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Ranks of 3-class groups of non-Galois cubic fields *
by
Frang Gerta I (Austin, Tex.)

1. Introductiom. In this paper we describe how to gomputbe the ranks
of the 3-class groups of non-Galois cubic extension fields of the rational
numbers Q. The resnlts of this paper may be considered as generalizations
of the results in [5] on pure cubic fields and as analogs of classical results
on 2-class groups of gunadratic fields.
~ Some ofther mathematicians who have recently invegtigated 3-class
groups of non-Galois cubic fields are G. Gras, S. Kobayashi, and T. Calla-
han. Tn [6] Gras finds upper and lower bounds for the ranks of the 3-class
groups of non-Galois cubie fields, and the results of oyr Ppaper are exten-
sions of his results. In [10] and [11] Kobayashi treats the pure cubic
case, and in [3] Callahan considers non-Galois cuybie fields whose normal
closure i¢ unramified over the guadratic subfield of the normal closure.
We thank these mathematicians for sending us preprints of their work.

We conclude this seetion with some remarks on notation. In general
we use multiplicative notation for groups and modules, and the aciion
of & grouwp or a ring on a modnle is expressed by exponentiation. Tarther-
more (#°)" = 2°°. Results from class field theory that are quoted without
references can Dbe found in [1], [4], of [12].

2. Preliminary results and first main theorem. Let () denote the
field of rational numbers; let T be a non-Galois cubic extension field
of @; let K be the normal closure of Io; and let F be the quadratic field
contained in I. Let ¢ be the generator of Gal(K /L), and let 7 be a gen-

cerator of Gal(K/F). Then Gal(K/Q) is generated by {o, v} subject to the

relations o* =1, v¥ =1, o7v = 7%. Note that ¢/F generates Gal(F{Q).
We shall abbreviate Gal(K (L) by (&), Gal(K/F} by (x>, and Gal(XK Q)
by <o, 7). '

Let H be an abelian 3-group. Then H may be viewed as a module
over Z,, where Z; denotes the ring of 3-adie integers. We define

rank B == dimp, I B, s

* This researcll was supported by NSF Grant GP-28488A3.



308 F. Gerth XIT

where F, is the finite field of three elements. If H is also 2 Zy[(o)] module,
we define H*T ={ae H|a* =a} and H = {acH|d =a~'}. Then
H =~ HYxH (cf. [5], proof of Lemma 2.1).

I# M is any finite algebraic extension field of Q, we let U, denote
the ideal class group of M, 8, denote the 3-class group of M (i.e., the
Sylow 8-subgroup of (), and Ay = {ae 8y @® =1} Our goal iv to
compute rank Sz, where L is a non-Galois cubic extension of €. Since
rank 4, = rank 8y, it suffices to compute rank 4 7.

We note that the patural map S;—8g, which is induced by the
inclusion mapping of ideals of L into ideals of K, Is injective since 3 ix
relatively prime to [E : L] == 2. So we may consider §; as a subgroup
of 8. Furthermore 8¢ =2 8 X Sgand 8y = St (cf. [B], proofs of Lemmas
2.1 and 2.2). Similarly dgx ~AFx A and A; = 4%.

Let NttsK—-)-.SF (resp., N,: 8g—~>8p; resp., N,.:Sz-+So) be the
map induced by the norm. map from ideal: of K to ideals of I (rvesp. L,
resp. Q).

LmEmma 2.1. ¥, (8% = {1}

Proof. Let ae Si. Since 8% is an abelian 3-group, there is an element
be 8% such that U* = a. Then

N.(a) = al e
T

- b1+r-}-72+ﬂ+57+572 = Na’.,(b)ﬁ SQ = {1}‘

— (b2)1+r+12 = (b1+u>1~l-r+12

S0 N.(S) ~ {1

Leyma 2.2. 87 < 8%, cmd hence Ay < Ag.

Proof. If ae 8, then '™ = N, (a)¢ SQ = {1} since N 1SF 8p—=+8g.
80 ¢’ = a7, and hence ae SR

Let B = {acdy| o™ =1}, If ae B, then

(a° )(1-1)2 _ (aa) —ampr® a,c—2w+at'" — a'a~2z ot a’(l—:212+~r)r:

= gli—Pav—atie __ 1

since a~" =1 and «* =1. So @ eB and B is a Za[<a>] module. So
B Bt x B~

LeMma 2.3. Af = B,

Proof. Clearly B" < Af. Now let acd%. Since a° = a, it suffices
to show that ae¢B, Now

a'(1~r)2 —_ a1—2'r+1:2 - a1+f+12—3r pERENS

= @

gince o’ = 1. Alko a**™* = ¥, (a) e 85 = Sz (by Lemma 2.2). 8o a8z
On the other hand,
(al=?y =

=a,

P a 2a

0—20‘12+ar. -

=&
—2':'2+r .

(aJa') 1—2':2-|- [

1 7)2 4 37— 377 1—2)2
2= _ -
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which implies a® e 8%,
that ae B.
Remark. We now have

rank 8y =rankd, =rank A4

Hence a®~?"¢ 8NS5 = {1}, which implies

(2.1) = rank B+

and ]
Bt ={ac8g| & =1, a7 =1, and o = a}.

