o1t we put ¢ = B", we must
have ¢ = C*? and. it is clear that C is a subgToup of Ix. For n = n, we have
A" = o"B" = ¢"( and we take § = (. If we had chosen «; instead of a,
we would have A" = a"8 = a}§, for all large n. Thus § and 8, are cosets
of one another and so coincide. It is now seen that (cm1 e & for all n,
and the proof iz conmplete.
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In view of Letuma 1.2, it iz reasonable to hope that norms sufficiently
rich in prime factors of the various patterns Be# would have ranges
of a “stable” type (e.g. cosets of a fixed subgroup of Ix). The next result
gives a partial confirmation of this:

Leanrs 1.3, Let p be any prime. There is a subgroup HP of Iy such
that, for all large n with p™ an ideal norm, B(p") is a coset of H?.

Proof. We remark that the result is not immediate since in general
R(p™ # R(p)y*; otherwise we could invoke Lemma 1.2 directly. Let us
congider 9 = {B(p™);1eR(p™}. Then 7 = & iz a finite set partially

‘ordered. by the relation of inclusion between its elements. Hence it has

at least one maximal element M. Then M = E(p*), say, and M < M?
= R{p")® = B(p®). Thus, as 1<R(p™}, we must have M = M2, and so M
is & subgroup of Ix. If T =9 we have T =R(p"), leM = MT
= R(p"E(p") = B{p"*"), and so MT =M, T = M. Thus M c JT
. Ted
< M, i.e., M is the unigue maximal element of & and M = {_J 1.
- Ted

We now consider & = {R "= 7. I ¥ iz any maximal element
of &, we have N = R(p"), N = MI\ = R(p" ) R(p") € E{p**"), so, by the
maximality of N, MN¥ = N. Since M = M? = M* = ..., we have MN*
— N% for all L3> 1. We can choose k 2o that ¥* contains 1 and N° =a*H
for all © = k, where H is a subgroup of Ip and n<¥, using Lemmia 1.2,
Then M — MH = H, whence, by the maximality of M in &, M =H.
Since 1eN* = H, we have ¥ = MY = N** and, as N is maximal in &,
we find N = N*" and, since the latter equals #%F'H = »**' M, this
shows that N is a coset of M; we write M = H?, '

We observe here that the maximal cover of any 8<% is alwax SH?®.
For, if ¥ is a maximal cover for 8,8 < ¥ = nH”, say. Henee, if se8,
sH? — nH? ie., SH? = af®? = N. Now let D = (n = 1; B(p") == @}u{0};
it is the monoid generated by the residnal degrees fi, ..., f. of the prime -
ideals of K lying above p. Suppose that H* = R(p". Then for any deD,
R(p*?% = R(p")H? = maximal cover of B(p%), so that B(p"™) =R(p%) H*.
We can write has Y nf; then we have shown that B(p®)is a coset of H
when v = Y'mf; and each #; 2 n;. The set of all such v is an ideal in- 1)
and so contains all large elements of D, as required.

We note that H? may be characterized as the set of all classes in Jx
containing fractional ideals of norm unity and involving only the prime
ideal factors of p. If O denotes the subgroup of I consisting of those
clagses containing fractional ideals whose norms are norms of narrow.
principal ideals, then H is also the group of all classes containing fractional
ideals of norm unity (as in the statement of Theorem 2), and it is readily
veritied that H is the compositum of all the H?’, as p varies through all
primes.
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Tn H? there is a subgroup W? which is important in the sequel; we
are concerned here only with primes p for which E(p) # @. Then W®
is defined as the subgroup of Iy such that B(p)* is a eoset of W? for
all large # (its existence being guaranteed by Lemma 1.2). Tt is necess-
ary later to know whether H is the compositum W = []W?, taken
over all unramified primes which are morms. In the normal case thiy
must be so0:

ImMma 1.4, If K[Q is normal then H = W.

