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1. Inroduction. Let @(z) be a Weierstrass elliptic funection with
complex multiplication and algebraic invariants. Denote by o, @’ 2 fun-
damental pair of periods with Im(w’/w) > 0, and suppose %, #’ are the
corresponding quasi-periods of the assoclated Weierstrass zeta function.
Let logo be an arbitrary determination of a non-zero algebraic number o.
In [2] Franklin attempted to prove that any non-zero linear combina-
tion of the numbers w, o', n, %', 27, loge is transcendental. Unfortu-
nately his proof appears to be invalidated () by an error on p. 205. While it
is true that the exponential polynomial (23) possesses at least simple
zeros at the appropriate points, it seems difficult fo obtain information
about its derivatives and hence about the multiplicities of these zeros.
In this note we complete the proof by using the techniques of £33 (in
fact all the ideas required can be found in early papers of Feldman).

The rerult of Coates in [1] shows that we forfeit ne generality by
agsuming that ¢ is not a root of unity. Accordingly we shall prove the
following theorem.

THRORFM. If o is not a root of unity the numbers 1, w, n, 2=t and logo
are linearly independent over the field A of slgebraic numbers.

This includes the assertion of Franklin, for it was shown in [3] that
the veetor space spanned over 4 by o, &', 5, %' is actually spanned by w
and z alone. At the same time it extends Theorem ITT of [3] by adjoining
the number logo.

Thus we assume the existence of algebraic numbers a, f,y, 4 # 0, 0
sueh that '

(1) aw -+ By +y2ri+ dlogo = 0.

The extrapolation part of the transcendence proof works for any ¢, but
the particular determinant argument used depends on whether 8 =0 ox
§ = 0. Contrary to usual expectations in this type of work, the latter
case iz much easier. :

{*y This was first pointed out to me by D. Brownawell and P. Cijsonw.
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2. The auxiliary function, For independent variables z, 2,, 2, wa put
f=flz, 32-3 %) = ﬂm31+.ﬁ5(wz1)+7"2ﬁ@'22+ dlogo-z,
and for an integer % and a small absolute constant ¢ we write
L =1, =6, = Ly =[], L, =[k*].

Then our auxiliary function ¢ = @(zl, s, 43} 18 given by
Lo Iy Is

6= 5 3 3 Sat

Jgul =0 A0 Ag=0

p(w‘e;. ))11 8‘7-11222 o 3"5f’0

where naturally o° denotes exp(zloge). For a differential operator (or
just operator, for short)

0 = (8/02,)"1(0/02y)"2 (D | 0z5)™

of order
18] = my -1y + My
we put

Al{z,0) = 0™ (2ni} ™ (logo) " 0Dz, 2, 7).

We denote by ¢, ¢y, ---
the numbers appearing in {1). Furthermore we assume ¢ iz so large that
the following lemmas hold for %> ¢. We shall be as brief as possible in

the proofs when these are on familiar lines, our principal aim being rather

to direct the reader’s attention to any unfamiliar features.

Lexaea 1. There are rational imtegers p(d,, ...
absolute values af most &%, such that

A{s+1/2,8) =0

y As)y mot all zero, with

for oll integers 3 with 1< s < k° and all operalors 0 wilth |0] < E.

Proof. Because L; is so small the term ¢ contnbute.s nothing
. of Importance to the estimates. Also

H (L +1) > B,

=08

s0 that the unknowns j}(zo, <oy Ay are sufficiently numerous to be de-
termined from Siegel’s version of the Box Principle.
Next we use the Weierstrass sigma function o¢(2) corresponding to
@(z); clearly
' P21, 20, 7)) = (0'(0-’3’1))31'@(517 gy )

is an entire function.

positive constants depending only. on o,y a.nd.

icm
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Leyms 2. For any B> 1 and any operator 0 with |0] <k we have
Bp(z, 2, 2)] < ko2l
whenever 2| < B

Proof. Again the growth of the exponential terms of @ is negligible
‘beside the growth of the elliptic funections, and the estimate proceeds
on well-established lines.

Lmxmra 3. Suppose g, r, ¢ are infegers with g even, (v, ¢) = 1 and
1<r<g<h, 1<s<k '
Then if @ ie an operator with |0} << k such that A (s-+#/g, 3) = 0, we have
|A (s +7]q, )] > ko ¢ Lase’,
Proof. As ¢ becomes large the terms ¢’ start to make their pres-
ence felt in the size and denominator of 4 (s +7/g, 8) to the extent sug-

gested in the lemma. Ag Franklin points out, the degree of this algebraic
number does not exceed ¢,4% and the lower bound follows immediately.