Let w: B—B be defined by w(a) = a'~" for a¢ B. Let ae B*. Then

(al—r)u —_ a,cru-:cr — aa—ar2 — (ad)l—-rz — al—-z2 — (al-—r)l-{-r.

" Now

l%(ZL—-L')E — 1__}(6&1—1)1«—«': =1 :b_a,l—r — (almr)r-
So

(@)W = (a'") = (a’")"'  gince (&P = 1.

Hence for ae BT, (¢*7)° = (a’~")"!, which implies that w(B*)c B~.
A similar argument shows that o(B7) = BY. Let D =kero. It i3 easy:
to see that D is a Z,[{e>] module; hence D = D' x D~. Then we have
an exact sequence

1Dt Bt o (BH)—1.
Since these groups are elementary abelian 3-groups,

(2.2) rank B* = rank O 4rank o (B*).

We note that ow(B*)) = (BHE-7 which

imply that o(Bt) < D™.
LEMMA 2.4. o(BT) = {ae D[ a = """ for some be Sg}.
" Proof. Suppose ae D~ and @ — b~ for some be Sg. Let b, = pi0+?
¢ 8%. It suffices to show that @ = b}~" and ble B*, sinee then a = w(b,).
Now

— {1} and w(B*)c B,

bi—t — bi(_l—;-a')(lﬂr) = b(1—1+o'——cn:){ e b(l—-n}«o‘»—-ﬂa)}

= pli=mri—elk _ p-al+(4nelt g +0 4ol

Since @< D™, then a* —~a, @’ =1, and & = a~ % So

a7 = 0¥ = g™ = a.

Then b~ = al*t' = g, Tt remains to show that b, B*. Since b,¢ 8%
and B* = A% (by Lemmma 2.3), it suttices to show that b = 1 (L., byeAx).
Now : ,

em b}-—21+12

T —1)2
= p{-7

1=a- o Bl
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Smce bye 8%, Lemma 2.1 implies bl““’2 = N.(b} = 1. 801l = b1 3% which
implies »? = 1.
Let oD = {ae¢ _Dl N (@) ==1}. Since

N, (a%) = (a®)7 = g™+ (W (a))" =17 =1

for each aeyD, then ,D i3 a Z[{o>] module. So D =

- Lemma 2.5. DY = oDt and w{B*) < 4D,

Proof. By definition 5.D* = D*. Now let ac D™ 5 8%, By Lemma
2.1, N (a) =1 So aeND+, and hence DY < ,D*. So Dt = , D+, Now
we prove that w(B™) s xD~. Bince o(B*) < D™, it suifices to show
that N (a) =1 for each ae w(B"). So suppose ac o(B*). Then a4 = b*~"
for some be BY, and .

Fda) = @it e

D+ %y

P77 =1  gince 7 =1.
PRroposITION 2.6.
rank 87 = rank D —rank .0~ (D~ ASET.
Proofl. |
rank 87 =rank BT  (by equation (2.1))
= rank D7 4-rank o (B*)
= rank DT Lrankw(B7)

(by equation (2.2))
(by Lemma 2.5}.
Since N.D*I is an elementary abelian 3-group, the exact sequence

lo>w(BTY=yD 4D o (B =1
implies that ' '
rankw(BT) = rank D~ —rank , D~ /o (B*).

Sorank 8y = rankND+ +rank x.DT —rank x D™ /w (B"). Since y.D = .DF x
XyD7, then

rank D == rank , D+ “+rank D™,
Also 0(BY) = yD N8 by Lemmas 2.4 and 2.5, Hence
rank 8 = rankND~—mnkND [y D 8.

Previously we have defined a map N,: 84— 8p, and we now define N

Uz—0y in the same way, namely the map induced by the norm map
from ideals of K to ideals of F. Let

NC'K = {@ely| Nr(a =1} and N;S'K = {ae 8g| N (a) =1}.

It is easy to see that 0% < Cy and B85 s w8y Lett denote the number
of primes of F which ramlfy in K. By [7], Section 1, yCOg/C¥™ = {1}

i canonically isemorphic to 5Ox/
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it t =20 o0r 1. Bimilarly ySg/S8F* ={1}if t =0 or 1. If 1> 2, we let
Pis .-, P; be the primes of F which ramify in K. Let ¢ = Gal(X /F),
and let X = @&x...x & (a product of -1 copies of @). For 1 <4 Lt -1,
we define a map y;: F -G (where #* = F —{0}) by

{2.3) vi(2) = (#, K[y,

where ( , K/F), is the norm residue symbol. Then we define : F*—X by
(2.4) w(@) = (p1(2); ooy o (7).

