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This paper supplements the results of [6] concerning power residues
and extends those pertaining to exponential congruences. We begin how-
ever with the study of binomials. G. Darbi [1] and E. Bessel-Hagen
{ef. 1107, p- 302) have found all binomials 2" — @ normal over the rational
field ¢, (Their argument extends to fields K sueh that a primitive nth
root of unity £, is of degree p(n) over K.) We shall do the same for an
arbitrary field and » equal to a prime power. In fact, we shall prove

THEOREM 1. Let K be a field, p a prime different from the characteristic

~ of E. A binomial w® — o is the product of factors normal over K if and only

if af least one of the following conditions is satisfied for o suitable integer A
and a suitable ye K:

(1) a,pmin(m,r) . ypv.
— ¥

(i) p =2, o=1 v, 0= —9%

ass T Y

(i) p=2,0=1,» =741, a = _7’25 ¥ _(C2’+€271+%)5K§

(V) p =2, o=1, »=1+1, a=—(LetGr4+27% ™, 14
<7—2; :

(V) p =2 o=1131+2 a— (et +27 90 .

Here w is the greatest integer such that {yee K if there are onty ﬁm’tely many
of them, w = oo otherwise; Tt 1s the greatest integer such that (it e K
if there are only finitely many of them, v = oo otherwise. '

If the binomial in question is drreducible (iv) implies 72> 3,
V — (CyeF L +2) ¢ K, 2 =13 {v) implies v = 2.

THEEOREM 2. Let n be a positive integer not divisible by the characteristic
of K. A binomial 4™ — a has over K an abelian Galois group if and only if
an = y", where ye K and w, is the number of n-th roots of unily contained
in K. When a binomial satisfying this condition is irveducible then dts group

* Written within the Research Program I.1.
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is eyclic 7f n == 0mod4 or { < K and the product of cyclic groups of order 2
and nf2 otherwise. ' _

From Theorem 2 and a result of Hasse [2] concerning the case n = p* -
we shall deduce o

THROREM 3. Let u be a positive integer not divisible by the characterictic
of H. If :

, a=14" PeK(l,)
then

o =9,  yeK,
where
(vi) o = (w,, 1,%133. [K(Z): K)).
g prime or g—4
Moreover if for a certain m prime to «
either (e K and nm = Omodw,l.on. [K(Z,) : K]
or Cum¢H, < 0o and nm = 0mod2 w,l.c.m,[K (&) 1 K]
o prime

(vii)

then

8 = ynla,

rel.

Next we shall assume that X is an algebraic number field and prove
the following extension of Kummer’s theorem (see [3], Satz 152) on power
residues. :

TrEoREM 4. Let K be an algebraie number field, w the number of roots
of unity contained in K, o given by (vi). If ay, ..., aye K are such that

(vill) @™ ... o5 = 9", ye K implies o =, ... =@, = Omodn/o

then for any infegers ey, ..., ¢, = Omodo there ewist infinitely many prime
ideals p of H(L,) such that _ N

8, -a
Pla

If ay, ..., ay sabisfy the stronger condition thai

(ix) = LRafl...off =" implies @, =@y =... =g, = Omodn/o

and n satisfies the condition (vii) of Theorem 3 then Jor any integers ¢y, ..., ¢,

= 0mode and any ¢, there ewvist infinitely many prime ideals p of K(Z,)

such that ' )

E‘l._q 0 L — %
()= (3, -

Abelion binomials, power residues and exponential congruences 247

If # =p", p prime and p>2 or » =1 or w = Omod4 then the
assertion holds without amy restriction on ¢;. Thus, for n =p, » =1
we obtain Cebotarev’s refinement [9] of Kummer’s theorem. For K = @
and n arbitrary a more precise result has been obtained by Mills [5].

‘We shall use Theorem 4 to prove two theorems on exponential con-
gruences. _

TEROREM 5. Let f(w) be o polynomial of degree g over K, oy, ..., aye K*.
If the congruence

Flefr ... o) = Omodp

is soluble for almost all prime ideals p of K then the equation f(afi ... af¥) =10
is soluble in rational numbers @y, ..., @, with the least common denominator
not emceeding max{l, g—1}.

This is & generalization of Theorem 2 of [6] and the examples which
we give further show that it is essentially best possible. _

CoRoLLARY. Lel 6 sequence u, of rational integers satisfy the recurrence
relation .., = QU,+bu, ., where a*>+4% % 0. If the congruence u,
= o¢modp is soluble for almost all primes p and either b =0, —1 or b =1,
a = 45+ 3d (d integer), then ¢ = u,, for an indeger m. ‘

Here as in Theorem 5 almost all means all except a get of density
zero. :

It is conjectured that the Cerollary holds for all recurring series of the
second order satisfying a®-+45 = 0.

THEOREM 6. Let oy, £ be non-zero elements of K, D a positive integer.
If the system of congruences

8 I

”(Ha;;.j,—ﬁ,ﬁ) =0modm (i =1,2,...,0)

=l j=1

i soluble for all moduli prime to D then the corresponding system of equations
s soluble in iniegers. '

This is a generalization of Theorem 3 of [6]. According to Skolem’s
conjecture Theorem 6 with' D ==1 remaing valid if

LI

TT{T ] <5

il §=1
is replaced by .
' 41 k
. N
E ﬁml l'an’ﬁs
sl J=1

but that we cannot prove.
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—LEMA 1. If p is a prime different from the characteristic of K, {ye K,
R, g7 e KXNE and ne K(£) then elther ne K& or p =2, (¢ K
and T« K*CEy. K*E) is the multiplicative group generated by K* and £

Proof. Forp>2 th1s is an easy consequence of a theorem of Kneger
[4] since however for p — 2 we have to go through Kneser’s proof all over
again, we ean cover ab once the general case. The proof is by induction
with respect to x and ». If g = 0 or » = 0 the lemma is obvious. Assume
it is true for w = m—1 and all ». We prove it first for g =m, » = L.

Suppose that Ze K(£°). Then using the indnctive assumption with
E =2y, =& v, =1 we get either £¢K{&y or p =2, {,¢ K and
e H{E®. The former posszibility gives £« K, the latter I« K (&), thus
iz this case lemma holds.

