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Homogeneous approximation in completions of
A-fields of non-zero characteristie

by

I. 8. LureAr and MEENAESHT DUeGAL (Chandigarh, India)

In 1941 Mabler [4] developed an analogue of Minkowski’s Geometry
of Numbers in fields of formal power zeries over finite fields; using the
results of this paper, Aggarwal [1] obiained certain results on homo-
geneous approximation in fields of series. Recently, the authors [3] have
been able to extend Mahler’s results to the sitwation when F (T), F {T}
and F,[T] are replaced by k, &, and o,, where & is an arbitrary 4-field
of eharacteristic p = 0, %, iz the completion of & at an arbitrary place w
of & and o,, is the ring of w-exceptional integers of %, i.e., those # in & such
that ord,{x) = 0 for all places v +# wu of L It is the object of this paper fo
prove the results of Aggarwal [1] in the more general situation described
above; in fact, we are able to improve upon one of his theorem by remov-
ing the rather severe condition that ¢ = m-+n—1.

Thus, let % be an 4-field of characteristic p # 0 and genus g; let I,
denote the field of constants of %. Let » be a place of & of degree d and let o,
be the ring of w-exceptional integers; let %, denote the completion of %

at 4. For any element o of ., |ja}, means inf |& — ai,.
aen

TeEOREM 1. Let Lj(%) = Ly{ary, -0y m,n),ul < j<€n, be n linear forms

“in m veriables; then for each indeger

t>£—{— (m-+n)(g-—1) ,
) ~ wmd

the inequalities

|$i|u Q Qiu E[L}('T)Hu § gﬁ; (1 -<. 7/ S; wm, 1 -.{_j *~<-. '77')

~can be solved for a non-zero vector @ in ol ; here

p-[mene=n _m
. na n

(notice that, in view of the iﬂequa']it-y for t, 1" << 0).
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Proof. Consider the %,-lattice in the ('m+ﬂ)_-dimensiona1 space Jrtm
of vechbors (yy ..y @y Y1; ---, Yp) defined by

(1) [l < Q'fn () — 441, < Qtu

the volume of this lattice is g™+ > ¢™t7-1 (onsequently, by The-
orein 1 of [3], there exists (w,y) in p™*", not zero, such that the in-
equalities (1) are satisfied. If » = 0, then [y, < ¢ < 1; a8 y; ixin o, it
follows that each w; is zero; this gives the contradiction (x,y) = 0.

In particular, taking m = 1, we see that

A<i<m,1<j<n);

el *max (|6 z]), < g tHmE-De
L<isn

has infinitely many solution # in o,.
Theorem 1 is best possible in the following sense.

TrmoreM 2. For each pair of positive integers m and. n, there ewisis
a constant y and linear forms Ly(x), 1 < J < n, 40 m variables over &, such
that for each non-zero x in oy,

(max |gl,,)™ (max (L ()l)" > g -
i K

The proof of a theorem like this depends upon the existence of a monic
polynomial in o,[#] of degree I = m+n which is irreducible over %k, but
has 1 distirict roots in %,. Aggarwal [1] used the polynomial constructed
by Armitage in [2] under the condition that ¢ 7-1; the polynomial
constructed by Armitage had an extra property regarding the absolute
value of the diseriminant which we do not need in this context. We con-
struet below a monic polynomial of arbitrary degree 1>1 having coef-
ficients in p,, irreducible over k, and having ! distinet roots in %, . The proof
of Theorem 2 then proceeds as usnal and will not be reproduced here.

Suppose K is a p-field with maximal compact ring B3 let f(X) be
a polynomial in REX] of degree 1> 1 and let a be an element of B such
that f'{a) # 0 and ‘

ordgf’(a) = 8, ordgf(a) =28+¢, o=1.

