It is therefore non-singular; and so \(\varepsilon_1, \varepsilon_2, \varepsilon_3 \) are locally holomorphic functions of \(f_1, f_2, f_3 \) at the point

\[
\begin{align*}
 f_1 &= \rho(a/4), & f_2 &= i, & f_3 &= (1/4, 1/4, 1/4).
\end{align*}
\]

It follows from (5) that the polynomial \(P(\lambda) \) has a zero of order at least \(3L+1 \) at this point. However, its total degree does not exceed \(3L \), whence \(P(\lambda) \) vanishes identically for all \(\lambda \). This contradicts the choice of coefficients made at the outset, and thereby completes the proof.

The same techniques will establish the linear independence over \(A' \) of \(1, \omega, \eta \) and \(\log \sigma \) without any hypotheses of complex multiplication.

References

Received on 19. 2. 1975 (677)

Further applications of Turán's methods to the distribution of prime ideals in ideal classes \(\mathfrak{f} \mod \mathfrak{f} \) by

W. Staś and K. Wiertelak (Poznań)

1. Let \(K \) be an algebraic number field, \(r \) and \(\Delta \) degree and discriminant of the field \(K \) respectively, \(\mathfrak{f} \) a given ideal of \(K \), \(\|a\| \) the norm of an ideal \(a \) of \(K \) and \(p \) a prime ideal of \(K \) (see [2]).

Denote further by \(\mathfrak{F} \mod \mathfrak{f} \) an ideal-class \(\mathfrak{f} \mod \mathfrak{f} \) ([3], Def. VIII), by \(\mathfrak{F} \mod \mathfrak{f} \) the principal class \(\mathfrak{f} \mod \mathfrak{f} \) and by \(h(\mathfrak{f}) \) the class-number. Let \(\chi(\mathfrak{F}) \) be a character of the abelian group of ideal-classes \(\mathfrak{F} \mod \mathfrak{f} \), \(\chi(a) \) the extension of \(\chi(\mathfrak{F}) \) ([3], Def. X) and \(\chi(\mathfrak{f}) \) the principal character \(\mathfrak{f} \mod \mathfrak{f} \).

Denote by \(\zeta(s, \chi) \) the Dedekind Zeta-function and by \(\zeta(s, \chi) \) the Hecke-Landau Zeta-functions ([3], Def. XVII). Denote further

\[
\begin{align*}
 \gamma(n, \mathfrak{F}) &= \sum_{(p \mathfrak{F})^m \sim n, \mathfrak{F} \mod \mathfrak{f}} \log |p|,
 \\
 \psi(\mathfrak{F}, \mathfrak{f}) &= \sum_{\mathfrak{F} \in \mathfrak{F}} \gamma(n, \mathfrak{F}),
\end{align*}
\]

(1.1) \(\Delta(\mathfrak{F}, \mathfrak{F}_1, \mathfrak{F}_2) = \psi(\mathfrak{F}, \mathfrak{F}_1) - \psi(\mathfrak{F}, \mathfrak{F}_2) \).

(1.2)

2. In this paper we shall establish an exact correspondence between the order of magnitude of the expressions (1.2) and the regions in which some \(\zeta(s, \chi) \)-functions do not vanish (compare [8] and [9], Th. XXXVI).

In the following \(C_0, i = 1, 2, \ldots \) denote positive constants independent of \(K \).

Theorem 1. Suppose \(\mathfrak{F}_1, \mathfrak{F}_2 \) denote any fixed ideal-classes \(\mathfrak{f} \mod \mathfrak{f} \), \(\mathfrak{F}_1 \neq \mathfrak{F}_2 \). If \(h(\mathfrak{f}) \geq 2 \),

\[
\prod_{\mathfrak{F}_1 \neq \mathfrak{F}_2 \mathfrak{F} \in \mathfrak{F} \mod \mathfrak{f}} \zeta(s, \chi) \neq 0
\]

in the region

\[
\sigma > 1 - C_0 \eta(\|\mathfrak{f}\|), \quad 0 < C_0 < \frac{1}{2}.
\]