Suppose now that &¢ K(EP). Then also &,¢ K(£), & satlsfles over
K (&%) the irreducible equation #?— £ = 0 and denoting by ¥ the norm
from K (&) to H{&) we have

Ne=(—

)ZJ—I é-p

On the other hand, #Pe K¥{&, hence ¥ = ae,ﬂ’“g,' where 0<{gq

<p, acK. Consider first the case ¢ > 0. Taking norms of both sides -

we get .
=1y~ &) = (Wp)Pa g2

Far p > 2 it follows that &2« K (&%) and & K (£)® which has been exeluded.
For p =2 we gef

-8 = (NfaT T, LER(E), o' = £L,N(y)
hence Ly H(E), £4¢K(§)2. Writing 7 = g+ with g, he K(£2) we obtain
=k 9 = (1-4L)g Hence g* = —y*/4dc (& and by the inductive

&ssumptmn with & =£% =9, », =2 we infer that ge K{&,
= tintg e K (5.

Consider now the case ¢ = 0. Let 8 be an automorphism of the normal
closure of K (E) over K (&) such that 8¢ = £(,. From q — 0 we infer that
7P K* (&%), Sn” =¥, Sy = on. It follows that S(n&™) = &, &’
e (&7, Smee 7P 570 e K (&, we apply the inductive assumption with
& =F, g =nf", v=1 and obtain that 5 Te K{& or p =2, {,
¢ K (&%. The former ‘possibility gives ne I (&) and the proof for u = m,
» =1 ig complete. Assume now that » > 2, the lemma holds for u
» < and that #*" <« K (&) Using the inductive assumption with 5, = 7%
v =n—1, we get 42 K (& or {,« K{£>. In the former case we use the
induetive agsumption with » = 1 and obtain ne¢ K{&>, which completes
the inductive proof.

I
B
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Temwma %, Let K be a field of characteristic differcni from 2. If 9 K({,),
& ¢ K then at least one of the follswing four conditions is satisfied for a suit-
able ye K

1) - =97

(2) y<r, & = —y;

(3) v=, = —(la+i@42)7 Y
(4) v, O = (et 27Ty -

Proof, This is a special case, n = 2" of Lemma 7 of [6]. Let us remark
that the conditions (3) and {4) do not depend upon the choice of ..
Indeed, for any odd j

‘ (Hetr + L) (Lot L) e K
hence
a7—1

(e i+ 2 T (L + L) T T < BT

{The same remark applies to the general case.)

Lemwa 3. Let v, be the greatest integer such that {yrie K(Z
only finitely many of them, 7, = co otherwise. Then

), if there are

r+1 i T < oo and V—(gor} a2 K,
Ty =
* T otherwise.

Proof. We have for all ¢ 2

’ 2&2“ =(£:0"':‘ n_s)

1—95—-2 ,_1.-.5—2
GULe® T+ IETT)

which implies 7, > 7. If we
by Lemnna 2 that

1 grid
-1 =i =" or

had 7 < oo and [yreae K(Q) it would follow

(Lot G229, peE,

hence £,e B and {ye4z € K, Lpre+{wee K contrary to the definition
of 7. This proves 7, < v—+2.

If fyrr1e H(E,), then £,¢ K and {,- is conjugate over £ to Z7+'. Henee.
Cylpe+1 is conjugate over K either to §4i.7zl+1 or to —{,{z%1. However
the latter possibility gives (8 T+{7A" " eK contrary to the defini-
tion of 7. Thus the former possibility holds and [, Zpn-+Cntick,
l/—~(§qr~t L +2)e K. Conversely if V——{ch + i +2)e K then

e+l

= Lor+1-t Iyn <A

C‘2:+1—{—t:§a+1e K{L,) and lyn

. This proves the leﬁlma.
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LEvva 4. If £ = B K, {pe K (&) and either p> 2, Le K or p = 2,

Le K then
B = Lhy” ™, (4,9) =1,
Proof. By Lemma 1 we have in any case

Lme KX (&,
de K, 1=is<p”.

0 << » << min(y, o), ye K.

() Lo = 88,

4= 9"k, (hyp) =1, Bk =1lmodp*".

Raising both sides of (5) to the power p*~"f we get
e = 87 pY,
hence »< @ and the lemma holds with y = g7 s-1,

Proof of Theorem 1. Necessity. Assume that #*° — ais the prod-
uct of normal factors, Liet x be the least nonnegative integer such that

Ty

a=p"", BeK.
If u = 0 then theorem holds with y = =& TIf ;4 > 0 then

(6} . B # Cpi—pzép, de K.

Hence if p > 2 or p =2, {,e K then o™ —§ is irreducible and by the as-
sumption normal. Denoting any of its zeros by & we get

(7) ) CppeK(g)) CpsK(E)

and since [K(F): K] =p* [E({,):K]llp~1 it fo]lows that {,< K. By
Lemma 4 we have

8 B =™
and o = yﬂv, which proves (i).

Assume now that p =2, {,¢K. Then either 2 —g is irreducible
or p=2, f = —46% S¢ K. In the former case we get again (7) for any zero
& of g® — B, in the latter case let ¢ be the least nonpegative integer such
that

0 < % << min(u, o}

(142)0 =77 yeE(L).
The binomial w?lou—-q ig irreducible in K {£,), hence

- fla) = Nggym(@™—n)
is irreducible in K. f(#) is & factor of

= o 1 2 8¢

H—~3 oH— 2~a) y: -

Nregel@®  —n +26 |2 484,
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hence it is normal. Let £ be a zero of a® —z, & a zero of @ — ', where
7' is. eonjugate to  over K. We have

E!

9 . —E—eK(E),

on the other hand
A N O S ¢ S AT
(?) - (7:7) BEE TR
hence E: =, (5,2) =1 and from (9) we get again (7). Using now
Lemma 1 we get £,e K*¢E>. Hence _
(10) _ L, =688, 6<K,
2 = [E*y  BY] = [E™E) 1 B* = 2070%, § =983, (j,2) =1

and on squaring both sides of {10) we get

—1=8F, B=—p.
1t follows from (6) that u = »
(11) a=f=—y
On the other han&, applying Lemma 4 to the field E (L) we get
a =07, 0o minly, ), HeE().

H » < 7, we have by (li) and Lemma 3 (ii) or (iii). I » > 7, then since
Li¢ K by (11) and Lemma 2 ¢ = 0 iz impossible. We get

2 = g
a,nd by Lemma 2 elther
a2) T = ", yeK
or _ '
(18) y—l =1 =1, & =(lptiFF2rlT
or
(14) y—l>w, @ e (G G2y

Bines { ¢ K, (12) and (14) imply ¢ =1 and then we get (i) or (v) respect-
ively. Finally (13) in view of (11) implies o> 1

@ = LG tiE+ar Ty,
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again by (11) and Lemma 3, ¢ < 7 and the upper sign iy exeluded. This
gives (iv).

