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Values of integer-valued multiplicative functions
in residue classes

by
W. NARKIEWICZ {Wrociaw)

1. An integer-valued arithmetical funetion f is said to be weakly
uniformly distributed (mod N) [WUD (mod N)] provided the set.
{m (fin), ¥) = 1} ig infinite and the values of f prime to ¥ are asymp-
totically uniformly distributed in residne clasges (mod ¥) prime to N..
This notion was studied in [2] in the case of polynomial-like multipli-
cative functions (i.e. functions f satisfying the condition f(p*) = W,(p)
for every prime p, k =1, 2, ... with suitable W(#)eZ[2]) and & necess-
ary and sufficient condition for such a function to be WUD (mod N)
was found. This eondition malkes sense for arbitrary integer-valued multi-
plicative functions and it was shown in [3] that it is equivalent fo the
Dirichlet-weakly uniform distribution (mod ¥) of f, which seems to be
essentially weaker than WUD (mod N).

The purpose of this note is to show that for an important class of
multiplicative functions WUD (mod ¥) and Dirichlet-WUD (mod XN)
coincide and so in view of [3] a necessary and sufficient condition for f

 from that class to be WUD (mod ¥) results.

2. We shall considér integer-valued mnultiplicative functions f from

. the class Fy consisting of all functions of this type for which the series-

2 1
e
(f(p)ﬁ):-l
converges.

We need a lemma, which for r = 1 is a special case of Theorem 1.
of [1] whose proof carries without any ehange to our case, being a snnple, '
application of a theorem of B. Wirsing [4]:

Lignma. Let for k=1, 2, ...,7 f, be an inleger-valued additive funotwn,
N,,/2 an mteger and j, an infeger _fpmme o N, Let 8 =8(f1,- - Je§
Niyoiny .+ 4,) be the set of all integers n 2= 1 for which

Jelm) =1 (mod Ny)

f?-?lﬂ
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holds for k =1,2,...,7. If now 4 is any set of integers closed under multi-
plication then the set AnS has the natural density.

From this lemma we deduce

TreorEM L For any integer-valued multiplicative function f and any
N = 3, jeZ prime to N, the density of the set -

{n: f(n) = j (mod N)}
ewisis. '
_ Proof. If f¢Fy then for almost all n one has (N,f(fn,)) > 1 hence
the density of our set equals zero. We may thus assume that f belongs
0 . o
For (r, N} =1 write

A, = {p®: f(p*) =+ {mod N})}
and let

Ay = o (£, 3) > 1

Moreover denote by £,(n) the number of prime powers from A, which
are unitary divisors of ». Note that the functions &, are additive.

Now let n = pfi... pgr and let (f(n), N} = 1. Then no pj* can belong
to A, and we get ‘

fla) = f(pm) ... fwg =[] o™ (mod ¥).

(ry N1
As the eonditions 2,(n) = Q,(m) (mod ¢(¥)) (for all » prime to )
jointly with £4(n) = Qo(m) =0 imply .

flny =

o = [T 2% = f(m)(mod ¥)
{r,N)=1

{r,N)=1
we see that for any j prime to & we have the equaliby
1 fn: f(n) =j(mod N)} = U By

Aed(d)
where

A(J} == {(111 ey At 0“<~7‘i<QU(N) ('b =1,...,1),

[] #¥ =i (mod M},
(r,V)=1

i= q;(Nj and for 4 =<4y, .., A0
B, = [n: 2y(n} =0, Q.(n) = 4, (mod (M)}

By the lamma all sets B, have a density and a;s‘the union in {1) is

disjoint and has only finitely many terms our assertion results. m

icm
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3. For functions from Fy the definition. of Dirichlet-WTD (mod ¥)
has the following form: _

A function f iy Dirichlet-W UD (mod N) provided for all § prime to N

one has
I
@) lim f{n}ea'('fnoalin_m _ 1
2140 {0 (V)
{J‘(n}.%):l

Asg 2 corollary of Theorem I we obfain now _
- TuroreM II. For functions belonging to ¥y, WUD (mod N) and Diri-
chlet-WUD (mod N) are equivalent properties.
Proof. Az noted in [2] WUD (mod &) always implies Dirichlet-
WUD (mod ¥) so assume that feFy and f iz Dirichlet-WUD (mod ).

