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Three restricted product-sum partition functions
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L. M. Crmawria and BrreNy Tormancm (Mavhattan, Ilan.)

In (4], Chawla and Maxfield defined and studied the product-sum
partition function p{n, m), the number of otherwise unrestricted par-
titions of # such that the product of the summands is m. They also stmdied
the allied arithmetic function €, (%), which isx the cardinality of the set
Up of integers m such that p(%, m) = 1. In the present paper, we study
three restricted product-sum partition funetions Pg(n, m), Prin, m) and
Py(n, m), namely, the number of partifions of # such that the product
of the summands is m and farther for Pg(n, m) the summands come from
the set § of non-negative integer powers of primes; for Pgr(n, m) the
summands are pairwise relatively prime; and for Py(n, m) at least one
of the summands divides all the others. As in [2], p. 263, let f(x) be the
sum of the prime factors of » counfing rmultiplicities, and let g{n) be
the number of positive integers  such that f(x) == ». Chawla and Max- -
field ([4], pp- 104—105) obtained the results that p(n, m) = 1 if and only if
Fim)<n; Opln) = q(O)+q(1)+ ... +q(n); and O, = {m| fim) =j,
j=0,1,..., 2} In this paper we derive similar results for our partition
funetions Pg(n, m), Pgr{n, m} and Py{n, m), and also obtain upper bounds
for the first two of these functions.

First recall the following definitions and notations: The pair of func-
tions f(2) and ¢(n) were defined in [2]; p. 263, as follows:

F@) =05 f(pl, ..., 00 = &p+ - 0Dy
g(n) = Z 1, _
Flx)y=n
that iz to say, g(n) iz the number of positive integers # which satisfy the
equation f(x) = n. Note that g(n) is also the number of partitions of n
into primes, not necessarily distinct. :

he pair of functions %(z) and 3(») were defined in [5], p. 103, ag
follows:

CR(L) =05 AP ... p) = pi ... +pl
d(m) = Z 1.
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Note that &(n) is the number of partitiont of » into powers of distinct
primes. '

Let P De the sef of all primes, &N the set of all po.xlmve 111130{,61\, w
the set of all non-negative mtegern, and

= {P | pEPa aeT'V},

that.is, § ix the xet of all powers of primes, together with 1.
Throughout this paper we use the following eanonical representation
mo=g1...q%
L. Let Pg(n) be the number of partitions of » with summands inS
and let Pg(n, m) be the number of partitions of # over § such that the
product of the summands in each partition is m.
Let

~when mz= 2.

M (8, n) = {meN| Pgln, m)=1};
then i
S, n)l = > 1,
Pgin,m)z1
that is to say, [M(§, n)! iy the mamber of distinct lnt@gﬁlb we such that

Poin,m) = 1.
It is evident that

Pgln) = > Pgln,m),
meM{S,n)
that is to say the set of all the partitions counted by Pg{n) iy clagsified
into |M (8, n)| disjoint classes.
Lemwa L1, {i) Pg(n,m) =1 if end only if fim) < n;
(i) Pg(n, m) = Pgl{m,m) if 1< m < n;
(fiiy Pg(n, m) = 0 if m 15 a prime > n;
(iv) Pg(n, m) =1 if m i¢ ¢ prime < n.
To prove (i), first agsume that o, ... +-o, =» and @, ...
Then ‘
Fomy =Floy oo om) = flog) -+ .. - flmg) < @+ .
Conversely if fim) = byqy -+ ...
ab least one way ay

g+ tatpt o G G s

where the product of all the summands is m a,nd their sum is n. This
proves (i).

To prove (ii}, assume that 1. m < . Since f(m) < n
from (i) that Pg(n,m)=1 and Pg(m, m)>= 1. Now,

By = W

Ay =0,

+ b, =, then » can be parfitioned. in

no==1-}...

v =5, It follows
every partition

icm

Three restricted product-sum pertition funelions 9

counfed by Pg(n,m) is of the form =n = 1+ ... +14-o-+ ... +a, for
some ¢ = 1, where o, > 2 for i < § < & and where mt . %, = m. It follows
that o+ . —I—mk < m, whence this sum can be extended to a partition
of m by M1ding as many 1’s as are needed; this partition of m will be
among those counted by Pg(m,m). Thus every partition counted by
Pg(n, m) corresponds to 2 unique partition counted by Pg(m,m); and
since the converse is clearly true, (ii) follows. If m is prime then the only
wsum for which the product of the terms is m is of the form 1 ... -1-1-Ln;
thiy gives a parfition of n if and only if m < #. This proves {iii) and (iv),
since 1 and m are in 8.

