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Introduetion. The following conjecture was appavently fivst formu-
lated by Cassels and Swinnevton-Dyer (in the case n = 3), and it is closely
connected with some of the problems mentioned by B. Segre in {157, p. 2:

GoNTROTURE (OR). Eet flwy, ..., @,) be o cubic form with coqu'iai@n;s
in o field k. Suppose f has o non-trivial solution in an elgebraic extension
Kk, of degree d prime to 3. Then f olso has e non-trivial solution in the
ground field k. '

Of courge the crucial condition in thiy statement is that 4 should
he prime to 3. The eage # <X 2 was already known to Henri Poineaxé [11];
his proof will be given in §2, since the geometrical ideas it involves are
fandamental in the stady of the case n = 3 and will be used throughout
this paper. We begin with a few rather dry lemmas on the rationality
of cycles on an algebraic vaviety (§1), which are necessary if we want
to proceed on fivm ground when using algebraic geometry over an arbitrary
field. The use of these lemnmas is exemplified in §2, which therefore gives
not only Poincaré’s proof, but also a few other applications of the same
type of argument. In §3 we discuss some of the first attempts made ab
proving the conjecture when # = 3, including a very interesting descent
argument due to Oassels (unpublished). This result implies in particular
that (C8) holds when # == 3 and % is a local field. But the argument fails
when the chavacteristic of the residue class field iy equal to 2.

At this point, the exposition breaks into two parts: in §§4 and 5,
we use a different method to prove the conjectnre in full generality over
any local field (ile. for all # and without any restriction on the charac-
toristie). This is done by purely avithmetic means, and the veader who
i more interested in the geometrical aspect of the problem may proceed

* This papor forms the substance of o dissertation presentod to the University
of Cambridge [8]. I wisk to express my gratitude to the Research Committee of the
University of Geneva and to the Socitté Académique (Turettini Fund) fer financial
support, '
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directly to §§6, 7 and 8. There he will find, first the simple extension
of Poincaré’s result to divisors lying on a eurve of arbitrary degree and
arbitrary genus (§6); and then a descent argument on cubic surfaces,
which enables us to assume (when n = 3) that d is equal to 4 or 10 (§7).
The final section shows that (CS8) holds for singular cubic surfaces, and
also for those cubic surfaces which contain a k-rational set of 3 or 6 skew
lines. The general case of a cubic surface defined over a field like & = o
therefore remains open. By the results of §4, any counterexample to (CS)
must also violate the Hasse principle. Hence, although the conjechure
does not look terribly plausible when # > 3 and & = Q, the problem of
actually determining & countersxample appears to be extremely hard.

1. Rationality of cycles. The lemmas introduced in this section are
all essentially well-known. We state them in a form that will be sufficient
for onr purposes; generalizations can be found in the firgt chapter of
Weil's Foundations [22]. We begin with a few words on the terminology

. adopted, since it differs from that of Weil.  °

We shall be working over a given field of definition k, and by varicty
we mean & projective variety V (not necessarily irredneible) in P*(%),
k being the algebraic closure of k. This will indesd Prove more convenient
than working in a universal domain. V is called E-rational if the hom-
ogeneous ideal I (V) associated with it in 5[X,, ..., X,]is defined over(?) k.
For any field K « &, 7 (X) denotes the set of points of ¥ with coordinates
In K. A hyperswiface V iy the divisor V = V(f) of P" determined by
a form f and not the variety V(( T )). This convention enables us to ideniify
forms with hypersurfaces even when they are degenerate. Our conjecture
can therefore be restated as follows:

(0S) Let ¥V < P® be a k-rational ocubic hypersurface, ond let K be a

Jinite extension of k with degree d prime to 3. Then Vik) =8 = V(E) = &

As we shall see later (footnote (%)), there is no loss of generality
In assuming that V is absolutely irreducible. ’

A Galois automorphism is an element o of the group ¥ = Gal(k/k).
There is an obvious action of ¢ on the points of PrE), but @ also acts
on the snbvarieties of P", since(?) V = V(b) = ¥* == F(b"). Wao note
that o point # of P" is k-rational if and only if it belongs to P*(k), and
if & is perfect, this is equivalent to saying that P s invariant under the
action of . More generally:

() As a trivial example, the point (1, 142) « PL(E) iz not rational over & = Xy ith,
f,mltliough it can be defined — a8 a set — by the ideal (Y — Xy indood ils ideal
In R Xy, X)) 15 net gencrated bynpnlynomiai‘s”with coclficients in %. .