(2.1)
where C_0 is a constant depending on the ideal \mathfrak{f} and on the field K, $\eta(t)$ is for $t > 0$ a decreasing function, having a continuous derivative $\eta'(t)$ and satisfying the conditions:

(a) \[0 < \eta(t) \leq \frac{1}{2}, \]
(b) \[\eta'(t) \to 0 \quad \text{as} \quad t \to \infty, \]
(c) \[\frac{1}{\eta(t)} = O(\log t) \quad \text{as} \quad t \to \infty, \]

and a denotes a fixed number, $0 < a < 1$, then

\[|A(\mathfrak{a}, \mathfrak{H}_1, \mathfrak{H}_2)| < C_4 C_0^{-1} \log(C_0^{-1} |D| \Re t + 2) \exp \left(-\frac{a C_0}{2} \omega(x) \right) \]

for

\[a > \omega^{-1} \left(\frac{24}{a C_0} - \log \frac{24}{a C_0} \right), \]

where

\[\omega(x) = \min \{ \eta(t) \log a + \log t \}, \]

and $\omega^{-1}(x)$ denotes the function inverse to $\omega(x)$, C_4 is a constant depending on a and $\eta(t)$ only.

Theorem 2. Suppose $h(t) \geq 2$, \mathfrak{H} is any fixed ideal class (\mathfrak{m}), $\mathfrak{H} \neq \mathfrak{H}_0$, $0 < a < 1$, $\eta(t)$ is a function satisfying except (a), (b), (c) also the additional condition

(d) \[\eta(t) \leq C_4 \quad \text{for} \quad t > C_4, \]

where C_4 is a sufficiently small positive number and

\[\omega(x) = \min \{ \eta(t) \log a + \log t \}. \]

If

\[|A(\mathfrak{a}, \mathfrak{H}_1, \mathfrak{H}_0)| < C_4 C_0^{-1} \log(C_0^{-1} |D| \Re t + 2) \exp \left(-\frac{a C_0}{2} \omega_1(x) \right) \]

for $a = \varphi(a, C_0)$, where C_4 is a constant depending on a and $\eta(t)$, $\varphi(a, C_0) > 1$, then

\[\prod_{x \in \mathfrak{H}_1 \neq 1} \zeta(s, \chi) \neq 0 \]

in the region

\[\sigma > 1 - \frac{\log t}{400 \log \omega_1^{-1}(\log t \log a C_0)}, \]

\[t > \max \left\{ C_1, \Delta(\mathfrak{a}, C_0, K), \eta_1^{-1}(\exp (-\log h(t))), |D| + 2 \Re t, \right\}, \]

\[\exp \left(\frac{a C_0}{2} \omega_1(\varphi(a, C_0)) \right) = \mathcal{B}(\alpha(a, C_0, K, \eta_1, \varphi), \)

where $\omega_1^{-1}(x)$, $\eta_1^{-1}(x)$ denote functions inverse to $\omega_1(x)$, $\eta_1(x)$ respectively,

\[\Delta(\mathfrak{a}, C_0, K) = (C_0^{-1} h(t) \log(2 C_0^{-1} |D| \Re t + 2))^2 \]

and C_0 depends on C_0 only.

Theorem 3. Under the conditions of Theorem 2, we have

\[\prod_{x \in \mathfrak{H}_1 \neq 1} \zeta(s, \chi) \neq 0 \]

in the region

\[\sigma > 1 - \frac{a C_0}{40} \eta_1^{-1}(\log a C_0), \quad t > \mathcal{B}(\alpha(a, C_0, K, \eta_1, \varphi). \]

Choosing $\eta_1(t) = \eta(t) = 1/\log(1 + t)$, $0 < a \leq 1$, we obtain from Theorems 1 and 2 the following

Theorem 4. If γ_1 denotes the supremum of the numbers γ for which

\[A(\mathfrak{a}, \mathfrak{H}_1, \mathfrak{H}_0) = O(a \exp(-C_4 \log^2 x)), \]

and γ_1 is the infimum of the numbers γ' for which

\[\prod_{x \in \mathfrak{H}_1 \neq 1} \zeta(s, \chi) \neq 0 \]

in the region

\[\sigma > 1 - \frac{C_4}{\log^2 |t|}, \quad |t| \geq C_4, \]

then

\[\gamma_1 = \frac{1}{1 + \gamma_1}. \]

The constants depend on γ, \mathfrak{f} and the field K.