Proof. I p is any prime then all prime ideal factors of p have the
game residual degree f, by normality, and it is clear that R(p™y = R(p"™
for all » > 1. Now the Galois group G of K/Q acts transitively on the
various p lying over p in K, and it also acts on Ix (not necessarily tran-
sitively). Tt follows that E(p/) consists precisely of the single orbit {¥°},.a
for some %eR(p?). The subgroup H? is thus gp{%¥" "}s.cq. Now there
exist infimitely many prime ideals of residual degree 1 in the class %,
since 2 {¥p)™" diverges. Hence we can find infinitely many unramitied

prlmes g with ¥eR(g). By fransitivity, R(g) = E(p ) with p as above,
and then H? = H? = WY which proves the lemma. We ghall show in §4
that Lemmsa 1.3 also holds in any cubie field. It is not clear that it should
hold for all K; if it does, then Theorem 2 is frue for arbitrary K.

2, Analytie results. In order to obtain Theorems 1 and 2, we congider
the following well-known decomposition of the set of natural numbers:
each such # is uniquely expressible in the form # = fm, where (m,f) =1, f
is squarefree, and m iz squarefull. By Lemma 1.1, we can say that every
ideal norm is (uniquely) & product fm, where f is a squarefree norm in-
volving only unramified prime factors, while m is a squarefnll norm,
multiplied possibly by a norm composed entirely of ramified primes, and
{m,f) =1. All our analytic results derive ultimately from

ProrosrrioN 2.1. Let m be o (squarefull norm-by- mﬁzifzed norm),

as above; if € is any narrow tdeal class in K cmd s the Mébius function,
then

(2.1) > @
: noram. nu_rms <y
‘!é’e%%mf) .
a| B {m
- (*P (f(m))) yllogy)™9™ +OK(?/ (ogyy?E)71~7 (loglogyloglog m)f),

where y > 0, f and y depend only on K, a{R(m)) depends only on the range
of m, not on €, and v (m) is the sum of the reciprocal of the unramified square-
free norms dividing m; as usual, B(K) 4s the Dirichlet density of the set of
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rational primes admitting in K at least one prime ideal factov of residual
degree unity.

Proof. We remark that for f counted in (2.1) E(mf) =

m) B(f),

‘so we are interested in the condition F<R(m)E(f). Since w>(f) =0

unless f is squarefres, we know that the only relevant fhave E(f)

=[] E(p).
Bif

If #*is the set of patierns (cf. [4]) of unramified primes with non-empty
R(p), then for each B« #* we let wp(f) be the number of pllmes of pattern B
dividing f, and we write Ry for E(p), p<B. Thus R(f H BB,

It each wp(f)> vk, say, we have RZEV = rEB0WE, where WB we

for poB, and so R(f) = [] r88"W, a coset of W. Thus, when f is
Bed*

sufficiently rich in prime divizors of each pattern B*e#, we have

= R(m) [ [rg9W = [[ o550 B(m)W .

Now B{m)W is » complete union of cosety of W, R(m)W = [J¢g; W, an
irredundant decomposition. Consequently,

U an’BBmTr

i fis “rich enough in each pattern Be@*”. Tt follows thab %R (mf) if
and only if []rZe? belongs to (preeisely) one of the cosets ;' W, again
L :

B(mf)

(2.1A) Rimf) =

assuming that f is rich enongh in each pattern Be#Z*. Our first task now
is to show that those f=Cy not rich enough in each pattern Be %" contrib-
ute only a negligible part to (2.1). In fact, for each Be#*, the number
of integers counted in (2.1) and involving only < vl factors of patbern B

T

O [y (loglogy)™® (logy )2 ~»3),

where §(B) < 0% and y(B) is the Dirichlet density of rational primes
p«+B, B(K) being the Dirichlet density of primes which are norms of
prime ideals. This result follows from a weak version of a Tauberian
theorem of H. Delange [3], once the existence of y(B) and E(K) is estab-
lished; for the latter, see [4], §4. From the above wé see that there
exist positive constants # and y such that the f counted in (2.1) ‘which
are deficient in at least one pattern B «#* contribute only

O (y (loglogy)’ (logy)E(K)w—:)'

o (2.1).