() We denote by 7 (5) the st of zevos in Pu(E) of the ideal b; B =
where ¢ acts on the costficients of I3 Vo {2 e 7). '

{7l fe b},

E
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Lomnra L1, Suppose the vavicty V o P is defined over the separable

closure &* of T, and leb o« < B[X,, ..., X,] be ils ideal. Then the following
conditions are equivalent:
(1) V is L-rational,

(i) V is Zariski-closed {over T);

(iii} ¥ = ¥° Yoe @;

(iv) a == a" Voe @.

Proof. (i) = (i) = (i) = (iv) follow trivially from the definitions.
(i) tollows eawsily from (iv); we give the details for the convenience of
the reador:

Let o == (fy, ..., fy), where the s are in K[X,,..., X,] for some
finite Galois extension. K[k Tet oy, ..., o4 be a basis for K over k. Then
fi ::q)‘f’ml o ¢y, where the ¢'s are polynomials with coefficients
in k. Simce now a ==’ Voe Gal(K k), a contains all the conjugates It
s o] .. +ePwf of each f,. Hence ¢, ..., ¢ q, since the matrix
(wf)y,o s nvertible, and so a = (g0, ..., o) cies ™

Cororranry 1.2. Suppose &t is perfect and V < P™ has precisely r
distineat conjugutes V7 (over k). Then V is defined over a field K of degree
[E k] =1 - :

Proof. Let o = {o| V' = ¥V} e & and F*= {V°} s & acts transi-
tively on the set K, and 2 iy the isotropy group %, of V; hence

(G: ) = [¥: Gp] =card(¥ V) = card il =r,

Lot K == k* be the fixed field of 2. By Galois theory, [K : k] = [%: #7]
==y and, by Lemma 1.1, V is defined over K (and in fact over no smaller
field containing %){*). m

LmnvmA 1.3, The image V7 of an absolutely irreducidle variety V = P*
under o Galois automorphism is an absolutely drreducible variety of the
same dimension and the same degres. m

This iv clear; however, 1t i interesting to remark that the elements
of # are neither algebraic morphisms nor confinuous mappings in the
transcendontal topology (when %k < €)(*). They are continuous in.the
Ziaviski topology (this implies the first asgertion about irredueibility),
but oven 80 they have more geometrical properties than one would nor-
mally expect; for instance they also preserve the genus of a curve.
™) Using the oguivalones (i)=~{ii) of Leouna L1, it is ensy to see that IC ia. ifl
faot the Teast fiold of definition coutaining ki if ¥ ig defined both over I and over K ¥
it s also defined vyer thelr interseetion. The existence of a least field of delinition
i loss sy tio prove when the extensions can be inseparable (sco [22], chap. I, §7,
Lewma 2). - B

() Considar for examplo the offect of @ a-+0V2rsa—bY on a sequence of

Q-rational points tonding to V2!
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A cydle Z = }'n,V,;, where all the ¥, = P* are absolutely irredacihle
varieties, is said to be k-rational it Z = Z° = 3 m,V{ Voe & and if sach n,
is divisible by the order of insepavability of V, over % (see (221, p. 123).

We shall frequently use the following two lemmas:

IEvmaa 1.4 (Weil). If Z, and Z, are two k-rational eyeles, them so is
thetr intersection Z,-7,.

Proof. If & is perfect, the multiplicities do not come into accouns
and the result follows from Lewma 1.1, since the intersection of two
closed sety is closed.

In the general case, this is a non-trivial result, due to André Weil
{[22], chap. VIII, §3, theorem 4). m

This lemma implies in particular that, when J = F,(t), any two
k-rational curves through P = (4%, 1,0)¢ P*(k) mest in the point P
with multiplicity divisible by p. .

CororvrAwy 1.5, If Z,, Z, and Zy are three k-rational positive cyeles
- suchthat Z,-Z, > Zy, then the residual intersection Z 2, — Zqis also k-rational.

