On the other hand one can prove that the series
\[\sum_{q=1}^{\infty} \frac{a_q}{q} \sigma_q(n) \]
converges for \(s > 0 \) and that its sum tends to \(f(n) \) as \(s \) tends to zero through positive values. So, if the series (2) converges for some \(n \), its sum must be \(f(n) \).

Added in proof. It has been proved by W. Schwarz that the series (2) actually converges for every \(n \) (Acta Arith. 27 (1975), pp. 269-278).

Received on 20. 3. 1975

A counterexample to a conjecture on multinomial degree

by

LAWRENCE J. RISMAN (Haifa)

Let \(K \) be a field. A polynomial \(p(x) \) with coefficients in \(K \) of the form \(a_0 + a_1x + \ldots + a_dx^d \) with all \(a_i \neq 0 \) is called a multinomial of length \(d \). The \(d \)-tuple \((m_1, \ldots, m_d)\) is the exponent vector of \(p(x) \). An element \(\theta \) in a field extension of \(K \) is of multinomial degree \(d \) over \(K \) if \(\theta \) satisfies a multinomial of length \(d \) and no multinomial of smaller length.

Clearly, \(\theta \) has multinomial degree 1 over \(K \) if and only if some positive power of \(\theta \) lies in \(K \).

The following conjecture is posed in [2]: If \(K \) is a field of characteristic 0 and \(\theta \) is an element of multinomial degree \(d \) over \(K \) so that there exist \(d+1 \) multinomials of length \(d \) satisfied by \(\theta \), \(p_i(x) \), \(i = 0, 1, \ldots, d \), where the corresponding exponent vectors are not proportional, then \([K(\theta^m) : K] = d \) for some positive power \(m \) of \(\theta \).

Let \(\theta \) be a root of the irreducible polynomial \(x^3 - x + 1 \) over the field of rational numbers \(\mathbb{Q} \). We show that \(\theta \) provides a counterexample to the above conjecture. We observe that an element of odd degree \(m \) over \(\mathbb{Q} \) has multinomial degree 1 if and only if its minimal polynomial over \(\mathbb{Q} \) has the form \(x^m - a \). For a proof see [1]. Hence \(\theta \) has degree 3 and multinomial degree 2 over \(\mathbb{Q} \). Moreover, every positive power of \(\theta \) has degree 3 = \([\mathbb{Q}(\theta^m) : \mathbb{Q}]\).

Multiplying \(x^3 - x + 1 \) by appropriately chosen polynomials of degree 2 and 4 we obtain the following additional multinomials of length 2 satisfied by \(\theta \):

\[x^3 + x^4 + 1 = (x^3 - x + 1)(x^2 + x + 1), \]
\[x^3 - 2x^2 - 1 = (x^3 - x + 1)(x^2 - x^2 - x - 1), \]
\[x^3 + 2x^2 + 1 = (x^3 - x + 1)(x^2 + x^2 + x + 1). \]

Thus \(\theta \) satisfies four multinomials of length 2 with exponent vectors \((1, 3), (4, 5), (5, 7), \) and \((4, 7)\), respectively. Hence \(\theta \) does provide the desired counterexample.
Elementary methods in the theory of L-functions, II
On the greatest real zero of a real L-function

by

J. Pintz (Budapest)

1. As it is well-known, the L-zeros play an important role in the distribution of primes in arithmetic progressions and hence many great problems of the analytical number theory depend on the zeros of L-functions.

After the investigations of Gronwall [7] and Titchmarsh [19] zetafree regions were given for L-functions belonging to complex characters. Page [12] proved in 1934 the following theorem:

For a real zero $1 - \delta$ of an L-function belonging to a real primitive character modulo D

\begin{equation}
\delta \geq \frac{1}{\sqrt{D} \log^2 D},
\end{equation}

(1.1)

(1.1) is an easy consequence of the lower bound

\begin{equation}
L(1) \geq \frac{\pi}{\sqrt{D}},
\end{equation}

(1.2)

which we can get from Dirichlet's class number-formula and of the fact

\begin{equation}
L'(\sigma) = O(\log^2 D) \quad \text{for} \quad 1 - \frac{1}{\log D} < \sigma \leq 1,
\end{equation}

(1.3)

which we can prove easily by partial summation.

Thus by the mean value theorem of differential calculus there is a ξ, $0 \leq \xi \leq \delta$,

\begin{equation}
\frac{L(1)}{\delta} = L'(1 - \xi) = O(\log^2 D).
\end{equation}

(1.4)

In 1935 Siegel [16] proved

\begin{equation}
L(1) \geq C(\varepsilon) D^{-\varepsilon}
\end{equation}

(1.5)

for an arbitrary $\varepsilon > 0$,

where $C(\varepsilon)$ is an ineffective constant depending on ε.