LEMMA 4. Let n be any inleger with 0 << n <X 7je. Then
Afstrfg, 8) =0
for all imtegers gq,v,s with q even, (r,q) =1
1<<r <g<<2E™8,  1gs koY

and all operators 0 with |9] < k{2

Proof. Thisz is true for # — 0 by Lemma 1. Let m be an mteger
with 0<Cm < [7/¢] such that the lemma is true for # = m. For a proof
by induction it will suffice to obtain a contradiction from the existence
0f a counterexample

A=A +¢]¢, 0} #0
+to the lemma for n = m 1. As usual, |0’} is supposed minimal for this
particular choice of ¢, ¢, 8. We put

Qu = 2K, 8, =B, T, = [kj2");

fle) =0g(z;2,2)

‘then with

we eagily find

Af(s+rfg) =0 |
for all A = (d/dz)" with 0 <t <T,,, and all triples of integers g,7,s
satisfying the conditions of Lemma 4 for n == m. If K,, is the total number
of suck triples, the maximum medulus principle gives in the usual way

‘ . LS? -
lf(z)[ < kcskcs m+1 4-_Tm+1Km
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whenever 2] < 28,,.,. But K, > ¢;'8,,05% and T, > ¢ 'k, whence '
(%) T Ko, > et RiEeEmR L LSY < G77‘71+s’2+m"2:

and so
T+ iE, m,

Fs" -+ ') < 3
From the minimality of |8'} we deduce
4] < 2T 1155
whereas Lemmsa 3 gives the opposite inequality
]Arl >k CBka+l L3'Sm+3-qm+1
The inconsistency of these hounds is readily seen from the calculations (23
together with the inequalities
kQ?n{-l < nglvl-sé‘f&'i-Sms/'B

and
3 10&+4-5uief 7/8--108-4-mef2
LSSm+IQm+i < Ok < Ok b

after recalling that m < 7/s. This completes the proof of Lemma 4.

3. Completion of the proof for & == 0. Let & be the set of points close
to 1/ modulo the periods of g(we,) In the sense of Lemma 1.4 of [3].
For brevity we write &(r) for the poirits of & with absolute values at most #.

Levya 5. For all z in £(5"°) and all opemtm“é @ with |0] < Ly we have
18D(z, 2, )] < e *".,

Proof. Let » =[7/e] in Lemma 4, and let & be any operator of
crder at most IL,. Then with

: flz). = a(}’(z: 2, %)
we find that
Af(s+rjg) =0

for 4 = (d/dz) with 0 <t < T, and all triples ¢, 7, s of integers satisfying
the conditions of Lemma 4 with this value of n. As before, the maximum
modulus principle gives

Ef(z” < 3—Tn+1Kn

whenever [2| < 28,.;. The lemma now follows from the inequalities

ka.’z < 28,“_!_1, Tn+1En ~ Gﬁl k9,’2+el2’

For 0 o=
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and the elementary lower bounds for the sigma funection established in
Lemmsa 7.1 of [3].
For 0. < A4, < Ly we set
Iy Lr Ly

=2 2 2 pl

10 il Jll*ﬂ }..)—0
The functions appearing in F(i;) are algebraically independent because
dlogo == 0, and so by Lemima 1 at least one of the funetions 7(0), ..., F(Lg)
is not identically zero. Let M < L, be the non-negative integer such

that #g, ..., ¥y are all the distinet values of )3 for which F{4;) is not ident-
ically zero. Thus

H(kg) = B3, 21, 22, ) . /3 @(Wzl))zleﬂﬂazngjo-

af
b = M F(r,) s,
#==0
M we putb
ar
Dy) = DV, 81, 8, %) = y

. ﬂ=

v, Joga)” F(r,) a3,

and we define the funections

G g, v) = Gpe, ¥, 21, 29y 75)
by the relations
Gu, 0) =Flr,) {Ospu< M)
Glu, v +1) = (0[02)G (u, ») + 7 loga-G{p, )  (0» < M),
Then Lemma 2.1 of [3] shows that the Wronskian W ~ Wz, 2s, 25) 0f
the functions @®(0), ..., @(M) with respect to 2, is given by

W = Ze*s  deb G, v)
D, M
where

5 = (logg)Marenie (7.—1)

Op p AT

an
= (loga) Zﬁ“ﬂ
frems

It follows without much difficnlty that

Y = W2, 22, 2) = (log U)_M(Mﬂ)"zgﬁleu&sur(z;; 2y, Z3)

a,hd

is a polynomial in @(w2;), 62 and f of degree at most

N oLl
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JFurthermore its coefficients are algebraic numbers of a fixed field and
have sizes and denominators not exceeding kfetls,