Let '

(2.5) Y = Xjp(Zy)

where Hp denotes the group of units of . Let Py denote the group of
principal fractional ideals of F. Then g induces a homomorphism #’:
Pp—>¥. Let Rgp: Ixg—Ip be the norm map from the group of ideals I
of K to the group of ideals I, of F. Let ylg = {Welg] Ngyple P;—,}
Then we have a map

(26) ’I,D,OgtK/F! NI.K_>'Y

which induces a homomorphism A: yCg-+¥. Furthermore A induces
an isomorphism 2': 5O /CE X Y (ef. [7], Theorem 1). Now ¥ is an el-
ementary abelian 3-group. 8o 4 Cr/CE ¥ it an elementary abelian 3-group.
Since 58x/8i " is the Sylow 3-subgroup of O /0%, then Sp/S%
Cx” Bo A ySg/8E"3Y is an iso-
morphism. Since n8z/S%z " and ¥ are elementary abelian 3-groups, they
may be viewed as vector spaces over the finite field F;. Then the map
A ig 8 vector space isomorphism which is indneced by norm residue symbols.
It M iz any number field and 9 is an ideal of M, we define cl, ()
t0 be the ideal class of U in the ideal class group Cye. Now let %,, ..., U,
be ideals of K such that the subgroup of O generated by clg(2M), ...
ooy Clg (W) i D7, Then clg(W)® =1 for 1 <4< s. Let By be the free
abelian group generated by U, ..., A, in Iz, and let Vi = By /RL.
Then the map Vg—x D~ defined by Wescl () is surjective. We now
consider the maps

VK%N.D—ﬁNSKﬁ'NSK/Si?T'ﬂ' y,

where the first map is surjective; the second map is the natural inelusion;
the third map is the natural projection; and the lagt map is the ise-
morphism 1. We let u: Vg—Y denote the composition of these maps.
Then w is a vector space homomorphism over F,, and with an appro-
priate choice of bhases, the matrix of w is

[(Reyp Wy, K[ F)p Imody (Hp), 1<i<i~1,155<s
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{ef. equations (2.3) through (2.6)). We note that the image of x in ¥ is
isomorphic to (y D -SFI/SE" =2 x D (D" N8ET). So |

rank y D™ [ D™ N85 = rank of the matrix [(Re,xW;, K/ F)y, Imod p(Ey)
for 1et~1, 1<i<s.

We also note that

D D NASET) = (D ST SET S y8x /8" = {1} when ¢ =0 ort.

So

rank y D™ [(y DT NSE) =0 it t=0 or 1.

We smnmarize the results of this section in the following theorem.

TuroneM 2.7. Let L be a non-Galois cubic ewtension of Q. Let K be
the normal closure of L, and let F be the quadratic subfield of K. Let v be
a generator of the cyclic group Gal (K [F), and let ¢ be the generator of Gal( K /L).
Let 8¢ (resp. S, resp. 8y) be the 3-class group of K (vesp. L, resp. F). Lot
N, 8g—=8p be the map induced by the norm map Ngp from ideals of K
to ideals of F. Let

P ={ae8g| ¢ =a and N (a) =1} and xD™ = {aeyD| " = a™"}.

Then .
tank 8y, = rank D —ranky D™ /(5 D™ N8

Now let ¢ denote the number of ramified primes in KjF. If t =0 or 1,
rank Dy D" NSY™) = 0. If 12, let Py, :.., P, be the prime ideals
of F which ramify in K, and let Wy, ..., W, be ideals of K whose ideal classes
generate D7, Lot NgpW; = (wy), where ;e F for 1<<i<s. Let By be
the growp of units of F, and y be the map defined by equations (2.3) and (2.4).
Then : '

vank D[y D~ NSET) L rank{[(ay, K(F),1mod y(Hn}

where [(w;, K[F), ] is the (1—1) X's matrin (over the finite field Fs) whose
#j-th element is the norm residue symbol (m, K [,

‘3. Other main theorems. Lot notations be the sume as in Seetion 2.
We want to describe how fio compute rank D and find a set of idealy
Ay, ..., A, whose ideal classes generate ;D7 Let 8% = {ue §x| ¢° = a),
Then yD = 8. If H is a finite group, we let |H| denote the number of
elements in H. It is known (ef. [8], Theorem 13} thai

{3.1) 180 = |8y .gt=2+g

where

(3.2) q - 1 if ) ce .N‘K[F_Kxj
0 if  e¢ NgpH”

icm
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where Ny is the norm map from K® to 7%, and where ¢ is specified as
follows:

(i) if F is an imaginary quadratic field = Q(¥—3), then ¢ = 1;

(ii) it F =0(V—3), then e = ¢, where ¢ is a primitive cube root
of unity (e.g., & = ${—1+V=3));

(iii) if # is a real quadratic field, then e iz the fundamental unit
of 7.

Let b = [Op/Sz|, and let T be the subgroup of 8% generated by Sz
and clg (P, ..., el {PY), where P, is the unique prime ideal of K such
that T = p;, T <4< ¢ Then (ef. [3], proof of Theorem 13),

(3.8) 17| = |8pl 3010

where

(5.4 " = 1 %f e N By
0 if e¢NgpBg

and wheve Ej is the group of units of K. So T = 8% unless ee NgypE®
and e¢ Ny Py, in which ecase |S@| = 3-1T|, since then ¢ — ¢;+1.