Proof. This evidently follows from Lemma 1.4 and the obvious
fact that the sum of two Z-rational cycles (not necesgarily positive) is
still %-rational. m

A prime k-rational 0-oyele Z consists of all the conjugates of o point P,

each taken with multiplicity equal to the degree of inseparability of .

k{P) k.

Tmywa 1.6. Let Z be o prime k-rational 0-cycle of degree d; then the
family of k-rational hypersurfaces F' < P, of any given degree 1, rontaining
the points of |Z|, is determined by d Vinear conditions (not necessarily inde-
pendent) on the eoefficients of (°) F.

Proof. Let P be any point of [Z] and let (1y &1, ..., ;) he its eo-
ordinates. Then Pe F <« F(1, a5, ..., a,) = 0, and this clearly represents ¢
linear conditions on the coefficients of the form F, gince svery monomial
aft ... af» can be expressed linearly in terms of a basig of E(P)/k. Then
- P, having its coefficients in &, will also contain all the conjugates of P. m

As an illustration we note that, if § = Fy(t), there iv no k-rational
plane containing the pointi P = (1, 14 &2 /%) ¢ PHE). wince there i
no Linear velation over & between 1,7 i ¢, Bverything happens as
it P had four distinet conjugates in gencral position in Ps . S

2. Motivations. Conjecture (OR) is essentially motivated by the
following three propositions:

{8 1t is convenient to muse the same symbol for the hyporswrfoce and for the
form defining it. Note also that we do not say that F eontuing Z, bus ouly thas F
containg the support of Z; it is only when taking intersections that we shall reeover
the muliiplicities (in view of Lemms 1.4}, Thus the point P == (142, 1) is gimple on

the line y = 0 (over & = Fy{1)), but the lino is tangent o £ o any k-rational curve’

confaining P as a simple point.
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PROPORITION 2.1. L6t f(a,, ..., ,) be a quadratic Jorm with coefficients
in k, and let K [l be an algebraic emtension of odd degree 4. Then f represents
gero 4w IC 4 and only 4f 1% does so in T

ProrosizioN 2.2. Let f(ug, ..., @,) be @ cubic form with ecoefficients
in b, and let K be a quadratic entension of k. Then if f represents zero in K,
it also represents evo in k.o ‘

Provosreion 2.3, (C5) holds for cubic curves (i.e. when n = 3).

We recall that, by definition, a form f represents zero (non-triviaily)
in & feld JC il it admits & non-trivial solution with coordinates in K. The
Lirst two propositions appear as an exercise(®) in Lang’s Algebra ([8],
chap. 7, ex. 7), and Proposition 2.3 follows from a more general result
ot Poineard on elliptic curves (see Corollary 6.8). The method nsed by
Poincard in [11] chables us to prove all three proposritions in a unified
way, and is both intuitive and rigorous. It will recur later in more com-
plicated. situations.

Prool of 2.2, Let P be a point of the cubic hypersurface ¥ = V(f)
with coordinates in K == k%), say P = (1, &, -89, ..., ¢, + b, 7). Without

loss of genceality, b, v 0 for some ¢, and so the loeus of (1, a4, ...
coey B, 1) I8 o sbraight ling L containing P and defined over k. Hence L
; : . T - T e 11

also contains the conjugate P’ of P (by Loemma 1.1)(°). Clearly W gy
assume that L ¢ V, and then V-L is a cyele of degrc:e 3; the residizal
intersoction @ M a &-rational point (by Corollary 1.5)(%). m

{6) It seoms Hhat Tho only published proof of 2.1 is that of T. A Spriui;er (0..1{.
Acad. Soi. Pavis, 284 (1982), pp. 1517-1519), although Skolem ([18], p. 297) applied
the Poineard argnment to the ense n ~ 2. _ o N

() It K /k is inseparable, then P’ = P, but - by Lemma 1.4 - ¥ I then con.
taing P with multiplieity 2, so that the proof is unahangn.d! R o

() Xn this prool will tho lemunas huve been uged in trivial situations, and it

i3 just us oasy to write a purely arithmetic proof!
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Proof of 2.1. The argument is the same as for Proposition 2.2, but:
we shall use a curve I" of degree m < d—1 instead of a straight line. Lot

us suppose the proposition true for all d' < d, over any ground field.
Let P =(1,a,...,a,) be a point of the quadric V = V(f) with co-
ordinates in K; w.l.o.g. one of the coordinates of P, e, say, is not in %.