3. There are well known the following properties of $\zeta(s, \chi)$ functions (see [3]).

I. For $\chi \neq \chi_2$, $\zeta(s, \chi)$ is a regular function in the whole complex plane.
This inequality follows from (3.1) and an upper estimate of \(|\zeta(s, \chi)|\) (see [5], Lemma 7).

Lemma 4. If \(s_0 = 1 + \mu + it_0\), \(0 < \mu < 1/40\), \(t_0 \geq 10\) and \(N_1\) stands for the number of roots of \(\zeta(s, \chi), \chi \neq x_0\) in the circle \(|s - s_0| \leq \delta_\mu\), then

\[
N_1 < 1 + \frac{C_1 \log(|A| \Re(T))}{\log(8\mu)}.
\]

This lemma follows from the estimates (3.7), (3.8) by the use of Jensen inequality. The constant \(C_1\) is purely numerical.

Lemma 5. Denote by \(V(T)\) the number of roots of \(\zeta(s, \chi), \chi \neq x_0\) in the rectangle \(1/16 \leq s \leq 1, \quad T \leq t \leq T + 1\). Then for \(-\infty < T < +\infty\)

\[
V(T) < C_{12} \log(|A| \Re(T) |\frac{T}{2}|)^{1/3},
\]

where \(C_{12}\) is a numerical constant.

Lemma 6. There exists a broken line \(L\) in the vertical strip \(1/4 \leq \sigma \leq 1/2\), symmetrical to the real axis, and consisting of horizontal and vertical segments alternately, having the following property: if we denote by \(T_m, m \neq 0\) the ordinates of horizontal segments, so for each integer \(m\) there exists only one such \(T_m = T_m(z)\) that \(m < T_m < m + 1\) and

\[
|\frac{\zeta'}{\zeta}(s, \chi)| < C_{13} \log^2(|A| \Re(T) |\frac{T}{2}|)^{1/3}
\]
holds for \(s \in L\).

If \(1/4 \leq \sigma \leq 3/4\), \(t = T_m, \quad |m| \geq 2\), then

\[
|\frac{\zeta'}{\zeta}(s, \chi)| < C_{14} \log^2(|A| \Re(T) |\frac{T}{2}|)^{1/3}.
\]

For the proofs of Lemmas 5 and 6 see [5] and [6].

Lemma 7. If \(1 < \sigma < 3/2, \quad t > 1\) and \(t > 2\) is a positive integer, then

\[
\left| \sum_{n=1}^{\infty} \frac{\gamma(n, \chi)}{n^s} \right| - \frac{\log^{\sigma} (n/\xi)}{(t+1)!} + \frac{1}{2}\left(1 \right) \sum_{n=\sigma+1}^{\infty} \frac{\log^{\sigma} (n/\xi)}{(t+1)!} \sum_{\sigma+1}^{\infty} \frac{\log^{\sigma} (n/\xi)}{(t+1)!}
\]

where the sum is taken over all roots of the function \(\zeta(s, \chi)\) lying to the right of the line \(L\) defined by Lemma 6.

For the method of the proof see [9], Appendix V.
Lemma 8. Let $R > 0$ and the function
\[f(s) = \sum_{n=0}^{\infty} a_n (s-s_0)^n \]
be regular in the circle $|s-s_0| \leq R$ and satisfy the inequality $\text{Re} f(s) \leq M$ for $|s-s_0| = R$. Then in the circle $|s-s_0| \leq r < R$,
\[|f'(s)| \leq \frac{2R}{(R-r)^2} \left(M - \text{Re} f(s_0) \right) \]
holds (see [4], p. 383).