(1) M(8,n) ={@eN|fla) =3, j=0,1,...,n};
(i) [ M (8, m)] = q(0)+g(L)+ ... +g(n).
Alternatively, M(S,n) is the set of all integers m obtained by mul-

tiplying the summands in each of the partitions counied by g(j), 0 € j < »,
with the convention that ¢(0) gives m =1 and g(1) gives no value of m.

TirmoreM 1.2,

This is an immediate congequence of Lemma 1.1 (i), and i8 an analogue
of Theorem 1.2 in [4], p. 105. ‘

We note that for all m, f(m) < h(m) < m. Hence if h(m) < n then

© fim)<n and Pg(n,m) 1. A stronger rvesult than this iz the following

theorem, in which p(d) is the number of unrestricted partitions of a
potitive integer b.

THEOREM 1.3. Let m == ¢\t ... -¢%. Then

Pgn, m) <p(b): ... plby),
with equality holding if and only if h(m) <
To prove this, let (b, ..., by,) be a paltltlon of b;, 1< ¢< 5. Then
every sum of terms in 8- {1} whose product is m ean be written in the
form
(1) 511_}_ e g gl gl L Bk,

The largest of these is of comrse ¢¥1-...- ’_5.’8 = #h(m). It h{m)< n, then
this gum can be extended to o partition of n by adding an appropriate
number of 1's, as can all of the other sums referved to ahove. If ii(m) > n,
then this swn does not yield a partition of #. Since the number of sums
of the form (1) is clearly equal to p(d)- ... -p(d,), the theorem is proved.

?(bs)

2. Let Pp{n) be the number of partitions of » whose summands are
pairwise relatively pume Let Pp(n, m) be the namber of partitions of #
of the type

COROLLARY 1.4, Pg(m,m) = p(by)-...

@+ e, =n and @ ...@, =m, where (@) =1 ford ?éj..
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Let :
M{B,n) = {meN| Pgin,m)=1};
then
MR, m) = D 1,
Prlnm)zl
that is, [ M(E, n)] is the number of distinet integers m sueh that Pp(n, m)
= 1. Clearly, Pp(n) = > Pg(n,m), the sum being taken over all m in
M (B, n); that is to say, the set of all the pmtltlom counted by PR(n)
iy classified into M (R, n)| disjoint classes.
Lemma 2.1, (i) Prin,m) =1 if end only if hiwm) <

(il) Pg(n, m) =Pr(m, m) if 1< m<n;

(ifi) Pgin, m) = 0 if m is & prime > u;

(iv) Prin,m) =1 &f m is o prime < n.

To prove (1), first assume that 2 -+ ... @y =0, T, ... @y, = m, and
(@, @) =1 for i j. Then h(m) =h{m ... @) = hiw)+ ... +h{my)
L&+ ... @ =n, where {he second equality follows from the fact
that the function & is strictly additive. Oonversely, if h{m) < n, then one
partition of n of the desired formy is 1+ ... +1+4¢%+ ... g%, where
the number of I’y added on is % —k(m). This proves (i).

The proofs of (i), (iii) and (iv) are analogous fo those for Lemma 1.1
(i), (iif} and (iv), and arve therefore cmifted.

An immediate consequence of Lemma 2.1 (i) is the following theorem.

TreoREM 2.2. (i) M(R,n) = {weN| h{n) =4, § =0,1,...,n)

| () [ M(R,n)] = d{0)+ ... +8(n). .

Alternatively, M (R, n) is the set of oll infegers m oblained by mul-
tiplying the summands in each of the pariitions counted by 8(f}, 0 << i< m,
with the convention that 8(0) gives m =1, and d(1) and 5(6) give no mlfues
of m. :
In the next theorem we show that an upper bouncl for Pp(n, m) s
A (), where 4 (n) is the number of partitions of a set with » distinguishable
elements. (A partition of a set is any colleetion of non-empty subsets,
pairwise disjoint, whose union 15 the whole gset.) I is known ([1], p. 97,

exercise 5) thatb
n

An+1) = Z(f:) A ).
el
THEOREM 2.3. Lot m = g?l- -g“;'s. Then, PR(??,, m) < A(s), with
equality holding if and only if m <
To show this, first assume thwi. o= L,
o= d for 1Kj<<h, where gz

o Ly ivm where
@y == M, and (g, @) ml for 4 3 j.
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Then each of the @;’s must be some one of the ¢¥, or else a product of
two or more of them. Thus to each such pavtition of » thers corresponds
a partition of the set of terms {g01,.., %s}; namely, the jth subset con- .
gists of those terms ¢% which are factors of @;, $ < j < . Conversely, to
each partition of the set {gl, ..., g%} there corresponds a partition of n
if n is big enough, that is, if » is greater than or equal to the sumn 3 ([]g5),
where the sun is taken over the different subsets in the partition and
the products are over terms within each subset. Clearly, the partition
of this set which yields the largest sum is the trivial partition with only
one subgel; this corresponds to the smm consisting of the single term
g ... g% =m. The total number of such sums is therefore equal to
A{s), but only those sums which are lesg than or equal to » will yield
a partition of m». This completes the proof of the theorem.