We can therefore assume that o, is a generator of K, since otherwise:
k{o;) would be a field intermediate to % and K, and we could apply the:
induetion hypothesxx. {both over % and over ls(al)) Let ug write P =

(L, 8, 9s(6), ..., 2,(0)), where the p,’s are polynomials of degree < d—1
with eoefflemntq in k. Then the locus of (1 t, pa(t), .

since I'(E) = @. Then I'nV eonsmts of finitely many points, since I" is

absolutely irreducible (being given as a locus!). Thus IV is a cyele of

degree 2m (theorem of Bezout [13], chap. ITI, §2.2, and chap. IV, §2.1),

containing the prime rational 0-cycle Z of degree d generated by P. The-

residual intersection is a k-rational positive 0-cycle (Corollary 1.5) of

degree 2m —d<<d—2. Since 2m--4 is odd, V also contains a prime.

k-rational 0-cycle of odd degree d' < d--2; ie. the form f has a solution

In an extension K'fk with odd degree ¢ < d—2, which completes the

induetion argument. m

Proof of 2.3. Let P be a point of the plane cubic curve V with co-
ordinates in K; w.lo.g. £ = k(P). Let Z be the prime k-rational 0- -eyele,.
with degree d =3r+9 {¢ =1 or 2), generated by P. By Lemma. 1.6,
the family of k-rational curves I, of degree | =41 containing the con-

jugates of P iz a vector space of dimension > (Hz) d; thig includes.
the family of k-rational curves I, containing V as a component, whoge:

2 i+2
dimension is (( I+ ) Since (—g )-d > (z 9 ), there exivis a k-rational
curve I of degree Ewhwh does not contain ¥ as a component. Then IV

(- 2--1)

oy Do)} is & k-rational.
eurve ' = P" of degree m<d—1; and we may assume that I'¢ V..

icm
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is a k-rational O-cycle(®) of degree 37 = 3r-- 3, containing Z, and there
i & residunal cycle of: degree 3 —¢ = 1 or 2. In the former cage, the prop-
-osition is proved (in view of Lemma 1.5); in the latter, we need only

apply Proposiiion 2.2. m
We now derive a few easy corollavies:

COROLLARY 2.4, (CS) holds for oll O fields ('), in porticular for finite

fields.

Iroof. (08) i valid when n < 2, by Proposition 2.3. But if % is a €,
field, there iv nothing meore to prove, since n> 2 = V{k) + 0. &

COROILARY 2.0. Proposition 2.2 is also true for a normal exvtension
K|k of degree d == 2°.

Proof. The Galois group Gal(K /k) is a 2-group; henee it is super-

solvable, and the result follows by repeated use of Proposition 2.2. m

UOROLLARY 2.6 (™). Let V = P" be 4 cubic hypersusface defined over k.
If V contains a k-rational divisor D of degree @ prime to 3, then V (k) + G.

Proof. Take a generic k-rational 2-plane IT; then I7NV is a k-rational
eurve of degree 3 containing I'nD, which is a k-rational 0-cycle of degree d.
Since 314, we can apply Piopcmmon 2.3 to deduce the exisfence of k-
radional points on TNV, m

Trirmorem 2.7, La& V = P* be o quadrie hypersurface, defined over b
. Then any k-rational »cycle Z lying on V, of any
-dimension r, has even deg;i"ce.

Proof. The proof is almost identieal with that of the preceding
corollary; one nses @ linear space IT of codimension +» and apphe: Prop-

-ogition 2.1. m

=
* *

Having proved Propositions 2.1 and 2.3, it is reasonable to ask whether
the analogne of (O8) for curves of degree 4 may also be true. That this
i4 not the case is best shown by an example (¢f. also Oorollary 6.5):

Txamerm 2.8, The form flig, 0y, &) = @§ —B2; 4 20} — 3wias does not
vopresent soro i Iy (and hence in Qg and in Q), although it has the solulion

W, L o, g,owo may assuma that 7 is k-ireedueible, Then, even if 7 is absolotely
rodueiblo, I'mV consists of a tinite nuwbor of poinly, for both I" and ¥ are k-rational.
Whoen w8, the omse of roducible cubies bocomes frivial, sinee they always lave
adi Joast one Baational point! '

(10 Wo roeall that o field & is Oy (ox: gjamsi~algebraiectlly closed) if vvery form
of degreo o In -1 variables hag o nonrivial zero.in %. Finite fields are (5, in
virtue of the woll-known theorem of  Chevalley—Warning.