Lemma 9. Let the series
\[f(s) = \sum_{n=0}^{\infty} a_n s^{-n} \]
be absolutely convergent for $\sigma > 1$, and
\[|a_n| < C \Phi(n), \]
where $C > 0$, Φ is a positive parameter and $\Phi(n)$ is a positive non-decreasing function (for large values of n). Let
\[\sum_{n=0}^{\infty} |a_n| n^{-\sigma} = O(H(\sigma-1)^{-\sigma}), \quad \sigma > 0 \]
for $\sigma \rightarrow 1^+$. Suppose further $b > 1$, $T > 0$, $\sigma > 1$. Then
\[\sum_{n=0}^{\infty} a_n b^{\sigma} = \frac{1}{2\pi i} \int_{c-ir}^{c+ir} f(s) \frac{ds}{s} + O \left(\frac{H a^0}{T(b-1)^\sigma} \right) + O \left(\Phi(2\sigma)^{-1} T^{-1} \log T \right) + O \left(H \Phi(2\sigma) \right), \]
where the constant implied by the O notation is independent of σ, T and H but depends on b only (see [4], p. 376).

Lemma 10. If $\zeta(s, \chi) \neq 0$, $\chi \neq \chi_0$ in the region
\[\sigma > 1 - C_\eta(\|t\|), \]
where $\eta(t)$ and C_η are defined by (2.1), then there exists $T_0 \geq 1$, such that
\[\frac{c'}{c^2} (s, \chi) = O \left(C_0^{-1} \log \left(C_0^{-1} \|\Delta \text{Re} f([t]) + 2\right) \log \|t\| + 2 \right) \]
in the region
\[1 - a C_0 \eta(t) \leq \sigma \leq 2, \quad t \geq T_0, \]
\[1 - a C_0 \eta(T_0) \leq \sigma \leq 2, \quad 0 < t \leq T_0, \]
where T_0 and the constant implied by the O notation depend on $\eta(t)$ and σ only.

Proof. Using Lemma 8 we shall prove that
\[\frac{c'}{c^2} (s, \chi) = O \left(C_0^{-1} \log \left(C_0^{-1} \|\Delta \text{Re} f([t]) + 2\right) \log \|t\| + 2 \right) \]
for $\sigma \geq 1 - a C_0 \eta(t)$. Let $t_0 \geq 0$, $s_0 = a_0 + i t_0$, $1 - a C_0 \eta(t_0) \leq \sigma \leq 2$, $R = a C_0 \eta(t_0)$, $f(s) = \log \zeta(s, \chi)$.

From Lemma 2 it follows that in the circle $|s-s_0| \leq R$ and for $\chi \neq \chi_0$,
\[\text{Re} f(s) = \log \zeta(s, \chi) \leq C_0 \log (\|\Delta \text{Re} f([t]) + 2\|), \]
Similarly, from Lemma 3 we have
\[\frac{c'}{c^2} (s, \chi) = O \left(C_0^{-1} \log \left(C_0^{-1} \|\Delta \text{Re} f([t]) + 2\right) \log \|t_0\| + 2 \right). \]
From Lemma 8 and owing to (3.23), (3.24) we get (3.22). Thus all that remains to complete the proof is to show that (3.20) holds in the remaining part of the region (3.21).

Since $\zeta(s, \chi) \neq 0$ in the region $\sigma > 1 - C_\eta(\|t\|)$, there exists a single-valued branch of the logarithm
\[f(s) = \log \zeta(s, \chi) \]
in this region.

Let $a_0 \geq 0$, $s_0 = 1 + a C_0 \eta(t_0) + i t_0$, $R = a C_0 \eta(t_0) + \frac{1}{2} (1 + a) C_0 \eta(t_0) +$.

Owing to (b) def $\eta(t)$, the circle with radius R lies in the region $\sigma > 1 - C_\eta(\|t\|)$, for $t_0 \geq T_0$ where T_0 depends on a and $\eta(t)$ only. Hence the circle with radius
\[R' = a C_0 \eta(t_0) + \frac{1}{2} C_0 (1 + a) \min \{ \eta(t_0), \eta(T_0) \} \]
and the centre at s_0 is contained in the region (3.19).