Sufficiency. To prove the sufficiency of (i) we proceed by induction
with respeet to » The case v < o is trivial. If » > o () gives

(15) a=2CmF , 0<z<go.
If % << @ we have
p~-1
¢ L. : -t —1
& = ] (@ Ly T
F=0

Rach of the factors on the right hand side is by the inductive assumption

the product of normal factors, henee the same holds for o —a M x=o

= () we have

oem ol

el
&
where X, (@) is the nth cyclotomic polynomial. Every zero of X, (;) gen-

erates over K all the other zeros, hence the desired result. ,
Finally if % = w > 0 let & denote a3 in the sequel any zero of &® —ar
We have by (15)

w©

(&7 5

. Wl)pv—w = E:a‘"
hence )
c_p" = (Ep ?_1 )J .

H (i) or (iii) holds then

o= &y |
Since by Lemma 3, » < 7; and by definition I, € K(L,), it follows thai
' Epe K (E).

If (iv) holds then :
£ = iy (Lt L)y (4, 2) =1
thus b
521_ Lovire K (Lyr), Lye K(Ezt',)'

Since by Lemma 3, K (L) = K (£,) it follows that

& fpre K (&)
and
Lyvre K(£).
If (v) holds then :
&= é’(C2’+1+CzT‘{|'1)7: (§,2) =1,

thus £2e K (Cgv_). We shall show that &* has as many distinct conjugates

icm
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over K as {p. Indeed, if § is an automorphism of K {Z;) over X then
S(Zara+Lmh) = LG+ Enk).
Hence 8&° = & implies Szf = &, §&p =y or

SC%” = _“C';”: S(lors14+ C;fl-kl) = _(€2f+1+§£‘:’{i—1).

The latter case is however impossible since Siyee1 == (8p)7 . It
follows that

L c H(8).

If the binomial #* —a is irreducible then for p =2, v 3 we have
a 5= —4y*, hence for v 3, a # —9*, ye K. Thus (iv) implies 73 3,
V— L+ i +2)¢ K, 4 = 1; (v) implies 7 = 2. -

Remalt’.rk. Note that in case (i} if » = o and in cases (ii)~(v} every
root of & —a generates all the other.

LenMA 5. If a binomial #% —a satisfies condition (i) them its Galois
group @ over K is abeliam. If it is irreducible then @ is eyclic unless p = 2,
v =2, o =1, in which case G is of type (2,2"").

If 1 is the least nonnegative integer suchfthat

Tor—4
a = Zp"?p ? ‘yeK
then the Galois group of sach irreducible factor of #® — a contains an element
of order p* amd besides an element of order

I<ze<ligm,

r—m+x

r
p

if  (p,w) #&,1) and x> max{0, w—v+ 1},
i Py ) =<2, 1> and v =1 = 1> r—n+1.

p—T41

Proof. We start by proving that an irreducible binomial satisfying
(1) hag a eyclie group & unless p =2, » = 2, o = 1. Since it is irreducible
we have either »—1 = 0 or » = » = 1. In the former case v<C w; if &
is any zero of @ — a and § the substitution £, & we have §7(&) = ¢
hence @ is cyclic, generated by S. In the latter case let £ be any zero of

>

#® — ¢ satisfying

Eiﬂm = Ep'?
and consider the substitution §: =& We have
i-1 :
o ) Z (e
Sp) =&p™, S0 =47 :

The order of § is the least j such that

& . (P —1
(16) N ey - 2

i={

= 0modp’.
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However if p>2, o =1modp or p =2, ¢ =1mod4 we have

(17) ord, (al —1) = ord,j-+ordy(a—1)

(see [6], p. 401, formula (8)). Hence if p >2 orp =2, 0 =2 (16) 1mphes
ord,j=»

and S is of order p*. The same is clearly true for p* = 2.
The remaining assertions of the lemma are trivial for 1 =0. If
A > 0 we consider first the case p > 2 o0r p =2, 0 > 2. I % > max {0, 0o —
—y-+1} we have the factorization
S pEesy
o —a= [ @ —Gostroy?

Gl

i..-/’lhm—g—x

and the factors are irreducible since {,«+1¢ K. By the fact already estab-
lished the Galeois groups are cyclic of cuder P~ and sinee ¥ —ow--x
> 2 contain also an element of order p*.
xe<ow—v2 then
v—i

a=9" ", p=CLpmv-iye K.
We have the factorization '

pf--?._l

o —a = H (¥

=t

2 .
"@”""?’1)
and the factors are irreducible, since {ls—ip, = 92, 7, K would imply

- L
=97

confrary to the choice of A. The Galois groups are dyclic of order p*.
If % = 0> w—r4-1 we have the factorization

Y1 —a pP—1
o —a =[] @' —tdoy) [] [] @ ~dar*™.
Fm0 7y R § (fg)'L

The factors of the first product are itreducible for the same reason
a8 before, the other factors are irreduncible since {pot41¢ K. The Galois
groups arve cyclic of order p* (A u<r— o).

Consider now the case p = 2, @ = 4 = 1. Let 7, have the meaning
of Lemma 3. :

I x=1>7r—»4+1 we have v 7+l =7 and the factorization

'rl —1

YT+l 2’_"1
& —a = ” NK(E‘,)/K( —‘:;'1? )
j =1
;-imod!.

icm
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0?—114-1 i 2u—-n:
I fi(8) = — &y were reducible in  (£,) then since £ sivig K(E,)
we would haﬂ:re v =1, = t-+1 and
fay =8, 9ecK(L,), _
whence ——y = contrary to Lemma 2. Thus fi(x) is irreducible in

K (&) and Ngg 4),.Kj}(av = fi{@)fi(®) is irreducible in K.
In order to determine the Galora group of f;f; it is necessary to dis-
tinguish between the cases v, = r-+1 and 7, ==

Let £ be a zero of fj{e) satislying
& =ty

Xt 7; = v+41 then —C';{ is conjugate over K to &7 7:; henee e h g
is & zero of f;(@). Let 8 De the substitution

— 5T—1
E>{ R0 g,

(18)

We hawe by (18) :

] _ _j 27
8(Z) = e
hence

—-3(1+“'-1) z (—1-2%)f
87(&) = £
The order of § is the least # such that

Fenl

~j(1427 3 (-1 =

i=0

(— —29"—1

= 0mod2’.
2 mo

Clearly » must be even and since by {17)

ordy{(1+27)"—1) = ordyr+ =

we get r = 0mod2”~**’. The order of § is thus equal to the degree of fifs
and since the latter polynomial is normal ity group is cyelic of order
2v—-r+l

If 7; = v then C is conjugate over K to .5511 hence i,‘“’E is a zero of

. f4(@). Let 8 be the Subatltutlon é‘—>é’;’ Eand T the substitution £~>§‘q,_, b

We have by (18}
8 (&) = &

r—1 :
’ i _Eﬂ (1+4+2%)
I(E) = L0

Using (17) we infer that T is of ovder 2°~"*), moreover § # _’I"' since —j
% 0mod2°!, However

8T (5) = S(é.,v—r.;_l)ﬂg(f) = 2’—::4—15 5 o Z_J(l_p-;__l)g
T8(&) = TEFT(E) = C_J(Hmciy r+1§ =.C;;f(1+zf-llfr

4 —~— Acta Arithmetica XXXIL3

( ;;1) qu ?