To obtain Proposition 2.1, we now concentrate on those f in (2.1)
rich enough in each pattern Be.@* Then the condition for E(mf) to con-
tain € is that [] &80 helong to one of a particular family of cosets of W,

B .
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the number of these cosets being independent of the chaice of %. This is because
the union of all By, Bed&" is I, since there exist infinttely many prime

ideals of residual degree unity in each class of Ir. We are therefore led

t0 the problem of eounting w2{f) for those unramified norms f prime to m
having []r4BPW equal to a given coset a1, Consider all ordered #*-
tuples (ng) of integers such that [[r38- W = W. These form a lattice &
of maximal rank in B#, and those (nz) for which [[riBeaW form & coset
of &; there is a natural isomorphism Z%' /¥ a I /W, induced by the
mapping (ng)->][r3FW. The condition (ng)e¥ +¢ is thus expressible in
terms of the group charaeters of Ix/T¥, a finite abelian group. It is now
clear that the condition <R (mf) for rich enough f is equivalent fo the
pair of conditions:

(2.2) (1) wg(f) = ob;
(ii) (WB(f))Bew*éjyr &+,

Let us consider for a fixed ce Z%° the condition {wy(f)) £ + ¢, which
we write a3 we¥ +¢. Sinee % is finitely-generated and contained in 2%,
the condition under consideration iz equivalent to a finite system of simul-
taneous linear congruences modulo various integers, to be satisfied by
the eomponents of o —e. Suppose that the system in question is

D amlop(f) —eg) =0 (mod k), +=1,...,N.
B .

Then the required sifting function for the @e# 4-e i

(2.3) H kit ¢ (Zik;1 (E :z(ws!(f) ’—GB))):
i, . 1; (Fnod Ky} E

where e(x} = ™

From this we are led to consider the Dirichlet series

(2.4) 2 @e) [T J] a+0505)

Be#* npim

(¢ = Res > 1),

where 8 = (Op)peg- TUNS throngh certain vectors of roofts of unity, of
the various orders k; introduced above. By choosing the 8 inan appropriste
way, the series (2.4) becomes precisely 3 u®(n)n~* taken over all those n
composed entirely of primes froin the various Be#* not dividing m,
and such that (wp(n))g.ge lies in ¥ +e. In (2.4), the dominant contri-
bution will be shown to arise from the term with each 8, = 1, and we
note that a{l,...,1) is the same for all choices of ¢. More precisely, the
individual prodnets in (2.4) may be analysed using Cebotardv’s density
theorem, 2z in [4]. We have

AN N 1
2.5) ;::»B ~ a(Bjlog—
B

-f—Aé(s) {o>1),
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where Ag(s) is regnlar and satisfies

(2.6) [ A5(5)] = Og, 5 (loglog (2 + 1)
in & region
(2.7) § =g—1+it, o>1-—e{K)log(2+),

while «(B) is the Dirichlet density of the set of rational primes pg of -
pattern B. Consequently, for o> 1,

|

1/’

] 1

@8)  []0+0s55") = Hyls, Oz1exn {a(B) Oplog —
PR

where H (s, 0p)

write H(s, 8) for

is regular and O((log2 +#2)°9) in the region (2.
[l Hjgls, i5), we have

7). If we

Bed*
His, 8) o 1
sy -
(2.9) ” H( 0ePE) = T exp(z:\.: a(B)05log s-_l)
Bed* pptm : Beg®

in the same region where p(s,m, 8) = [] [] (1+p5°05). Following [4],
§0 we find that Bed® pglm

k 1—
(2.10) Z #*(f) =my(logy)3“+ Ox (¥ (logy)* ' ~*loglogm),

(f,m)=1
afject+F

where B = F(K) of Proposition 2.1, ¢ is positive,

pimy = [[ [[a+p5Y,

Bed* pplm

(2.11)

and % is the same for all ¢ and all relevant m with the same range. If we
sum (2.10) over all cosets ¢; & occurring in (2.2), then we obtain Prop-
osition 2.1, except that we have possibly violated (2.2) (i); however,
to remove the f insufficiently rich in some pattern B will add only an .
error Ox(y(loglogy)®{logy)¥~*~7}, by an argument already encountered,
and Proporition 2.1 is proved. o _