It is easy to see that 7T is a Z,[{o}] module, and hence T' o~ I'* x 1"~
We shall now find generators for T and T~. Lebt Py, ooy Py Pusay o o) Puto
be the rational primes which ramify totally in L/Q, and suppoge Py, ..., Py
decompose in F and Py.q, ..., Py, either remain prime or ramify in I\
(We remark that 3 is the only prime which can ramify totally in Z/Q
and also ramify in F/Q.) We order the prime ideals p,,...,p, of F 50
that (p;) = Papy Pae L0F 1< and so that p.,.; i’ the unique prime
of ' above (P, for 1 <j< o (We note that ¢ = 2u-+».)

Teyvma 3.1. TF is generated by

("lK(EB;K'BE) 3ot C’]'K(SBgu—ISBZ’u) H C]'K(q}gu+1) 7 e ["1.."1'_( ;Lu-»{-v) .
T~ s generated by o '
Sp and GIK(S‘B? ngh)a cony Clg( T’:u—l '.2’5:} .

}16’!‘6 ;1: = EGF/SF’['
Proof. With our ordering of the prime ideals py,..
that

. Py, WO See

4

Phi1 =0y ond P =y, for  l<isw,

b

and

A

Pougs = Paurg TOr  1<j<o,

Then BI;_, = By and Py, = Py, for 1 < i<, and P,y = Pyyyy for
Li< o So

( 13 h')ﬂ' ' ;;'....1 — it :’l . for

i1 P2i) T Mg 2i—142¢

A

1S u,
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and
. ( Z;u+j)a = %gu-i-j for 1<ji<o.
Hence
elg( );- o Clg( ;L'M.-—-l vu) GIK(EBQMH), . 701K(2Bf1u-a el

Now Lemms 2.2 implies 8p < I, Also

iy —1 oy 8
2@—1 3? = z%%;f—-l = EBzz--—l 25) 1‘3?5-1 M
SBM 1 :;.17." pzz‘—lpzz "“(S:Bz'i-l 2;) (pz)
for 14 < u Since (p;) is a pmnmpal ideal,

3 zk) a

Ji 20y —1
el (Pay_ 1 Ps; ; ")

== Gl ( oi—-1 408} 3
and hence
1<t u.

?CIK(g’BZu-l 2u) le(%zu 1 33)

Ol (P Py T~ for
Since S, and (PR, cle(PIPPY, .-

ol (Prura)y vy g (Pl ) generate T, then our oalculatmns ghow that
CIK ‘lghiu‘f' !CIK($“u—1 21&) CIK(%zu-ial) JG]K( 2u-{ 17) genera‘te T+! and.

Sp and clg (PIP3Y, ..., clg(PE, B2 generate T,

We recall that ;S’“) = T unless ¢¢ NgpH* and e¢ Ny Ex, in which
case |8®| =3-|T] and ¢ =g +1 (cf. equations {3.1) through (3.4)).
We first consider the case 8% = T. (80 g, = ¢.) Then .0 = {aeTl N.(a)
= 1} The map NJT: TS produces an exact sequence

Iy DTN {T)—1
Eb];ld hence . |
(3.5) Dl = |T|/\F (T
Bquation (3.3) specities |T'|, but we still need to compute |N¥,(T)|. By

Lemma 2.1, N (T%) = {1}. So ¥ (T ) N.(T™). Wenote that ¥ (85) = 8%,
and

Nr [clﬁ "1.-— th}] == GlF pm-—l'p;?) for 1 g: 3 *": .
We let '
(3.6) Z = subgroup of 8y generated by clp(pipi®), ..., eln(ph,_,p2).
Then - '

F(T)| = 1852] = [(83-2){8% 1 18%] = |BZOS)] 1.
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Using this result, equation (3.3) with ¢, = ¢, and equation {3.6), we get

|8 p|-3!*+4

D = .
L 22 OB 155,

Let r = rank 8y = rank §7/8%, and 2 = rank Z/(ZnS%). Since 8583, and
Z{(ZNn8%) are elementary abelian 3-groups, I85/8%| =8 and |Z/(Zn8%)]
= 3% We also note that 0<z<{min(r,u). Then |yD| = 8™+He-=—2
Since nD is an elementary abelian 3-group, rank D =r4t4g—2—2.

In the case |8P] = 3|7, we can vepeat the ahove arguments with
yPNT replacing »D and with ¢ = g¢—1. Then rank(xDNT) = r+t+
+g—2—3. Now 82/T is a cyclie group of order 3 generated by the image
in 8T of some ideal class be 8%2. By [6], proof of Proposition 2, b can
be chosen from (8§)* = {ae 8% @ = a}. But then ¥, (b} =1 by Lemma
2.1, and hence be xD. So rank yD = 1-trank(yDnT), and we again
obtain the formula

rankyD =y -titg—2—2.