T (ij) — J'(1+2’J
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thus 8T(&) = T8(£) and the group of ff; being of order 2*** must be
abelian of type (2, 2"“”“1}
In particular if 4* — « is irreducible we have 7=1 =2
iy abelian of type (2, 2"1).
Consider now the case » =1

and the group

<L 7—v+1. We have the factorization

a1

g~ = H —Z\K(gi)/x v'J’)
=1

J=1mud4

The factors that are not irreducible are produets of two quadratic factors
and henee satisfy the condition of the lemma. The irreducible factors
have groups abelian of type {2, 2) genemted by the substitntions (&—»— £)
and (§-+{,7 &), where & is a zevo of o® — ¢y

Tn partmulaa this applies to the case of an irreducible binomial z* +F

It remains to consider the case » = 0. Then the assertions of the lemma,
follow by induection with respect to . Thay are true for vy = 1. For » > 1
we have the factorization

ob—1 ¥l 932

-1
ot — 4 3

= —y )=

9% 2
+y )

The first factor on the right hand side has an abelian Galois group
and all its irreducibls factors are of even degree by the inductive assumption,
the second factor has this property by the already considered case x =1
of the Iemma.

Proof of Theorem 2. Necessity. Assume that the sphttmg
field of o™ —a i3 abelian over K. Then also the splitting field of #® —a
is abelian over K for any p"|n and since every subgroup of an abelian

group is normal ¥ —q is the produet of normal factors. Thus we have

one of the conditions (i)~(v) listed in Theorem 1. We shall show that under
our assumption (ii)-(v) lead to (i). Consider first (ii), (ifi) or (iv).
Let be the least nomnegative integer such that

o = m'yivmﬂ, ye K.
Clearly g <» I u< 1 we have (i). If x> 1 then by Lemma 3
(19) : Cppiae KAL)
mgpf—a hag in K(Z,) the factor

f(ﬂ?) = m‘zﬂ - :2';!—!1-:—1 V.
Now
- Pe K (L),

since otherwice, by (19) y; = 6}, ¢, K {{,) and by Lemma 2

2
vl ¥ = B2

29—l
I

Y= %v:, peeE; a= —

icm
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contrary to the choice of u. Thus f(z) is irreducible in K(i)and N G, yef (@)
= f{@)f' (») is irreducible in K. By the assumptmn the latter polynemial
is normal over K. Let £ be any zero of flz

& =107¢ &= c;ﬂ"ﬂ”"“g.

&, &, are zeros of f'(x). Let §; be the antomorphism of the Galois group
of ff' over K such that

S£§ =

We have 8;{, 41 = Cz_,.l_.,,+1 hence Si%» =
that

(i =1,2).
&5 (& = £1). It follows

88,8 = 8, & = S1(":._;1_2y_p)81;§ = 6152,.5:
S2818 = 8,4, = 82(5;1}525 = 32'7;2115-

By Lemma 3 we have & = g unless » =+ +1 and V—~—(Cﬂ,+1+52‘,§1 -+2)
¢ K. In the latter case by (iv) 4 =v—1=3, thus 8§:5,¢ # 8,8, and
the group in question is not abelian.

Consider now the case (v). If ¥ — (£, +{Z'+2)< K then we get (i).

I Vm¢ K then by Lemma 3
(20) - Lot E(Ly).
2~ has in K (,) the factor

o) = T =g (L TR

By (20) and the inequality » > ¢-+2, f(a) is irreducible in K{Z,). He{lce
Nyl (@) = f@)f' (&) is irreducible in K and by fthe assumption

o¥—T—1 oFT

normal,

Let £ be a zero of f{o) satisiying
(21) £ =L, (Lt iGnly
and let

=00 L=

& and &, are zeros of f'(w). Let §; (i =1, 2) be the automorphism of the
Galois group of ff’ over K such that

S =& (1=1,2).
We have for a suitable &; = &1
Bullprpnt ) = ol + G5
then by (21)
(22) B, =alpl, Sl = el
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hence : _
o , s - — —1 ¥ a1 _ -
81(42:+1T§2r{p1) = (& % + (&, W) = Lyrs1 2:117
T gr—T—1 9¥ y—T—1 e
Se(C.. 41T C1+1} (52 qyl : }2 +{e BCH }2 = _‘CZH-I_' 2711-

Thus & =1, & = —1 and (22) implies
8,88 = 81 &y = BT T8 E = Lo £
82815 = SEEI - Sz( 2;:1)825 = _""sz—'r+1 £.

Hence §;8,& = 8,8, £ and the group in question is not abelian. Therefore,
I

it n = ] pf is the canonical factorization of n we get for each i<k
=1 .

.

ut Py
a” =V, vis K,

where we have put for abbreviation w® = w 5 Lt follows that

¥
: nwn
. nwn
Pl -
a’t =y
If now
% .
. 1 ik’
TR
' Il
we obtain

- (]

el
and the proof is complete.
Sufficiency. Assume that

a’m = y", ye I,
k
and let again n = [] p¥, w* = 0 e
i=1 )
Since ( =, ) ==1 'we have
i '&
(24) o = yf

Thus o satlgﬁes the assnmptions of Lemma 5 for all p, and by that
Iemma the Galois groups over K of all binomials

(25) - & —a

icm
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%

are abelian. If £is any zero of 4" — a then épzi is a zero of (25) and defining
r; by (23} we geb

kL3

& i
=[]
g==1

Hence the splitting field of o™ — ¢« as the composite of the splitting fields
of (25) iz abelian.

Moreover if 4™ — a is irreducible then also the binomials (25) are irre-
ducible and their groups are eyclic of order pj unless p7 = Omod4 and
£,¢ K in which case the group of (25) has a cyclic factor of order 27,
Sifce the direct product of cyclic groups of orders prime in pairs is again
cyelic we get all assertions of the theorern. _

LuMMA 6 (Hasse). If o = 57, ne K ( C,v) then at least one of the following
conditions is safisfied for o suitable ye K

(26) a=y";
Pp=2 0o=1, 1<‘u<'c,a—-——y,
=2, 0 =1, =17 a= ~(C, L +2)7

=2, 0=11>% a=({,+ —14-2)2‘“1 z,
where w and © have the meaning of Theorem 1.