We now observe that two squarefull-by-ramified norms m with the
same range R(m) give the same number of cosets ¢+ in (2.2). Thus
(2.1) gives

(2.12)

B-1 B—-1—4 B .
=ﬂR(_m})m(1ﬂg _m_)_ + ()K( (log il ) (1og10g %) loglogm),
m

my(m)
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where A > 0, and a,(R (m)} depends only on E(m}, not on 4. The estimate
(2.12) is not very efficient for m > #'~% if g iz small, but in that event
the left side of (2.12) ig trivially O(2%).

In order to obfain Theorem 1 it remaing fo vary m in (2.12). We
first consider a fixed range B = R{m), and sum (2.12) over all squarefuli-
by-ramified norms m < « of range B. From the m < #'~* we get the con-
tribution

2.13) a(R) 2* (mp (m)) 7 w{log & —logm )"~ 4
mal 8

+ OK(m(logm)“l""(loglogw)ﬁ' Z* w1,

Mgl

where the * indicates that only the squarefull-by-ramified norms of
range B are to be included in the surmmation, and f’ is a constant. Now
(1 —logm floga}® ™ = 14 Blogmflogz if m < «'~°, where § is bounded by
2 funetion of s Consequently, (2.13) yields '

(2.14) a(R)a(logal® 37 (my(m))™ +

meet—*

+ 0*a(R)z (logz)® 2* logm {mw{m))™ +

mszt—E

—}—OK(m(logm)E’l"‘(loglogm)ﬂ' 2* m“),

meaw—?

where 6% is bounded by a function of s We show next that each of the
infinite series

2 mp(m)) 7, 3 logm(my(m))?, 3w

is convergent. Indeed, let S(n) be the number of relevant m < n; then
8(n) is trivially O(n'2*%) for any 6> 0. Then it suffices to show that
E*logm/fm, converges (since p{m)=1), and we obtain convergence from
the estimate for 8{n), vé¢ summation by parts. In fact, we find

E* (""W(?n))hl = Z* {map (m})™t L O (gl —9E-12y

mgal—*

2* logm (‘I'I’M,U('ﬂl))_l = 2* logm(mw(m))"l + O (loga- z0—90 -1y

ms‘_xl-z

Z m—t — Z*m—1 + O (z -1l

ﬂ,sxl_s
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Tor those m Wwith s *<m<z we use the trivial bound 0(z) for (2.12),
with the observation that the number of m involyed is at most 0(z*+%),
5o the net confribution is 0(z"*+°+%). We can take e.g. ¢ = 1/4, § = 1077
and then we obtain Theorem 1 by summing over all available ranges
R = R(m), noting that in each case (2.14) and ifs refinements are inde-
pendent of the choice of €.

Finally, by comparing our results with Theorem 1 of [4], we see
that the powers of loglogs appearing in our error terms here are unduly
pessimistic and may be discarded.

3. Proof of Theorem 2. A crucial point in the proof of Theorem 1 was
the remark that only the squarefree unramified norms sufficiently rich
in each pattern Be#* matter in producing the dominant part of the
asymptotic expansion. But any norm involving these and any sguare-
full-by-ramified norm necessarily has range containing a coset of W
(in the notation of §§ 1 and 2). In the case where K [Q is normal, Lemma 1.4
gives W = H. Thus these ranges are precisely full cosets of H. If the range
of @ norm is not such a coset, the norm must be deficient in primes of
some pattern Be<#* and so, by the argument of §2, it must be one of
only OK[m(loglogm)'ﬂ'(logw)E""l) norms in [1, #]. These comments suffice
to prove Theorem 2. :

4. Proof of Theorem 3. We now assume that K/Q is cubic; if it
were normal, we could invoke Theorem 2. Thus we may assume that
K = Q(e), where o satisfies a cubic irreducible equation. over @ with
Galois group 8;, the symmetric group on 3 symbolg, and the Galois hull
EjQ of E]Q is a sextic extension with GalK/Q =~ 8,. In view of the
argument of § 3, it will suffice to show that W = H for the field K.