We summarize our results in the following
PrROPOMITION 3.2. Let notations be as in Theorem 2.7. Then

ranky D =r4-i+g-—2—2,

where v = rank 8z; t = number of vamified primes in E/F; ¢ =0 or 1
as specified by equation (3.2); and z = rankZ (ZN8%), where Z is defined
by equation (3.6). Furthermore 0 < 2 < min(v, u), where u is the wumber
of rational primes which ramify totally in L/Q and decompose in F|O.

CoroLLARY 3.3. If K/F is unramified, then rankyD —#-+q—2.

Proof. Since K[/F is unramified, theni = 0. Furthermore, 0 < #
< # < f, which implies 2 = 0. So Proposition 3.2 gives rankyD = ¢4 q—2

THEOREM 3.4. L6t notations be as in Theorem 2.7. If K |F is unramified,
then rank 8§, = rank S, —1.

Proof. By Corollary 3.3, rankyD =r-+g--2. By Theorem 2, 7,
ranky D™ (4 D" NBET) = 0 since ¢ = 0. Hence Theorem 2.7 and Corollary
3.3 imply that rankSy =r+g--2 =rankS8p-+g—2. So it suffices to
show that ¢ = 1. From equation (3.2), we must show that ec Ny pK=,
where ¢ is the unit of I that is specified immediately atter equation (3.2).
Leti p be any prime of F and P a prime of K above p. Let F, (resp. Hg)
be the completion of & at p (resp. of K at P). Then Ky/F, is unramified.
It is well known that if ¢ is a unit of F, and Ky/F, is unramified, then e
is the norm of & unit of Ky. 8o ¢ is a “local norm” at each prime p of F.
Since K [F is a cyclic extension, then ¢ ix a “‘global norm™; that is, ¢ N g, pn K",
which is what we wanted to prove. . '
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Remark. Theorem 3.4 proves a conjecture of Callahan [3].
We now return to the general case {Theorem 2.7} and describe how
to find ideals %y, ..., A, of K whose ideal classes generate ~xD7. We note

that y D~ = {eeT | N (a) =1}, and Lemma 3.1 shows that T~ iz gen-
rated by Sy and elr(EB“ 2 elA( BB, Let y8p = {we Syl
N (a) = 1}. Since N,(a) = 1““ = ¢* for ae Sy, then S8p = {te 8yl

a’ = 1}, and. hence xSy is an elementary abelian 3-gronp with ranky Sy
= rank §p == 7. We let 2y, ..., %, De ideals of I whose ideal classes gene-
rate ySp- Next we let /1 be the subgroup of T~ genemte(l by ey SJ}"?B”L
ooy Sl (B P2, and we let [' = {bed| N.(b)e 8%} From these defi-
nltlom A? = I Also since P? = p, for each 4, then /1 is generated by
ideal classes arising from Sp. Furthermore N,.(4) == % (which is defined
by equation (3.6)), N.(I) = Zn 8%, and |4/T' = |Z/(Zﬁ.8‘},w}| = 3% We
let by, ..., b, be ideals of K whose ideal! classes belong to [* and whose
images in I'/A® generate I'jA*. (Note that we may choose the ideals so
that y = u—=z.) Since N, [clg(b;)]e 8%, there exists an ideal ¢, of ¥ wneh
that N.[elg{B;)] = elp(c}) = N [clg(g}]. Then N, [elg(D; (] =1 for
1<i<<y. Welet U, = byey ' for 1<{é <<y, and we let s = r-+y. Then
Wpy ooy Wy Wepgy -y Ay ave ideals such that cly (W), ..., clx (W) generate
~D7, a.nc"L they can be used in Theorem 2.7. In %ectmn 4 we shall use
this procedure for finding %y, ..., Ls-
© Next we devcribe how to compute ¢ in the general case (c¢f. Propo-
sition 3.2). From equation (3.2}, ¢ = 1if ¢e Ng;p K%, and ¢ = 0 if e¢ N 1 K7,
where ¢ is the unit of I specified immediately after equation (3.2). So
¢ = l<«¢is a global norm <-¢ is 2 loeal norm at each prime of ' (since K /F
is cyclic) <»e is a local norm at each prime p; of # which ramifies in K
. (since local units are loeal normng at unramified primes)<-each norm
" residue symbol (¢, K [F),, is trivial, 1 < 0 < 8. (Also the “product formula”
for norm residue symbols allows us to drop one prime.) So

g =1—rank[{¢, K/F), ],

where [(¢, K/F), ] is & (1—1)x1 matrix. Since p(Fyp) = yple) (.&'ee equa-
tions (2.3) and (2.4) for the definition of v}, then we can combine Theorem
2.7 and Proposition 3.2 as follows.