COROLLARY 2.4. Ppim,m) = A(s).

3. Let PQ(n) be the number of partitions of = such that in each
partition there i3 at least one summand which divides the rest. Bince
overy such partition is of the type

oty =0y

95) that
= Ep(d —1).

FIr

o ley, 1I<<iLk,

Let Py(n,m) be the number of partitions of the type

st oo e, =0 and @ .. where

that is to say, Pg(n,m) is the number of partitions counted by Pg(n)
such that the product of the summands is m.
Let

By == W oylmg,, 1<iKFk;

M(Q, n) = {meX| Poln, m)>1};

and, a before let | M (@, n)| be the number of distinet integers in M (¢, n).
Clearly, Py(m) = Y Pg(n, ), the sum being taken over all m in M (@, n).

LaenrvA 3.1 (im) Pylm, m) = p(n—1, m)= 1 if fim) < n—1;
(ib) Po(n,m) = 0 if f(m) > n;
(ic) Po(n m) = 0 if f(m) = n and m has more than one
prime facler;
(id) Pg(n,m) --1 faf flm) =n ond m =p* for some
prime p =
(ie) Pg(n,m) = 1+{w/21 if f(
(ii) Pg(n,m) = Pg(m,m) if L<m K n;
(iii) Pg(n,m) =0 if m is a prime > n;
(iv) Po(n,m) =1 if m is a prime < n.

m) = n and m = 2%
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To prove (ia), we note that if f(m) < n—1 we can take 2, = 1 and
then adjoin any of the partitions counted by p(n —1,m); such a par-
tition will clearly satisty the condition that @ |z;, 1<<i<k. {ib) follows
from the fact that Pgy(n, m) < p(n, m) for all » and m, and p(r,m) =0
i f(m) > n. Now suppose that f(m) == and m = ¢h1- ... -¢’%. Then the
only partitions of # such that the product of the summands is m are of
the form

n=q+.. ”‘F‘g1+gz+--- +g2+... +g_’s+ +QS?

together with any partition obtained from this by replacing two 2% by
a4 one or more times in this sum, if possible. Now, if m has more than

one prime factor, there is no choice of », which will divide all the other -

summands, whence Py(n, m) = 0. If m = p* and p > 3, then #n =p+ ...
-« +p 18 the only partition counted by Py(n,m). If m = 2% then we
have not only the partition # = 24 ... 42, but also the partitions ob-
tained from this by replacing up to [a/2] pairs of 2's by 4%s. This concludes
the proof of {i}. The proofs of (ii), (iii) and (iv) are éssentially the same as

for Lemma 1.1. An immediate consequence of (1) is the following theorem.

TuEoREM 3.2.
() M(Q,m) = {weW| f(2) =34, § = 0,1,...,n—1} UfweS| f(a) = n};
(i) [M(Q,n)| = g(0)+¢(1)+ ... +g(n—1)+1, where
A =card{me8]| f(m) = n}.
To get an exact expression for Py(n, m), we first introduce the length,

restricted product-sum partition function p(n, m, k), namely the numbe-
of partitions of » as a sum of exactly k integers whose produch is m. Clearlyr

pln,m) = ZZ’(%: i, k).

fe=1

TumOREM 3.3. Let m = g1+ ... g%, Then
Boln,m) =p(n—1, m)--pln,m, 1)+ 3 3 p(njd—1, m/@, k—1).
: 1<din aFim ' .

To show this, let ¢ be an arbitrary divisor of n, and let us count the
nuber of partitions for which @, = d. Tf d =1, then the remaining
terms need. only add up o »—1 and have product equal to m; there are
p(n—1,m) of these partitions. If d > 1 and % > 1, then each partition
with & terms for which #, = d must be of the form :

n=a+dy,+ ... Fd-y,,
where the %3 satisfy the conditiong

Yot ooy =n/d—1  and gy ...y, = m/d;

icm
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the nwmber of these partitions iy clearly equal to p(n/d —1, m/d", k—1).
There is also a partition with just one term if # = my p(n, m, 1) is 1 in
this case, and 0 otherwise. This concludes the proof of the theorem.
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