Applying Lemma 2 and 3 to the function $f(s)$ and to the circle $|s-s_0| \leq R'$, we get in virtue of Lemma 8 the estimate (3.20) in the strip
\[1 - \min \{ \eta([t]), \eta(T_0) \} \leq \sigma \leq 1 - a C_0 \eta([t]). \]

4. Proof of Theorem 1. We apply Lemma 9 to the function
\[f(s) = \frac{c'}{c^2} (s, \chi) = \sum_n G(n, \chi) \]
where
with \(b = 1 + 1/\log 2, 3 \leq T \leq x, H = v, \Phi (n) = \log^2 n \). From (3.5) it follows

\[
\sum_n \frac{|G(n, \chi)|}{n^n} \leq \frac{v}{\log 2} \sum_n \frac{\log^2 n}{n^n} = O\{v(\sigma - 1)^{-1}\}.
\]

Hence, from Lemma 9, we get

\[
\sum_{n \leq x} G(n, \chi) = - \frac{1}{2\pi i} \int_{b-iT}^{b+iT} \frac{\zeta'}{\zeta} (s, \chi) \frac{\zeta^s}{s} ds = O(vT^{-1}a \log^2 a).
\]

and

\[
\sum_{n \leq x} \gamma(n, \chi) = \sum_{n \leq x} \frac{1}{h(f)} \sum_{\chi} \frac{1}{\chi(\chi)} G(n, \chi) = - \frac{1}{2\pi i h(f)} \sum_{\chi} \frac{1}{\chi(\chi)} \int_{b-iT}^{b+iT} \frac{\zeta'}{\zeta} (s, \chi) \frac{\zeta^s}{s} ds + O(vT^{-1}a \log^2 a).
\]

Therefore, owing to (1.2) we have

\[
A(x, \chi, \chi') = \frac{1}{2\pi i h(f)} \sum_{\chi(\chi') = \chi(\chi')} \left(\frac{1}{\chi(\chi')} - \frac{1}{\chi(\chi')} \right) \int_{b-iT}^{b+iT} \frac{\zeta'}{\zeta} (s, \chi) \frac{\zeta^s}{s} ds + O(vT^{-1}a \log^2 a),
\]

where \(b = 1 + 1/\log 2 \) and the constant implied by the \(O \) notation is numerical.

We estimate the integral in (4.2) by the use of Lemma 10. We define the contour of integration \(L \) consisting of the following parts

\[
\begin{align*}
L_1: \quad & s = b + it, \quad -T \leq t \leq T, \\
L_2: \quad & s = \sigma + it, \quad 1 - aC_0 \eta(T) \leq \sigma \leq b, \\
L_3: \quad & s = 1 - aC_0 \eta(T) + it, \quad T \leq t \leq T, \\
L_4: \quad & s = 1 - aC_0 \eta(T) + it, \quad -T \leq t \leq T, \\
L_5: \quad & s = 1 - aC_0 \eta(T) - it, \quad T \leq t \leq T, \\
L_6: \quad & s = \sigma - it, \quad 1 - aC_0 \eta(T) \leq \sigma \leq b.
\end{align*}
\]

In virtue of I and (2.1) it follows that

\[
\int_{L_1} \frac{\zeta'}{\zeta} (s, \chi) \frac{\zeta^s}{s} ds = 0, \quad \chi \neq \chi_0.
\]

Denote

\[
P(s) = \frac{\zeta'}{\zeta} (s, \chi) \frac{\zeta^s}{s}.
\]

From Lemma 10 it follows that

\[
\begin{align*}
(4.4) \quad & \int_{L_1} P(s) ds = O\left(C_0^{-1} vT^{-1} a \log (C_0^{-1} |\Re f| T + 2)|\log (T + 2)\right), \\
(4.5) \quad & \int_{L_2} P(s) ds \\
& = O\left(C_0^{-1} v \int_{T_0}^{T} t^{-1} \omega^{-1} aC_0 \eta(t) \log (C_0^{-1} |\Re f| (t + 2)) \log (t + 2) dt\right) \\
& = O\left(C_0^{-1} v \exp \left(-aC_0 (\eta(t) \log x + \log t)\right) \log (C_0^{-1} |\Re f| (t + 2) \times T^{-C_0^{-1} - 1} aC_0 \right) \\
& = O\left(C_0^{-1} v \exp \left(-aC_0 \omega(\omega)\right) \log (C_0^{-1} |\Re f| (t + 2)) \log (T + 2)^2 T^{-C_0^{-1}}\right).
\end{align*}
\]