THEOREM 3.5. With the notetions of Theorem 2.7 and Proposition 3.2,

rapk 8y =r+t—1—g—rvank[{n;, K/, 1<i<i-1, 08,

where v, = e (which is specified immediately after equation (3.2)),

We now consider the special case 85 = {1}, Then in Theorem 3.5,
r =0 and & = 0 (¢f. Proposition 3.2). For generators of 5.D~, we may
take CIK(‘BTEB?”),...,GI by Bi). Then s =, % =Pk Pk, and
{#)) = Ry wW; for 1 <5< s Hence we obtain the following
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THROREM 3.6. Let nointions be as in Theorems 2.7 and 3.
then

5. If 'SF = {1}5

vank 8y, = t—1—rank[(z, E/F),], 1<i<t—1, 0<j<s

Remark. Theorem 3.6 can be used for pure cubie extensions LjQ
since then & = Q| V-3 3) and 8p = {1}. In [5], Theorem 4.5, we presented
another algorithm for computing rankSp. Although that algorithm is
somewhat different from the algorithm in this paper, we point out that
the t in [8] corresponds to

t—L—ranki(z, K/F),], 1<i<i—1,

in Theorem 3.6; and the s, in [5]‘ corresponds 1o

E|F),Jmod p(z)}, 1<i<

(see Theorem 2.7). We also remark that as a consequence of [6], proof
of Proposition 2, we may omit the column of the matrix in [5], Theorem 4.5,
that involves the prime ().

Again we assume Sp = {1}. Suppose no rational prime deconiposes
in FQ if it ramifies totally in L/@. Then s = # = 0, and hence we obtain
the following result (cf. [5], Theorem 5.1 and Corollary 5.2, [6], Corollary 6,
and [10]). -

COROLLARY 3.7. With the assumptions of Theorem 3.6, suppose thot
no rational prime decomposes in F|Q if it vamifies totally in L/Q. Then

rank {[(z;, -1, 1<j=<s

rank 8;, =t—1-—rank[(z, K/F), ], 1<i<t—1.

4. Some examples. In this section we illustrate Theorems 3.4, 3.5,
and 3.6 with examples. We let notations be the same as in Sections 2
and 3. Tirst we claim that the norm residve symbols (z;, K/F), can be
replaced by cubie Hilbert symbols, which are easy to compube (see [1],

(‘ha,ptel 12 or [4], pp. 348-354). This is clear if F = Q(V —3), for then B

contains the cube roots of unity, and hence K = F( an for some we .
Then we can replace the norm residue symbol (a;, K[F), by the cubie
Hilbert symbol _(a_t_::.,;,_w)w. {Here we are uging the notation of [11.) Now
suppore I == Q(l/ —3), Suppose p it a prime of F above a rational prime
p 5 3, and suppose p ramifies in K/F (hence p ramities totally in L/Q).
Then [9], Section 3, shows that p decomposes in & if p =1 (mod 3) and
remaing prime in # if p = —1(mod 3). For p =1 (mod 3), the multi-
plicative group of the residue class field of F at p contains p—1 elements,
and 3|(p —1). For p = ~1 (mod 3), the multiplicative group of the residue
clasy field of F at p contains p?—1 elements, and 3{{p*--1). So in both

- eases the completion T, of F at p contains the cube roots of unity. If
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is the unique p1ime of K above p, then the completion Ky of K abt P

satisfies Hg = H, I/wp for some @pe F,. (Actually », can be chosen
from: F.) So we can replace the norm residue symbol (i, K/F), by the
cubic Hilbert symbol (@, ;). Finally we suppose thab the prime p of #
it above 3 and that p ramifies in K /#. It p is the only prime of .F above 3
(ie., if 3 vamifies or remains prime in F/Q), then we may take p; = p,
and. p will not enter into the ealenlations in Theorems 3.5 and 3.6. If 3
decomposes in F, then F, = 0, the field of 3-adic numbers. We adjoin
o primitive cube root of unity ¢ to F,. I P is the unigue prime of K

3
above p, then K;n(g‘) — F, (L, Vap) for some @,e Fy(f). Then we may
replace {m;, K[F), by (2;, ,);, where [ i the unique prime of B (L) = a({)
above . We note that [17], Chapter 12, and [4], pp. 503—304 show ex-
plicitly how to compute cubic Hilbert hymbols in Qq(0).

Thus from Theorems 3.5 and 3.6, we see that we can compute rank 8y, -

if we know the arithmetic of the gquadratic field F. More precisely, » and #
are determined by examining the 3-class group of F; ¢ is the number
of primes of ¥ which ramify in K; and the elements of the matrix can
be determined by cubic Hilbert symbol caleulations in ¥ (with perhaps
some cubic Hilbert symbol caleulations in Qy{L})

In the examples that follow, we make use of the results on cubie
fields that appear in [9] and [13]. As our first example we let I be a cubic
extension of @ obtained by adjoining a root of 28+10x41 =0 to Q.
Since the discriminant of the polynomial W —ar-b is D = 4a® — 273,
then D = 4({—10*—27(1)% = —4027 for the polynomial #°®-+10z- 1.
Tt follows that F =Q(V —4027) and that E/F is unramified (since D
is square free). From Theorem 3.4, rank8; = Sy—1. By [14], Table 1,
rank 8 = 2. 8o rank S, = 1.