By Hensel’s lemma, there exists in K one and only one root £ of £(X) such
that

Cordg(f—a} = 8+1;
for this & we have, in fact,

S Ordg{é—a)= 6+op.
We now take

(2) o X)) =(X—mz) ... (X—a2)—1,

iom
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where a,, ..., a; are fixed distinet non-zero elements of o,, and 2 is some
non-zero element of o, such that ¢ = —ord,# is very large. The roots
of f(X) are reciprocals of the roots of
(3) : g(X) = (byw—X) ... (bw—X)— buw' X*
where _ ‘
by = ety 1<i<l, w=#", b=[[a.
4

As el =1, 2], 1, therefore [b], <1, ||, <1 and hence g(X) has
coefficients in the maximal compaet subring #, of k,. Now

g'(b0) = — [ [(B — b,00) - 100% 20?2
7
and therefore, for large enough #
(4) ord,g (baw) = (I—1)t-+1,,
where
i; =‘01‘duH(5j—b,-)
F#i

is independent of z; moreover g(b;w) = — bblw*? 50 that
(5) ord, g(ba) = 20t +1; = 2(I—1)1-+ 24,4+ (24 — 28, 8),

where #; = ord, (bbl) is again independent of z. For large £, 2{ — 28, -1 > 1
and-hence, by Hensel’s lemina, there exists a unique root #; of ¢(X) in &,
guch that o

(6) - ord, (7;—bw) = ([ -+ 1)t — 4, +1;
so that for large ¢ '
(7) . . : ord, {s;) = ord, (b;w).

If n; =7 for 4 % j, then by (8), we geb
ord,{(b; — by) w) = 1+ 1)8 - min (b, 4 —4);

this is impossible if ¢ is large. Thus, for large ¢, ¢(X) has 1 distinet roots
in k,. Now, let & = n;'; then & is a root of f(X), and by (6) and (7),
we have: '

(8)  ordy(f— )= (b4 1)ttt —20rd, (b;w) = (-1t -+

where ;' does not depend upon 2z In ease f(X) is not irreducible over k,
there is & proper subset, say &, ..., & with L <, of the roots of f(X)
which are conjugate to each . other over k. As f(a,2) = —1, a,2 is not
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o root of f(X), and hence
L .
= [[(mz—-&) # 0;
A=1

now & is a polynomial in a,2 with coefficients which are 4+ (elementary
symmetric funetions of &, ..., &) and hence elements of k; these coef-
fieients are integral over p, and hence they are in o, because o, is inte-
grally closed. Consequently & is a non-zero member of o, and hence
ord, (£) < 0. On the other hand, we have, by (8):

ord, (a2 — &) = (I—1)t 14
and for 221 L,
: ord, (a2 — &) = —t+ord, (e, —a;)
so that
ord, (&) = (I—L)t+e,

where ¢ depends only on &y, ..., @;, and not on . Taking {large, ord,(£) > 0,
giving us the desired contradiction. This concludes the construetion of
a polynomial of the desired kind, which in turn, leads to a proof of The-
orem 2.

Let again IL;{z), 1<]
variables @y, ...

<#, be n independent linear forms in m
) Ty of matrix 4 = (@y)pxm- Define

(9) g = max |det ()],

where N runs through all non-singular n X % submatrices of 4, and
(10) _ Q% = maxmjn}det(SS'-“l)lm

where § runs through all ¢ x s submatrices of 4 with s <<#—1, and for
o given § of this kind, 8" runs through all non-singular (s+1) x (s+1)
submatrices of A which “contain” 8. Let pq, ..., p,, ¢ be integers such that
g0, 1<j<n and o2 0. Proceedmg exmﬂy a8 in Aggaawzbl 1], we
ree that the inequalities

{11) o< g ILE@L<sEY (A<

define a k,-lattice of volume q(m“"‘)"”("*'-’l““ 'Lgn) Consequently, by The-
orem 1 of [3], we have _

THEOREM 3. Let Ly, ..., L, be n independent linear forms over kK,
in m variables @, ..., 0y, of matriz A = (ay),yn. Let 6 and o be defined
by (9) and (10}, and let gy, ..., o,, o be integers such that p; == ¢ for 1 <<j < m,
and o= 0. Suppose that

<m, 1<j<n)

m(g—1)
d

(m—mn)o >
then the inequalities {11) can be solved for a non-zero x in ol

(4ot ... Fonl;

icm
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Using this theorem, we easily deduce

THEOREM 4. Let Ly, ..., L, be as above and let wm > n. Suppose there
is mo qnon-gero & tn 0y o which oIl of L, vanish. Then the inequality

(aax | Ly () |, (mas el )™ ™ < gm0 girme
3 7

has infinitely many solutions in oj.
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