Tt 1s consider a rational prime p. Assume first that it is ramified
in K. Then either (p) =p% Np =p and W7 = HP =1, a {rivial case,
or (p) = plq, where Np =Ng=p. T p belongs to the narrow class X,
then q belongs to X%, and we readily see that W? = H? = gpX* To
desl with such ramified p, it will suffice to show that there exists an
unramified prime ¢ with gpX® = W¥% This will emerge later.

Now consider an unramified prime p, (p) =7pq, with p of residmal
degree 1 and g of residual degree 2, p in class ¥. Then WP=1and H” =gp¥°.
We shall show that there exists a rational prime g splitting complete-
Iy in K (and hence in EK) with H? = W2 Consider the decomposition
of p in K. By simple eounting arguments, (p) breaks into 3 Bnramjﬁed
factors in K, each of residual degree 2 over 0. Hence q is the (K/K)-norm
of a prime ideal of K. We deduce that the class ¥ contains norms of frae-
tional ideals of K. There will be infinitely many prime ideals of residual
degree unity over { whose (E|E)-norms lie in Y; these prime ideals lie
over rational primes g which split in K (and thus in K). Suppose such



62 L R.W. K Odoni

& (§) = §:9:0s in K, where g, belongs to ¥ and g, belongs to Z, say. (We
neither know nor care which clags Z is !). Then

HY = W¢ =gp{YZ ', ¥¥ = H?,
a3 required. _

Finally, we return’ to the ramified p with H? = gpX°. Then, in K,
thers are 3 prime ideal factors of (p), each of residual degree 1 and rami-
fication index 2 over Q. Thus p is the K/K-norm of an ideal of K, that
is, the class X contains (K/H)-norms of ideals. We can now proceed as
above to find a rational prime g, eompletely split in &, with HZ = W > H®.
We have now shown that # = W for any cubic field.-

5. Coneluding remarks. The method of § 2 can be adapted {ef. [y
io prove the following result on the representation of integers by binary
integral quadratic forms:

. THEOREM 4. Let D =0 or 1(mod4) be o discriminant b®—dac of
primitive binary integral quadratic forms. With “probability one” a randomly
chosen positive integer prime to 2D, and with specified values for the genus
characters of D, will be integraily represented by every form in the appro-
priate genus. That is, only a proportion 0((10g10gm}‘1(10gm)‘3) of the in-
legers in question in the interval [1, x] will fail to be represented by all th
forms of the genus, where B> 0. _ '

An approach to this result is implicit in Bernays [1], althongh he
does not give the result an explicit formulation; the key observation is
that if D = df?, where d is a field discriminant, then one needs to congider
ideal classes (mod~f), i.e. a. ~b if ¢ = {a)b, where Na> 0 and z =1

- (mod*f), in the field K = Q(ﬁ). Since the principal class (modXf) is
invariant under the action of Gal(K/Q), the remarks of §0 suffice to
indicate the lines of the proof, which resembles that of Theorem 2 quite
closely. . '

~ We remark in closing that the restriction (in Theorem 4) to in-

‘tegers prime to 2D may be dropped ; this iy achieved by replacing the ideal
classes (mod*f) by strict equivalence classes of hinary quadratic forms
of diseriminant D, in secordance with the well'known correspondence
principle, and by the use of some elementary results on the eclasses of
forms reprenting a given prime. This more general regult appears to have
been first proved by Bredihin and Linnik [27, by ancther method.
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