For our next example we let L De a cubie extension of @ obtained
by adjoining a root of x4 —3-18x+2-13-17 = 0 to @. The discriminant
of this polynomial is D = 2*-8¢-13%-(—28). Then F = Q(V —23). The
rational primes which ramify totally in L/Q are 3 and 13 (bere we are
using results from [9] and [13]). In F, both 3 and 13 decompose. We
write (13) = pyp. and (3) = pab,, where py, Pa, Ps, Pa are distinet prime
ideals of F. Furthermore p;, P,, Ps, Ps are the prime ideals of ¥ which
ramifly in K/F. So ¢t = 4. Now Sz is a cyclic group of order 3 ({see [2],
Table 4). In fact the ideal class group € p is eyclic of order 3. 50+ = rank Sp
=1, and & = [Op[S8z| = 1. Now leti Z be the subgroup of 8§y generated
by elp(pips") and elp(pipi®); Lo, Dy clp(p.p;) and clp(pspi) since h = 1.
We claim that Z = 85. It sufflceb to show that either elz(p,ps) # 1 or
clp(pgpy) 5% 1 since Sy is cyclic of order 3. Suppose clp(p,pi) = 1. Since
PP, = (13), which is principal, then clx(p,p;3) = 1 implies cly(py) = 1.
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x V—23
Bo p, = (—_———+y2 ) for some @, ye Z. But then
x? 4 23y2 -+ y}/:_Z_S_
(—" e ) = Rpo ("*T* = Ryp(p2) = (13),

which implies that »? -+ 23y? = 52, However thix equation has no solufions
@, ye Z. Henve we must have clp(p,) % 1, which implies elp(p,ps) # 1,
and then Z = 8. So

# = rankZ[(Zn8%) = rank Sp/(8pN8%) = rank 8p/8% = 1.

‘We remark that the same procedure we used on p, can be used on p,,
s, and p, fo show that elp(p;) £ 1, clz(ps) = 1, and dg(p,) = L. Thus
far- we have defermined that » =1, ¢ =4, and 2 = 1. In Theorem 3.5
we minst still compute rank[(; E_’/F)p], I<i<t—1, 0<j<s Now
%, = & = 1 gince F is imaginary quadratic and Q(l/ —3). For 1<j<s,
(#;) == NypW;, where the W; can be found using the procedure that is
given in Section 3 (see the discussion following the proof of Theorem 3.4).
Tn that procedure we first find ideals %, ..., %, of F whose ideal classes
generate

¥ 85 = {oe 85 ¥.(a
Since # = 1 and 8 is eyclic of order 3, we may take U, to be any ideal
of F whose ideal class is & nontrivial element of Sz. For convenience, -

-yV —23
m_—ry_____) for some @, y¢ Z,
2

yom 1} == {oe Sp| @* =13},

we take U, = p;. Since NgpPs =Pt = (
and

@2 23y° z+yV —23
— ) = Ry (o ———

i ) ) = Rmaps = (3°),

44-21;43" 24V,

we get (@) = Mgpps- Next we let B, be the unique prime of K above p,,
1<<i< 4, and we consider ¢l (B, D7) and cly(PsP;). We note that

N Lelg (5, 55)] = 01;- (3 é 8% = {1},

we may take 2 = 4 and y = 2. So if we let 2 ==

and
Nr[clzc(%*m)] = clp(p;pi) ¢ 8% = {1}.

However, by interchanging p, and p, if necessary, we may assume
clp(ppipep;) = 1, and then N,[cle(P,PaPsPi)] =1 8p. Bo we may
take A, = P, PIW/, B, and it iz easy to check that (@) = Ngyp, if
0y =3-13-(4+¥ —23). We vecall that we want to compute rank
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[y, EfF)p,], 1 f.',< 3, 0<j <2, and we have found z,, #,, and z,. A%
we pomted 01111 a.‘u the start of this bthlOIl, we may actually use cubic Hilbert

symbols. To do this, we must find e By, such that Kg = I, V:n]J

for 4 =1,2 and x,,e I, () such that K (L) = Fy (L, l/m;, Since g,
is generated over ¥, by a root of ¢®—3-13x-+2- 13-17 = 0 for ﬁach 4,
‘ b B al\YP
3 +(4 -~27) with
2.13-17. Furthermore it can be proved that mp == 13y}
for some yye Fy 5 @, = = 1393 for some Yye Fy; and @, = MmusYs, where
7y = L—(l--{) = C, s =1—(1—{)% and yse F,, (C)- "Then our matrix
elements can be computed ag follows (cf. [1] or [4]):

then it can be proved that we may take &, =

@ =313andb =

(1,18),, =1 (2 23, 15)],1 =72 (3-13-(4+1/;23), 13),, =¢
(1,18),, =1 (24+V—23,13),, =*  (3:13:(4+V/—23),13),, = ¢

Lymydy =1 (@+V — 23,n1n)l—~,¢2 (3-13-(4+V —23), il ={

where [ is a primitive cube root of unity, and 1 is the unigue prime idea
of Fy () above ps. So ranl[(z;, EjH),] =1. Then

rankSL_nr—i-t-—l— mmnk[ o K [E),,
=1+4—-1—1-— 1__2.