Proof which we give is based on the previous results and therefore
much shorter than the original Hasse’s proof ([2]). _

Since all the subextensions of K ({,») are normal over K the binomial
2% — q satisties the conditions of Theorem 1. Hence we have either (26)
of @ > 1. In the latter case Liemma 1 applies with & = [», and we geb
either

N =plyp, yeX

or p =2, I,¢ K. (27) gives at once (26). To setitle the case p = 2 we apply
the already proved case of our lemma for the field K (I,) a.nd get

Be K (L),

= P2
a =4,

Now Lemma 6 follows immediately from Lemma 2.

Proof of Theorem 3. We start by estimating for each p"||» the
greatest exponent u, such that p“» divides the order of an element in
Gal (K (Z,,—v)K). Since K(L,,—) is the composite of K ({z), where g #p
is a prime and ¢'||#, we have

) fhp < MNAXO

a®in
_q#iﬂ

&, [E (La) 1 K-
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Let  be the largest integer such that {ze K ({,). Then for ¢ > 2

IR (L) BE] i (g, ) #£1(2,1),
B (p) K] =1 o :
2 STWE(L) K] it (g,7) =(2,1).
This gives ' \
(28) fo< mmax ord, [K(Z,): K.
Qllqll';;lﬁ
(Actually we have here the equality.)
Assnme now that
(29) a=%", . feK({,).
Then for each p’|ln, the binomial #* — o is abelian over K and by
Theorem 2 _ 4
(30) - @=Lyl w< A< min(y, ),

where @ has the meaning of Theorem 1.
Suppose first p” #£ 0 mod 4 or {,« K. Then by Lemma 6 it follows
from {29) that

(31) a =,

By Lemma 5 Gal(K(%,)/K) contains an element of order p* hence
Gal{K(L,,-»)/E) contdins such an element and by (28) we have

max ord, [K{Z,) :-K].
ain

gprima

B K (L)

Ay <

- By (30) we have also
(32) A< ordyw,
Lence A< ordpa

The same mequahty tollows d]rectly from (32) if p” = Omod4, {,¢ K.
Thus for each p we have

: a® =87, 3, K,
whence by the staai_ld&rd argument (see proof of Theorem 2)
o =9, yeK. | _
Assume now in addition to (29) that for a certain m prime to n

either ;e K and am = 0modw,l.c.m.[K({,): K]
(33) . i
or Lymé K and nm = Omod 27w, Lem.[K(¢,) : £]
- ql;!l.!ig:l.e

and consider again (30) for aﬁj 7" n.

icm
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If v< o then ﬁ'om.(SO) we get immediately
(34) a=6"" &,K.
If » > w and either p = 2 or {,< K we gef from (28) and (33),
(35} vz o+,
hence in particular
w—y+i —p,+ord, o 0.
Thus if (30) holds with » > 0 we get by Lemma 5 and (31)
'u—mwrl £ fips
which contradicts (35). v > w = 1 and p = 2 we get from (33)
(36) ‘ vz v+l > T,
Let 7, be the greatest integer such that
' Lt e K (L)
Since K({z+ &) is over K cyclic of degree 9%7 we have
Ty~ T fe
and by (36)
e
Henee by {29) and Lemma 6
Ca =7, Sye K (L)

Thus if (30) holds with » > 0 we get by Lemma 5

P T K g

contrary to (36). Therefore (34) holds in any case and by the standard
argurent ‘ '
a.o=y"",  peK.

Remark. If (w,,n/w, ) =1 the number ¢ occurring in, Theorem 3
is the least integer with the required property. Indeed by the definition
of ¢ there exmts a character xmodn belonging to exponent ¢ on the group
G = Gal{E(L,)/EK). :

Let v(y, ,) be the correspondmg Ganss sun. Cleaaly {x) e K (L,).
Suppose that t(x)™ = y", ye K. Then 7v(x)° = a4y, ye K and applying
an automorphism o

(%) La—i
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from @ we get 7(j)° = {39, Tt follows that
G = () = ) = s

a(j—1)* = 0modn and since this holds for all automorphisms (x) from @
awl = 0modn. Since (w,,nfw,) =1 we get '

—~1y
ot =1,

N
4 = Omod ———,
wﬂ-

contrary to the choice of ¢
Leuma 7. Under the assumption (viii) of Theorem 4 the group

a(j—1) =Omodn and  Z(§)? =1

G = Gal(K (L, Vary .., Vag)[K(Z,)

contains the substitution

”n |
Va, = tVa, (1<i<h)

under the asswmptions (vii} and (ix) the group

G, = G&I(K(Cm :/ET;% h} teey ;&/E)IK(D")

containg the substitution

n n n_ 1]
l@ﬁéf.‘f,,nﬂ/i, Va, 7_)'57?1/; A<ig<h)
for any ¢, and any ¢, = Omode (L<i<R).
n
Proof. Let us denote any value of 1/3:; by & (1< i<k and of 913/2‘:;

by & . To prove the first part of the lemma it is clearly sufficient to prove
that G, contains each of the substitutions (1<i<k)

387 Ef (I<i<h,j*+14), §Cl&.

If (37) were not contained in &,, we would have
(38)

&y = Gal(E (ny £1yveny EME Loy b1y oer Eiyy Erprs ovns &) 5 Omod -
g
Now by Eneser’s theorem )

d; = [E(La)(Eay ey £y :K(gn}<§1, ooy iy ‘Ei-}-lz
hence d; is the least exponent such that

o ED]

(39) . §§i=ﬂfK<§:|u---, §i-1: §i+1:---a§k>-
By raising (39) to nth power we get that
el = el L S o

- "< K, and by Theorem 3 " =" yc K,

— L a ~— O
ap 1...a‘,-if ves O E = ",
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By the assumption d;o = 0modn, contrary to (38).
To prove the sccond part of the lemma we have similarly to prove
that &, contains each of the substitutions (1 <1< k)

5D_>C(n,w) & 5_-,‘—*5_-,‘ A<i<k)y
Eo—=£qs ff—""fj (1€j<k;j #* 1), ef,-—>¢;'§1--
Thig reduces t0 proving that the least exponents e, (0 < 4 < k) such that

(40) Ete H(L)CEyvves Eimry Giqay -oes &m0
atisty e, = O0mod(n, w), e; =0modnje. Now (40) implies for 4 = 8
' L0 = #"aft ... ok, P E(L,);

C9ay™ ... o™ = 9™ yeK; o; = 0moda/o;

. afa nlo ypnic __ . nlo
L8 = Mol | glinie — gl

9, must be a root of unity contained in K; 9, = [l and so we get ¢,

== O0mod (e, #/¢). However by the condition (vil) n/¢ = Omod{w, n)
and thus ¢, = Omod(w, n).
Fori > 0, (40) implies

off = 6700 .. aoRL ...