Similarly we estimate the integrals over \(L_4 \) and \(L_5 \). The constants implied by the \(O \)-notation depend only on \(a \) and \(\eta(t) \). Owing to (4.4)-(4.6) and (4.3), (4.2) we get

\[
\begin{align*}
(4.6) \quad & \int_{L_3} P(s) ds \\
& = O\left(\int_{T_0}^{T} |\Re f(T)| \eta(T) \log (C_0^{-1} |\Re f| (T + 2)) \log (T + 2) dt\right) \\
& = O\left(C_0^{-1} v \exp \left(-aC_0 \omega(\omega)\right) \log (C_0^{-1} |\Re f| (T + 2)) \log (T + 2)^2 T^{-C_0^{-1}}\right).
\end{align*}
\]

Putting

\[
T \overset{\text{Def}}{=} \exp \left(\frac{1}{2} \omega(\omega)\right)
\]

we have

\[
\begin{align*}
(4.7) \quad & A(x, \chi, \chi, \chi') = O\left(C_0^{-1} v T^{-1} a \log (C_0^{-1} |\Re f| (T + 2)) \log (T + 2)\right) + \\
& + O\left(C_0^{-1} v T^{\alpha C_0} \exp \left(-aC_0 \omega(\omega)\right) \log (C_0^{-1} |\Re f| (T + 2)) \log (T + 2)^2 T^{-C_0^{-1}}\right).
\end{align*}
\]

Putting

\[
T \overset{\text{Def}}{=} \exp \left(\frac{1}{2} \omega(\omega)\right)
\]

we have

\[
\begin{align*}
(4.8) \quad & A(x, \chi, \chi, \chi') = O\left(C_0^{-1} v T^{\alpha C_0} \exp \left(-\frac{1}{2} \omega(\omega)\right) \log (C_0^{-1} |\Re f| (T + 2)) \log (T + 2)^2 T^{-C_0^{-1}}\right) + \\
& + O\left(C_0^{-1} v \exp \left(-\frac{1}{2} \omega(\omega)\right) \log (T + 2)^2 T^{-C_0^{-1}}\right).
\end{align*}
\]

Under \(C_0 \lesssim 1/2, \omega \gtrsim \omega^{-1}(24(aC_0)^{-1}) \log (24(aC_0)^{-1}) \) and the definition of \(\eta(t) \) — condition (c) — we get (2.2) and Theorem 1 is thus proved.
5. Proof of Theorem 2 (compare [9], pp. 149–157). Let \(t \geq 2 \).

From (1.1), (1.2) it follows

\[
\gamma(n, \mathcal{A}) - \gamma(n, \mathcal{A}_0) = \Delta(n, \mathcal{A}, \mathcal{A}_0) - \Delta(n-1, \mathcal{A}, \mathcal{A}_0).
\]

Hence

\[
(5.1) \quad \left| \sum_{N_1 < n < N_2} \left(\gamma(n, \mathcal{A}) - \gamma(n, \mathcal{A}_0) \right) \exp(-it \log n) \right| \leq \left| \Delta(N_2, \mathcal{A}, \mathcal{A}_0) \right| + \left| \Delta(N_1 - 1, \mathcal{A}, \mathcal{A}_0) \right| + \sum_{N_1 < n < N_2 - 1} \left| \Delta(n, \mathcal{A}, \mathcal{A}_0) \right| \left| 1 - \exp \left(-it \log \left(1 + \frac{1}{n} \right) \right) \right|.
\]

Let \(N_1, N_2 \) be as large that

\[
(5.2) \quad \max\{\omega^{-1}_i (\log t^{(\log t)^{-1}}), \varphi(C_0)\} \leq \frac{N_1}{2} < N_1 < N_2 < N.
\]

But

\[
(5.3) \quad \omega_1 (1 + t^2) < \log (1 + t^2) < t \omega^{-1}_1 (\log t^{-1})^{-1}
\]

and owing to (2.8) we get

\[
(5.4) \quad \left| \sum_{N_1 < n < N_2} \left(\gamma(n, \mathcal{A}) - \gamma(n, \mathcal{A}_0) \right) \exp(-it \log n) \right| \leq C_M N_{\log t}^{-1},
\]

where

\[
M = C_0^{-1} \log (C_0^{-1} |\Delta| \Re t + 2).
\]

The constant \(C_M \) and further constants depend on \(a \) and \(\eta_1(t) \) at most.