For our final example we let L be a cubic extension of @ generated
over ¢ by a root of #* —25-Tw0+2-3-5-7 = 0. The diseriminant of this
~polynomial iy D =2'-5*-7*-37. 8o F =Q(V§?). The rational primes
which ramify totally in L/Q are 2, 5, and 7. In ¥, 2 and 5 remain prime,
and 7 decormnposes. We let (7) = pP., (B) =ps, and (2) =p,, where
D1y Pas Pas Pu are distinet prime ideals of ¥, and they are the prime ideals
of F which ramify in K/F. 80t = 4. By [2], Table 1, the ideal class group Uy
is trivial. 8o 8 is trivial, and Theorem 3.6 applies. We need to compute
rank [(2;, K[F), 1 Now z, = 6 +V37, the fundamental unit of F. Hince
ko= GP/SF u_l and Sp = {1}, we may take U = P, P, where P; is
the unique prime ideal of K above p; for each i. Then it is easy to show
that RygpW, = (2) it @, = §-7-(19 —3¥37). 8o we have @, = 6--V37
and oy == £ 7-(19— 31/37) Next we want to {ind @, ¢ F, such that K;,p

3
= Fpi(l/aepi), 1<4<3 For our polyncmial equation x*—-2-5-Tw-+
2 12
+2-3-5-7 =0, we may take @, == w_zb_ +(b_wﬂi)" with @ = 2-5-7

4 27
and b =2-3-5-7. It can be proved that @, =14y} for some ¥y« By s
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Ly, = 1495 for some ¥,e F,; and @, = Byd for some yge F,,. Then our
matrix elements can be computed asx follows:

(6-+-V37,14), =22 (37-(19—8V37), 14}, =1
(6-+V3T,14), =2 ($-7-(19—-38V37),14),, =1
(8+V3T, 5), = (§-7-(19—3V3T),8), = ¢

where ¢ is a primitive cube root of mﬁty. Bo rank [{a;, K/F),] = 2, and
by Theorem 3.6

vanle Sy, = f—1 —tank [(z;, K[F),} = 4—1~% =1.

Remark. In a sequel to [3], Callahan has obtained results which
provide lower and upper bounds for the ranks of the 3-class groups of
all non-Graleis cubic extensions of the rational numbers.

Remark. In the paper On I-class groups of certain number fields
(to appear), Gerth has obtained lower and upper bounds for the ranks
of the I-class groups of cerfain number fields, where 1 is an odd prime.
Those results can be considered as generalizations of some of the results
on the 3-class groups of cubic fields that are given in this paper. For
the special fields considered in that paper, the ranks of the I-class groups
depend upon certain groups B;, B,/B;, ooy By_1/By_,. For 1 =3, only B;
and B,/B, are needed. (B, corresponds to D and B, corresponds fo
BnySx in this paper.) For 1 > 3, it is usually very difficult to determme
By/By, vy B[ By_, explicifly.
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Filtration de E*/K* et ramification sanvage
par

Tuwone NGUYEN-QUANG-Do (Paris)

Si & est un corps local de caractéristique 0, de caractéristique rési-
duelle p # 0, le groupe multiplicatif k*/k*? est filtré de fagon mnaturelle
par les sous-groupes ULE™?[E* (sections 1 et 2). L’objet principal de et
article est d’étudier comment cette filtration se transforme dans ume
extension galoisienne X /&, plus précisément via I’homomorphisme naturel #:
K*[5*? K" [K*? {section 3): la fagon dont » transforme la fonetion d’ordre
de la filtration est décrite par une fonction Sy, attachée & la fonction
classique yyy, eb jouissant de propriétés analogues. Dans la section 4,
nous appliquons les résultats obtenus & la construetion de p-exfensions
cycligues de & ayant des nombres de ramification donnés.

0. Notations générales. Dang toute 1a suite, sauf mention expresse
du contraire, nous entendrons par ,,corps local” &, un corps & qui est
complet pour une valuation discréte, qui est de caractéristique 0, et dont
le corps vésidnel % est parfait, de caractéristique p = 0.

Nous noterons ordy, la valuation additive normalisée de %, ie. telle
que ord, b = ZU{cc}.

Nous poserons e, = ord,p et e, = e,/(p—1) (c’est un entier si &
contient les racines p-idmes de unité). Pour tout ze k¥, il nera commode
de noter: d,(#) = ord, (1 —z).

Comme d’hmbltude, nous infroduisons les g:wupes multiplicatifs:

Uy = UY == {me k*; ord;m = 0},

I {me k%5 dylm) >@} pour tout entier m%:_i_

Bnfin, pour tout entier 43 0, neus noterons Uy = UL/Upt. On sait
que T} = &* (groupe multiplicatif de &) et que, pour tout entier 4> 1,
Ui est isomorphe au groupe additif de & (de fagon non canonique, par
le choix d'une uniformisante).

Dans Ia suite, lorsqu’il n’y aura pas d’ambignité possible, on sous-
alx), ¢, 6', etc... an lien de
ordy,(x), le:(m): G 3;;:7. ete.... .
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