— & —&
Lovar™ . df .,

B e K(L,);

a7 =y, peX; e =O0modn/s.

Proof of Theorem 4. We use (ebotarev's density theorem and
get the existence of infinitely many prime ideals P of Ly = K (L, &, .., &)
or L, = K(L,, &, ..., &) dividing p in K({,) suech that for all nely
or L, respectively

'qN” = Snmoﬂﬂi,

where § is the antomorphism described in Lemma 7, & = &, & = q,.
Betting n = &§; we get ' '

B = EmodP  (i>0),

Eﬁfp = Eug(c&,n]mOdEBJ
econsequently '
Np—1 ’
o, " ={imodP,
Np—1
' gw ® e ’:ft%,n) mOdSB

and the game modp. One has only to remark that Np = lmodn.

Remark. If (w,, njw,) = 1 the number ¢ ocourring in the first part
of Theorem 4 is the least integer with the required property. This follows
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from the Remark after Theorem 3 on taking &t =1, ¢ = z(x)". If (w,, nfw,)
> 1 & needs not be best possible. In particular, if £,¢ K, # 2 0mod2™+
o ean be replaced by (w,, lem. [HE{Z;): K]).

gln,gorime
Lmmva 8. If every integral vector [1g, by, ...,

1] satisfies at least one of
the congruences '

(41) 3 gty = 0modm  (1<h< 7

§=0

then for at least one b we hove

Qpy = OmOd(ahly sees Oy m)

T
{42 — .
W) (Bp1s - -y Gppy M) <max(g—1, 1)

Proof. Let us choose in {1, 2, ..., g} a minimal subset M with the
property that every integral vector [1,%,...,%,] satisfies at least one
congruence (41) with he M.

Pub dy, = (apy, ..., ty,
otherwise the eongruence

m). For he M we have &y, = 0modd,, since

.
{43) g+ Zahsts = 0modm
i=1
would not be satisfied by anijr [ty vy Bl
Hence, by a theorem of Frobenius the congruence (43) has d,m"?
solutions modm. If for a certain he M we have m/d, < g (42) followa
Tt for all he M, m/d, = g then either

' d
R
m
hedd
or {M| =g and d, =mfg (L<h<yg). The former case is impossible
since then the alternative of congruences (43) for he M would have
" 3 dy/m < m" solution modm, contrary to the choice of M. In the latter
case, we congider the system of congruences

r
Zahsta = Omodm

B=1

obtamed from (41) by the substitution ¢, = 0. Smee GVEry 1ntegra.1 vector

[, ..., 1] satisfies at least one of these eongruences and 2’ ayfm = 1,
A=1
every Vector mugt satisfy exactly one congruence. However,  vector

10, ..., 0] satisfies them all. This is & contradiction unless g = 1, m=d,.

icm
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LeyMa 9. In any number field H there ewists o multiplicative basis,
i.e. such @ sequence my, m,, ... that any non-zero element of K is represented
i

umiquely as & [] #Zs, where m, are rational integers and { is o root of unity
g=1

contained in XK.

Proof, see Skolem [8].

Proof of Theorem 5. Let fy, ...
without loss of generality that §; =0 and put K; = K{f, ..
in K,

, B, be the zeros of f;. We assume
os Bg). Let

(1<j<h),

[
— [+ 77 &5,
o = e L l I;msjs
s=1

11
b &
Br = &0 [ [ alns
8=

where w i§ the number of roots of unity contained in K, and =, are elements
of the multiplicative basis described in Lemma 9. Let 4 =

(1~<~.h‘§\g)5

[ s]:ék

pEa

and let P and Q be unimodular matrices such that

I 6
PAQ = . )
€,

where all the elements outside the principal diagonal are zero, on the di-
agonal precisely é,, ..., &, are non-zero and ¢;le; ;- Tet -

g 51
Plil=t:1], [bay--r bndQ = [dna) dpay - -y Al
Ago 3

We choose integers %,,1, -- -, 1 divisible by w so that for all h<yg

t .
M tyyn, =0 implies  dy =0 (r <s <)
. . g=pr+1
and set
s .
m == Tax Apetisl +1.
lsj“gﬁ’lli-ét—-(—"l *
Further we set
n=2=wmerlcm(g~—1), N = (80, G1y -
gmie, . e
gprime )
(L sy
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where r is the relevant parameter of the field K,

& il .
il=01l: |
G Tt

By Theorem 4 there exist infinitely many prime ideals p of K, (&,) such

g = —{p,

that
[ T .
()~ (;')ﬂ s tsesy.
The congruence
Jlafr .. = Omodyp

gives for a suitable £ <

hence
¢

k
w
ij( Q89+ E , 3888) w—" bpo 6o+ z bhsas mod#.

=1 E=1

Setting (¥, .., 4] = o2, --.

R " )
2% o et

, 2 1P~ we get

¢
1
Egbho g+ 2 Apem; modn,

Fml g=1
hence
Tha £
=y
'"'w“’ (Z yj(wj Crgscvey ck)t:i“‘ Z yjcﬂ'to)
=1 Fmrtl
_ {w, 0 C
=~ D hatet 2 " Vs R Z dhummodn.
=1

Jeapdl

Tt fo]lows that

t t
2 dpste = Omodm, 2 dpetts =0

a=r41 g=r+1
and by the echoice of 7..q,..., 7 dy, = 0 (r < s < ). .
Hence all integer vectors [t,,..., %] satisfy at least one congruence

r r
Y Nllpy ' e,y M n
i VT S .S —
s—>'1" wey (103 G oo )by o (2 . w Uwjmod o (0 Crars o Gl

g=1 s

where dy, = 0 (r <s<1).

icm
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It follows by Lemma 8 that for a certain %

. 1w . .
(44) ¢ = n Lmax(g—1,1), d,=0 ([r<s<gi)
('n, 7 dh)
w ? %ﬁsgr w 68
and
S ed n n
(45) D Dy = 0mod (1, G -evs G-
Lo ] q
For & satisfying (44) we have
d
s _Ps o integer (1<s<7)
& q

and by (45) there exist integers #,, ..., %, such that

(46) vaei’*——mﬁ}“n 57—2—%—0

Soal 8=r4l

21
Let ug fix any valoes of logn (1<e<?t) and set logl, = o

of is a many valued funetion and H afi can take any value

F=1
o & ! E g
a7t .
V = exp [? Z 05 Zlog:ts Z o @+ 278 E 'ujwj],
=1 g1 =1 =1
where [#;, ..., 7] 18 an integral vector. Taking -
(D25 -ees Wl = [Uny oo U, 0y ey OJ(P_I)T:
' Ay dpe  Mpr: Uy
[w]_,..-’mk]=|:6—1‘,...,—6—:—,Lq—,...,?P

we get

v —exp[2 (2 B g 2

F J=r4l a=1 Jo=l
By (46} ¥V = f;, hence f(V) =0.
Remark. Theorem 5 is essentially best possible, as the following
example shows:

:
% o N
) -+ _}_J bkslogn,q»z-rczz-;—uj].