Levva 6. For all 2 i &%) we have

(2, 2, 2)f < 6

Proof. Let z be in £(%*%); it is clearly enough to prove that | W (z, 2, 2)|
< ¢—¥74 But the first row of this Wronskian is formed from the numbers
(002} (2, 2, 2} whose absolute values do not exceed 6—#" ag a conse-
guence of the preceding lemma. The remaining entries can be estimated
by noting that since = stays away from the poles of @(we) we have

(v, 2, 2, 23)| < ™"

or any complex number g, such that [¢;—2| =1. We then employ Caunchy’s
integral formula to differentiate with respect to 2, as in the proof of Lemma
210 of [3]. Thus

(W (2, 2, 2)| < cRLak*® g WP o W
Our eventual aim i3 to show that ¥ vanishes identically using only

the inequalities of Lemma 6 and the algebraic nature of its coefficients.
We can write

W:
o

from which we extract the simpler funetions

2 Z q(#q, v1, wg)(@(wzl))“leaﬂi”zzzf’o

N N N
=0 py==0 vp=0

N N
Q(vg) = Qry, 21, 2) = 2 Z 2(¥ey 71, ¥3) (@(_wzﬂ)’lezﬂﬂzﬁ (0 << vy < N)

v1=0 y2=(]

80 that

N N
W= 3 Q(wy)f.

=0
Lemwma 7. For all 2 in (k%) and all v, we have
(Q(n,, 2, 2)| < 6%

Proof. Let z be a fixed point of &(k%*); then z(m) = 2-+m lies in
< (") for all non-negative integers m << N. Also if @ = f(z,#,2) the
relation (1) implies that '

Fle(m), s(m), z(m)) = & +m8
whence the polynomial

N
¢X) = 29(%, 2, 2) X"

I!u=ﬂ
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satisfies
1@ (@ -+mb)| = |¥(a(m), 2(m), z(m))| <6 (0<m< N).
Now if 6 s 0 the numbers z-+m8 are distinet; furthermore
2 +mb| < o] +N 18] < e, k5

and thus the interpolation formula of Lagrange (see Lemma 1.3 of 3]
for a convenient version} immediately gives

12wy, 2, 2)| < (e, BV~ < o=F

for all v,.

The treatment of 2(vy) is roughly similar. We observe that for any
non-negative infegers », m’ not exeeeding N the poin

2(n, m') =1/4-+n/N2+m oo

Lies in &€(k**). For fixed n we put -

N
(v, ¥a) = 2 q(vg, #1, ”2)(@(wl4+”w/N2))’l (0 <9, 9. < N).

v1=0

. Jt follows that the polynomial

N
R(X)= D rin, v) X"
¥op=0

satifieg .

|R(m(m’))'| = | Q(ny, 2(n, m'), 2(n, m))| < e (o<W <N
with

m(?‘h/) = e‘zmis(n,m‘)l
Now
m(m")] =

where

t = exp{—2rIm (o’ jo)) < 1;

in particular the @(m’) are distinet and have absolute valnes at most
unity, while for m, < m; clearly

s 4 H .
I (1) ~ ()| = | (my)| — o {mm,)] = ™1 —3"s 2 03",
Thus again from the interpolation formula we conclude that
iy )l < eff e < a7

4 - Acta Arithmetica XXXT.%
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for all vy, v,. Finally on eonsidering the polynomial

N
29.’('"01 vy, 79) X

vi=0
at the points

X = plw/ +ne/N)
it is evident that

O N)

1g(zgy 725 72| < G_Iﬂw 4
for all vy, #, #o- From the algebraic properties of these coefficients recorded
earlier this immediately forces their vanishing and therefore the identical
vapishing of ¥.

Hence W also vanishes identically, which means that there exist
functions H(») = H(y, #,, 2,) independent of 2, and not all zero, such
that

A
D H)®() = 0.

¥=0

Thus we have

M
ZK(M)F('»-M) o'H = ()
‘where
M
(3) E(n) = E(u, 2, 5) = ) (rlogoy H(x).

But since ¢ is not an algebraic function of z;, this compels the vanishing
of the coefficients K (u)F(r,) and hence of all the functions K (u). Now
to (3) is associated a non-zero Vandermonde determinant. Therefore all
the funetions H'{») are identically zero, and this contradiction coneludes
the proof of the impossibility of (1) when 0 == 0.