Suppose

\[
(5.5) \quad 1 < \sigma \leq 3/2.
\]

By partial summation and (5.4) we have

\[
(5.6) \quad \left| \sum_{N_1 < n < N_2} \left(\gamma(n, \mathcal{A}) - \gamma(n, \mathcal{A}_0) \right) n^{-\sigma} \right| \leq C_M N_{\log t}^{-1}.
\]

We choose

\[
(5.7) \quad \eta \geq \max\{\omega^{-1}_1 (\log t^{(\log t)^{-1}}), \varphi(C_0)\}
\]

and apply the inequality (5.6) for

\[
N_1 = \eta^{-1} 2^j, \quad N_2 = \eta^{-1} 2^{j+1}, \quad j = 0, 1, 2, \ldots
\]

Therefore

\[
(5.8) \quad \left| \sum_{n \leq N_2} \left(\gamma(n, \mathcal{A}) - \gamma(n, \mathcal{A}_0) \right) n^{-\sigma} \right| \leq C_M N_{\log t}^{-1} (\sigma - 1)^{-1} \eta^{-\sigma}.
\]

We choose further

\[
(5.9) \quad \xi \geq \max\{\omega^{-1}_1 (\log t^{(\log t)^{-1}}), \varphi(C_0)\}.
\]

Denoting by \(t \) a positive integer, \(t \geq 2 \) and following [9], p. 154, we get

\[
(5.10) \quad \left| \sum_{n \leq N_2} \left(\gamma(n, \mathcal{A}) - \gamma(n, \mathcal{A}_0) \right) n^{-1+\log t^{-1}} \right| \leq C_M N_{\log t}^{-1} \sigma^{-1} (\sigma - 1)^{-1} \eta^{-\sigma}.
\]

Hence by Lemma 7 and (5.3), (5.9) we get the estimate

\[
(5.11) \quad \left| \sum_{x \leq t^{-1}} \left(1 - \chi(x) \right) \sum_{c \leq \eta(x)} \frac{x^{s-1}}{c^s (c-x)} \right| \leq C_M \eta^{-1} (\sigma - 1)^{-1} \log t,
\]

where \(M = C_0 h(f) M_2 \) and \(\varphi = \varphi(y) \) runs through all roots of \(\zeta(s, \chi) \) lying to the right of the broken line \(L \) from Lemma 6.

Let us suppose now that our theorem is not true. Hence there exist such roots

\[
\hat{c}^* = c^* + it^*, \quad t^* \to \infty
\]

of the function \(\prod_{x \in \mathbb{Z}} \zeta(x, \chi) \) that then

\[
(5.12) \quad \sigma^* > 1 - \frac{\log t^*}{400 \log \omega_1^{-1} (\log t^{(\log t)^{-1}})}
\]

\[
(5.13) \quad t^* > \max \left\{ c^*, \Delta(C_0, K), \eta_1^{-1} (\log (\log t^*)^{-1} (|\Delta| + 2) \Re t^*)^{1/2} \right\}
\]