)

gl

7ty = (—po) [ [ t—=HiBa),

F=0

where g is a prime and $,, 8, are integers of & multiplicatively independent.
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The congruence
flajtof?) = 0modp, ap = fY, ag = fi}

1s soluble for every prime ideal p. Indeed, let » be a primitive root modyp.
I ordjind,f; > ord,ind,f, then the equation

where

gayind, By + g#,ind, 8, = ind, B,
is soluble and so is the congrueﬁce
' ailug? = Bymodp.

If on the other hand, ord ind, f; <
such that

ord,ind,f, then there iz a j <q

_ ord,(j ind?ﬁl—l—ind,,ﬁg) > ord,ind, 8.
This implies the solubility of the equation
g, ind, By +grsind, fy = jind,fy +ind, B,
and of the congruence
aftag? = B{f,modp.

The solubility of f{aft, a%) == Omodp .if p|aa, is trivial. On the other

hand, the equation f(afl«5?) = 0 has only the solutions {(m, @) = (i, O),
: g

(j 1) 0<j<yq
_ q: p =3 =<4
For 8, =.L,, f, different from a root of unity we get an examjple
with &= 1.
Let us note further that Thegrem 5 does not extend to all exponential
congruences even in one variable, e.g. the congruence

{®+a) ((— a¥®— a) = Omodp

is soluble for all prime ideals p, but the corresponding eguation has no
rational solutions if ¢ iz not a root of unity.

Proof of the Corollary. For b = 0 it suffices to put in Theorem 5
i) = ugt—e,

For b = —1, we have *—at-—b = (t—a){t—a™*) with a 2 +1 since
—4 £ 0. It is well known that «, = 4,, o™+ 2,2 and it suffices to put
in Theorem 5

=1, ay = (0,

FO) =t —ct+2,, k=1, o =a.

For b =1 we have #—at —b = (t—a) (t+a™") with a # -+1 since a 3 0.
Now u, = A, "+ A3(—a)™® where A;, A, are conjugate in the field Q(a).
"I e =0, we set in Theorem 5 :
fit) = Ayt + Ay, ko= :,I-:

@ = —ad.

- (49)
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If ¢ 5 0, we set
FlE) = {48 — ot A3) (A, 1% — ¢ — 4a),

where ¢ is chosen negative (one of the numbers ¢, — ¢! is always negative).
‘We infer that the equation f(a®) = 0 has a solution # = m/g, where
{(m,q) =1, g<3. I g =1 and

=1,

Oy == O,

A —ed™ L (—1)"4, =0
we get ¢ = 1u,,. If ¢4 =1 and
{47) A g™ — (=1 =0
we get a contradiction. Indeed, since
_ @M —t d™ (1) hy == 0
we obtain
2 P —(cFUn)d™ = 0, Ay = Hotuy)aT", Ay = He+ ) —a) ™

and from (47) ¢ =0.

g =2 is impossible sinee then both numbers i,a**—ca®i4, have
a non-zero imaginary part.

Finally ¢ = 3 is impossible for the following reason. If a 5 f%, fe Q(a)
then «™® is of degree 3 oveér @{«) and cannot satisfy the equation i,¢*—
—¢t44, = 0 for any choice of sign. If a = §%, fe@(a) then § satisfies
an equation {2—di—1 = 0, d integer, and we get @ = Trf® = Ad3+3d,
contrary to the assumption. '

Lignwa 10, If every dntegral vector [fi, ...,
cowgmanee of the set 8:

t,] satisfies of leasi one

(48) ah0+2 ayt; = 0modm  (1<h<g)

j=1
and no proper subset of 8 has the same property then for all by 3

. M{g)ap; = 0modm,

O awhere

et
[] 77
g
pprime
Proof. Tiet @ = (Gayy Gpgy -+vy Gagey W) IE dy 1 6 the congruence
K
5’ ahjtj—j- am = Omodm

J=l
is never satisfied contrary to ‘ﬁhe minimal property of 8. Henee for all k

gy = Omod dh
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and the congruences (48) take the form

(50) L<h<g).

] = n
2 t—}~ Jn Omod 7

For a given prime p let «, De the number of indices b < ¢ such that

" |]—dﬂl and let & be the largest » with n, # 0. We have
'h

ﬂs
AT
P

(51) -}—;+”’“+...+ >1 1<r<s),

Tn order to prove this assume that for a certain r < ¢

. n
(52) ?-F Tl +""+—§£-T-_1—<1'

?2
i
The congruences (48) with p"f[' — form a proper subset of the set §
h

and by the assumpbion there is a vector #* which does not satisfy any
of them.

On the other hand, a congruence (50) with p?| dﬁ (g2 ) is in virtue
I

of Frobenius’s theorem (used in proof of Lemma 8) satisfied Dy abt most

9 Gk g e et
('d—, S pe "‘H) pfﬂ r+i)k—1) =P(Q rI)E~1)
{2 /3

integral vectors fmodp? satisfying
(583} t = modpm.
The alternative of all congruences in question iz satisfied by at most

Ziﬂ_—r:ﬁ' per% integral vectors fmodp® satistying (B3). Sinee the

=7
number of all integral veetors tmodp® satisfying (33) is p¥~r+V¥ (52)
_1mp11es the existence of a vector #, = f,modp’ ™' which satisfies no

congruence (50) and consequently no congruence (48} with ?rldﬂ' By

;3
the Chinese remainder theorem there exists a vector # such that

t'= t,mod Le.m. —ﬁ,

: pTrmidy,

t =4, modp°.

This vector satisfies no congruence (48),

The obtained contradiction
proves (51). '

icm
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Congider the Ilower

=f(#a, ..

negative real numbers. Since f(#, ns, ---

bound of the function #yt+Red ... 7
, s} under the condition (51), where now M, ..., f, aré NOW-

, M) > max n, the lower bound
lras
is attained.

Let (0, ..., #{¥) be a point in which it is attained. We shall show by
induction with respect to s—v ‘

(54) a9 =p-1 (1<r<s), " = p.