. By Theorem I the set {n: f(n) =j(mod N)} has for all j prime to N

a density, say d;, and. one sees easily that
d= > &
(1. N)=1
is poritive. Thus ‘ ‘ _
lim (% -—1) 2 nt=d

140 n
{f(n), M)l
and
lim (#—1 nF = d,
lim (2—1) D M

Sirye=j (oA N) |
hence the limit in (2) equals d;/d. By assumptions all those limits are

" equal and so d; is independent on j. =

Trpormy ITT. A function feFy is WUD (mod N) 4f and only if for-
every nonprincipal character y (mod N) which is trivial on the multiplicaive
group generated by those r (mod N) for which the series

2 %
p n
{{p)ser(mod N)

diverges there exists a prime p such that

[~

Dt =0.

k=0
Proof. Combine Theorem IT and the theorem of [3] =

4. As an application we construct now multiplicative functions f(n) # n
which are WUD (mod ¥) for all ¥ > 8. (Note that the guestion whether
there exists a positive multiplicative funetion f(n) 7 n which is uniformly
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distributed (mod ) for all IV is still unanswered.) Let I,, be the sequence
of all progressions with the first term prime to the difference and. let

- .
P = | P,, be a partition of the set P of all primes into disjoint subsets
me=1
with the property Y 1/p = co (m =1,2,...). If now fis any multipli-
£ .

ko
cative function such that for primes peP,, the number f(p) is a prime
from I, distinct from p and all numbers f(g) for primes ¢ less than p,
then by Theorem IIT such a function will be WUD (mod Njifor all ¥ = 3.

- e
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The exponent of class groups
in congruence function fields

by

MAavomrAR L. MaADpAN and DANIEL J. MADDEX (Columbus, Ohio)

1. Introduction. For o finitely generated extension K of a field &
with transcendence degree 1, the divisor clasy group is infinite and the
null elass group (the subgroup of divisor classes of degree 0) is, in general,
also infinite. However, if % is finite, it is & consequence of the Riemann—Roch
theorem that the number of classes of degree (0 is finite. In this, the case
of congruence Innction fields, the order of the null class group is called
the clags number of the field. This null class group is analogous to the
ideal clags group in the case of algebraic number fields, and it plays an
important role in all algebraie, arithmetic, and geometric studies of
congruence function fields.

In the theory of congruence function fields, the “Riemann Hypothesis”
plays an essential role. This ‘“hypothesis” determines the real part of
the zeros of the zeta function of a congruence function field. It was proved
in complete generality by Andre Weil [10] after H. Hasse [7] had given
a proof in the elliptic case. This result gives bounds on the class number
of a congruence function field; however, while there are bounds on the
order of the null clags group, not much is known about its structure.

The purpose here is to study the exponent of this group for congruence

function fields of a particular type. These are fields K which are abelian
extensions of % (z), the rational function field over k, for which Gal (K k()

has order nyp", where p is the characteristic of the field and #, is relati-

vely prime to p; and for which the p-primary part of Gal (K [k()) is el-
ementary abelian. The main object of this paper is to give a lower bound
for the exponent of the null class group of a field of this type. A conse-
quence of this will be that for & fixed finite field & and a fixed degree n,p",
the exponent will approach infinity as the genus of the field goes to in- .
finity, _ :

It is well-known that there is a strong similarity between the theory
of congruence function fields and the theory of algebraie number fields;
the two together form the class of global fields, and class field theory
holds for them. It would be interesting to obtain analogous results for