T4, Completion\’of the proof for # = 0. All we require from Lemmu 4
- are the egquations

(4 OP(s+1/4, 8414, 5+1/4) =0

for all integers & with 1

< 8§ < Ly +1 and all operators & of order at most
3L. Recall that :

Ly
= ZF(AS) o™,

Ag=0

icm
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Now
flz,2,2) = 5(@‘([02)_1]2)
has period 1; thus F{2;, 2, 2, 2) also has period 1 and it follows that for
any integer s
Ly
ZFH:«: 1/4 1/4,1)4) ’-3(s+1]4)

i=0.

B(s+1/4, s+1/4, s-+1/4) =

Therefore from (4) with the identity operator & the polynomial
S(X) = > Plha, 1]4, 1[4, 1/4) X"

13:0
of degree at most L, satisfies
S =0 (1< LyL1).
Since ¢ is not a root of unity the numbers 0% are distinet and so

(i, 1/4, 1/4,1/4) = 0

for all Z,. Now assume that m < 3L is a non-negative integer such that

(5) O (Jg, 1/4,1[4,1/4) = 0

for all Z; and all operators 4 of order at most m. Let |6) = m +1; then
for all integers ¢ as above

Lg

D 8 Plh, 14,114, 1/4)013(s+114) _

iz=o

dO(s+1/4, s+1/4,841/4) =

and a similar argument with (4) for 8 = @ shows that
0 F(A,1/4,1/4,1/4) =0

for all ,. Hence by induaction (5) holds for all 1, and all operators ¢ of
order at most 3.1. '

The final contradiction now follows from a reformulation of the
original argnment of Baker. We can write F(4;) as a polynomial P(4)
in the functlon&

fo= &, To = Flzas 22, 2).

The Jacobian mairix of fi, f,, fi with respect to 21, 2,2, at 2, =2, == 2
= 1/4 ig rveadily verified to be triangular with diagonal elements

fi = ploz),

w@' (wft), —2=, dloge.
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It is therefore non-singular; and so 2y, 2., % are locally holomorphic
functions of fr,fi,fo at the point

hi=p/t), fi=i 5 =f(1/4,1/4,1/4).

It follows from (5) that the polynomial P (1) has a zero of order at least
3L-1 at this point. However, 1ts fotal degree does not exceed 3L, whence
P(Js) vanishes identically for all ;. This contradicts the choice of coef-
ficients made at the outsel, and therehy completes the proof.

The same techniques will establish the linear independence over 4
of 1, w,n and loge without any hypotheses of eomplex mmultiplication.

References

t1] J. Coates, The transcendence of linear forms in ay, wy, 1y, 7y, 278, Amer, J. Math.
93 (1971), pp. 385-397.

[2] R. Franklin, The tramcéﬂdeme of linear forms in w,, wz,nl,m,@ni,log‘y,
Acts Arith. 26 (1974), pp. 197-206. i

[8] D.W. Masser, Eiliptic Functions and Transcendence, Lecture Notes in Mathe.
matice No. 437, Springer-Verlag, Heidelberg 1975,

Received on 19. 2. 1975 (677)

im“ ACTA ARITHMETICA

XXXT (1976)

Further applications of Turan’s methods
to the distribution of prime ideals in ideal classes mod §

by
W. 8748 and K. WIERTELAK (Poznan)

1. Let K be an algebraic number field, » and 4 degree and discrimi-
nant of the field K respectively, f a given ideal of K, Na the norm of
an ideal a of K and p a prime ideal of K (see [2]).

Denote further by o (mod f) an ideal-class mod § ([3], Def. VIII),
by &, (mod §) the principal class mod § and by #(f) the class-number.
Let %(##) be a character of the abelian group of ideal-classes 2 (mod f),
«{a) the extension of y(3#) ([3], Def. X) and y, — the principal character
mod f. ‘
Dencte by {x(s) the Dedekind Zeta-function and by [{s, ) the
Hecke—-Landau Zeta-functions ([3], Def. XVII).

Denote further

yin, #) = Z log Ny, |
(Btp)" e p M (m0d )
(1.1) pla, #) = Dy(n, #),
) T
(1.2) L Aa, ey, Hy) = (e, ) -y, K.

2. In this paper we shall establish an exact correspondence between
the order of magnitude of the expressions (1.2) and the regions in which
some {(s, ¢)-functions do not vanish (compare [8] and [9], Th. XXXVI).
In the following C;, { =1, 2,... denote positive constants independent
of K. .

THEOREM 1. Suppose 3y, #, denote any fiwed ideal-classes (mod f),
#y E . If RN =2, ' '

L{s, %) # 9
2 2(3y )5 2 9%9)
n the region _ ‘
(21) o> 1=Con(itl), 0<C,<},