" Tndeed (51) for r = s gives 1 > p. T nl® > p, we set nf) = n? forr < s—1,

= n®, —}- (n“’)—p), n® = p, verity (51) and find f(n{,...,n{))

< f(n{", . n‘")) which is impossible. Assume now that (64) holds for
§—r < s—g, i.e. ¥ > ¢. The condition (51) for r = ¢ gives
e & p—l p p—1
21— PErES S P g 3 ng‘)Z_fp—-l.
P G=r+1
T 2 > p—1, we set ‘
A =n® for r#g-1,¢;
ngl, = n&"lﬁ};(n‘;’wp +1), ) =p-1,
verify (51) and find again
f(”'&l)a reey 'n'g)) <f‘(’ngo)7 eeey n(sﬂl)’

which is impossible.

Since a0+ ... +n < g it follows from (54) that

g1
s{ip—1)+1<yg, s< E:I
mn
and thus for all A<y, — A 1M (g).

This together with {(49) gives the lemma. -
LavMA 13, If every integral vector [y, ..., %] satisfies at least one of the

CONgruences
,.
(b5) o+ Z%Js = 0modm
Sx=]
{1 < h < g) then for at least one h
(56) 4y, =O0modm and  M{ )a;w =0modm (1<s<1),

where M(g) has the meaning of Lemma 10,

5 — Acta Arithmetlea XXXIL3
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Proof. Choose in {1,2,...,4} a minimal subset M with the prop-
erty that every infegral vector satisfies at least one congruence (50)
with ke 3. To the set of these congruences Lemma 10 applies. The eongru-
ence satisfied by the vector [0, 0, ..., 0] satisfies also the conditions (56).

Remark. M(g) is the least number with the property formulated

in Lemmata 10 and L1, as the following example shows already in dimen-
g—l

slon one: m = pf” (p prime), a;; =1, ay, =0 and for b = (p—1)g+r+1,

n
I<r<p—1,2<h<y, ay =2% am,=—~13-r-

For & = 1 Lemma 10 ig contained in a stronger result of 8. Fnim,
however his proef does not extend to % > 1.

Lpyma 12, Let H, I be two finite sets and let My, (he H, ie 1) be in-
homogeneous linear forms iwith integral coefficients. If for every positive
wnteger m and o suitable he H the system of congruences

(57) My (#) = 0modm (i)

is soluble then for a suitable he H the system of equations

68)  Mu(e) =0 (i)

i soluble in integers.
Prooi. Suppose that no system (58) iz soluble in integers. Then by

Lemma 9 of [6] for each he H there exists an m; such that the system

{67) is insoluble for m = my,. Taking m = [] m), we infer that the system
hell
{B7) is insoluble for any he H eonfrary to the assumption.

Proof of Theorem 6. Let us set

r
£Bhigo ! l g-;“hijo Bui = C‘z’hin ! f ;,-,;ghis,
§=1

=1
where w is the number of roots of unity contained in K and 7, are elements

of the multiplicative basis deseribed in Lemms 9. Consider the linear
forms

(69} s =

Lygy = wa + 2 Fpijo @ — brig
j=1

(60) =

= S one

ia

—by, {(Igs<r)y

and let H be the set of all vectors h = [hy, ks, ..., b with 1 <

\'91’.
{I<igD, I be the set of all vectors & = [i, .s-] Wlth 1< "

i<l 0gLegr.

icm

- (61) My =

213

Abelian binomials, power residues and ewponeniial congrucnces

For any he H, i = [i, 8] I we put
Lﬁiis'

We assert that for any positive integer s there exists an he H such
that the system of eongruences

(62) Mpy(By, By -.-s ) = 0modm  (iel)
iz soluble. ‘
Tet us take m = 2"wM(maxg;)m lem. ({g—1), where 7 is the
i G<mA MY g;
grrime

relevant parameter of K.
By Theorem 4 for any choice of %, ...,
ideal p of K (Z,) prime to D such that

(ﬂv_) = (f’f_) = (1<s<r).
:P k) :p n

Let m be the product of all these prime ideals p.-
The solubility of the system of congruences

i, modn{w there exists a2 prime

L

H(H% ﬂm) =0modm (i =1,...,1)

h=1 j=I1

implies that for any vector [i;,...

such that .
k =
O B
l l hu = B P, l i P/ v/,

=1 i=1

for some p satisfying (63). This implies by (B9) that

(63)

,t,] and any 4< I there is an k<g,

&

Z (i?,_ ahijﬂ_r 2 wi, a:;me\ mj = — bmo'}" Z w1 bhm mod’ﬂ,

=1 g=1

whence

2 (o bm) o S{ 3 ) = omot:

=1

Using now Lemma 11 we get that for any ¢ <1 and & certain k; < ¢,

B
2 B0 — bh,-m = (0modw,
j=1

Zah”* — by =modm (1< s<r).

=

In virtue of (60) and (61) this is equivalent for & smtable @y to the system
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{62) in whick R = [711, -vvy By]. Therefore, by Lemma 12 there exists
a veetor h® =[73, ..., #] such that the system of equatlons

-Mhﬂz'(mu:mn cean ) =0 (de I)

is soluble in integers. Denoting a solution by [4f, #1, ..., @] we get from
(60) and. (61) for all i1

. %
L o — =
iy Z Buige i bhgm 0,

ie_

hence by (59)
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Correction to [6]
P. 401: insert after formula (8):

provided p; > 2, 6 = lmodp; or p; = 2, a4 = lmod4.
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Dedicated to Professor Theodor Schneider
on his 66tk birthday

1. Intreduction
1.1. The setting. Let K be the field of formal series

(1) , o = g Xt (X ..

with an arbitrary integer %k and with coefficients in a given field F of
characteristic zero. The rational functions in X with coefficients in F
form a subfield K, = F(X) of K, and the polynomials form a subring
8§ = P[X]. In K we have the non-archimedean v_a;luation with

la| = 2*
if the leadmg coefficient in (1) is a; 7= 0. Xf f is a polynomial, then
|fi = 297

Many results on “ordinary” diophantine approximation, i.e. approxi-
mation of reals by rationals, carry over to approximation of elements

of K by rational functions, ie. by elements of K,.
For example, Dirichlet’s Theorem holds: If ae K does not lie in K,,

ihen there ave infinitely many rational functions flg = f(X)[g(X) in K,
with

le—(fipI < lgI™":

Also Liouville’s Theorem holds: If ae K is algebraic over K, of degree
§ > 1, then for every rational function flg, we have

(2) Na—(flg)l > ex(a) 917,

with a constant ¢,{e) > 0. Now just as in ordinary diophantine approxi-
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