Putting in (5.11)

\[
(5.14) \quad s = s_1 = 1 + \frac{\log t^*}{100 \log \omega_1^{-1} (\log t^{(\log t)^{-1}})} + it^* = c_1 + it^*,
\]

\[
(5.15) \quad \xi = \exp ((t^* - 1) - 2),
\]

where

\[
(5.16) \quad \log t^* < t^* \leq \frac{2}{3} \log t^*,
\]

\[
(5.17) \quad \lambda = \frac{\log \omega_1^{-1} (\log t^{(\log t)^{-1}})}{\log t^*},
\]

it follows without difficulty that then (5.5) and (5.9) are satisfied. Multiplying both sides of (5.11) by

\[
|\zeta|^{s_1 - c_1} (\sigma^* - c_1)^{|s_1| + 1} = \zeta^{s_1 - c_1} (\sigma^* - c_1)^{|s_1| + 1},
\]
we have

$$\left(5.18\right) \quad \left| \sum_{\alpha} \left[1 - \chi(\mathcal{P}) \right] \sum_{\sigma = 2\lambda} \xi_{\sigma - \tau}^s \left(\frac{s_{\lambda} - \delta_{\lambda}}{s_{\lambda} - \delta} \right) \right| < C_{\tau}^{a^2 - \frac{1}{2}} \xi_{\sigma - \tau}^{1 - \sigma},$$

with (5.13) and \(\tau > C_{\tau}^{a^2} \).

Similarly to [9], p. 156, by the use of Lemma 5, we get from (5.18) the estimate

$$\left(5.19\right) \quad V = \left| \sum_{\alpha} \left(1 - \chi(\mathcal{P}) \right) \sum_{\sigma = 2\lambda} \xi_{\sigma - \tau}^s \left(\frac{s_{\lambda} - \delta_{\lambda}}{s_{\lambda} - \delta} \right) \right| < \xi_{\sigma - \tau}^{a^2 - \frac{1}{2}} \xi_{\tau - \sigma}^{-a},$$

with \(\tau > C_{\tau}^{a^2} \).

We estimate the sum \(V \) from below by the use of Lemma 1. We choose

$$z_\lambda = \frac{s_{\lambda} - \delta_{\lambda}}{s_{\lambda} - \delta} \exp \left(\lambda \left(\sigma - \delta_{\lambda} \right) \right),$$

$$\left(5.20\right) \quad m = \log \tau^*, \quad \mu = \frac{\log \tau^*}{10 \log \omega_{a^2} (\log \tau^* \right)},$$

We have now to determine the number \(N \). It is easily to notice that the region

$$1 - 3(a_{\lambda} - a^*) < \sigma < 1, \quad \left| \sigma - \tau^* \right| < 6(a_{\lambda} - a^*)$$

is contained in the circle \(|\sigma - s_{\lambda}| < 8(a_{\lambda} - a^*) \).

If we denote by \(N_1 \) the number of roots of the function \(\prod_{\sigma = 2\lambda} \xi(s, \chi) \) in this circle and if \(C_{\tau} \leq \exp \left(-(28C_{\tau}^2)^2 \right) \) then from Lemma 4 and owing to (5.13), we get

$$N_1 < \frac{1}{14} \log \tau^*$$

with \(\tau^* > \max \{ T_\lambda, C_{\tau}^{a^2} \} \).

Therefore we can determine \(N \) from Lemma 1 putting

$$\left(5.21\right) \quad N = \frac{1}{14} \log \tau^*.$$

The numbers \(b_j \) from Lemma 1, are in our case of the form

$$b_j = 1 - \chi(\mathcal{P}).$$

It can easily be proved that

$$\min_{1 < j < \lambda} \left| b_1 + b_2 + \ldots + b_j \right| \geq \min_{1 < j < \lambda} \Re \left(b_1 + b_2 + \ldots + b_j \right) \geq \frac{8}{\lambda^2(\pi)}.$$

In virtue of Lemma 1, there exists an exponent \(\lambda^2 + 2 \), that then

$$\left(5.22\right) \quad V > \tau^{a^2 - \frac{1}{2}} \xi_{\sigma - \tau}^{-a},$$

By comparison of (5.19) and (5.22) we get

$$1 - a^* \geq \frac{\log \tau^*}{100 \log \omega_{a^2} (\log \tau^* (\log \tau^*$$

contrary to the assumption (5.12). This completes the proof of Theorem 2.

The proof of Theorem 3 easily follows from the inequality (8.5) stated in [7].

References

INSTITUTE OF MATHEMATICS
OF THE ADAM MICKIEWICZ UNIVERSITY, Poznań

Received on 19. 3. 1975