(%} When n == 3, thie is conlained in a rvesult of B. Segre ({15, theorem 3 (p. 4
and p. 41)).
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(1, 8, 6%) in Q(0) (and hence in Q;(0) and in F, (8)), where 0°— 0% —1 = 0.
In particular, even Corollary 2.4 cannot be extended to quartics:

Hint. o* =0 or 1(mod 5); #* =0 or +1 (mod 5). m

It-may be worth mentioning that f actually represents zero in some
extension of @ of degree d for every value of d > 1. Indeed, there is the

— — 4 4 _

solution (V2,1,1) in Q(V2) and (V3,1,0) in Q(V3), which deals with
the cases d == 2 and 4. Now if we want to find a solution of degree 5 (saiy),
we can take a suitably generic conie containing the three conjugates of
(1, 6, 6%). Tt will meet the quartic I' = V(f) residually in a set of five
points; with reasonable luck, thiz set should be Q-irreducible. Similarly
for all valnes of 4. A rigorous proof proceeds by reduction to Hilbert’s
irreducibility theorem (see [7], chap. VIII), as follows:

The corve I contains at least one positive Q-rationsl divisor D of
degree d. The vector space L{D) iy generated by N 41 : = I(D) elements
Jos ---3 [y of the function-tield Q(I"), which define a rational transform-
ation @ = (fy: ..o fy) s D=P¥; and I'™* = O(I") is o eurve of degree d,
~which spans PY (@ is even an isomorphism when d 3 7 ({13], chap. III,
§6.6, cor. 4}). Let = be a projection of PV onto a plane P? such that I™*
= x(I™) is still a curve of degree d. We can now apply Hilbert’s ivreduci-
bility theorem to I™; the sections of I™* by straight lines in the plane P?
are in general Q-irreducible. We thus get prime @-rational O-cyeles of
degree d on I' by taking the inverse images (no®)*(Z) of such sections. m

3. Some typical descent arguments. In this section we shall confine
our attention to the case of eubic surfaces (i.e. » = 8), The following
proposition — and its proof — are due to Cassels:

ProrosrrIoN 3.1 (Cassels). Let n = 3. Assume (OS) 45 true (over k
wnd s finite extemsions) for oll degrees d < 3r+4-1 (34 a). Then 4t is true
Jor dy = 3r 41 if and only if it is for dy = 3r+-2. '

FProot. (i) Let P = (1, 6, a, B}« V(K), with [K:%] == 4 {d stands
for either d; or dy). W.l.o.g. we may assume that K = k(9), since othor-
wise %(0) would be a field intermediate to & and &, and we could use
the induction hypothesis (™). Hence a = ap+ta,0-...4ay 0% and
B =bot... 40y, 0% This already shows that there is & Je-rational
curve of degree < d—1 that contains all the conjugates of P; but we
shall need a curve of degree m < 2r--1.

(%) If we may assume that /% is soparable {e.p. if k& ié perfeet), then we ean
sirike out “‘and its finite extensions” from the induchion hypothesis, bocause ihere
exiats o primitive element &, which can be oxpressed w8 a linear combination 8
= O4Aa+ uf (woo I8], theorem 14, p. 185; w.lo.g. k ia infinite, by Corollary 2.4)

and (1, &, a, f) is a point of a surface which is projectively oquivalent to the originak
one. '
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(ii) In order to construet it, let us multiply all the coordinates of P
by a polynomial Ao(6) = og+0,0-... 46, 0", whose coefficients will
be determined luter. Then

P (4,(6), A1(0), A,(8), Ag(0)),
where
Ay (0) = 044(0) == 0y 0+... 0, 07,

Ao (0) = ado(0) = og+06+... 4, 0%,
..Ag(o) e ﬁA(}(O) o= 06’-1—(5;_’9-!”.. e C‘:z’_l gi-1,

This defines two polynomials Ag(t) and A4(t), whose coefficients depend
linearly and homogeneonsly on those of 4,(¢). We can therefore determine
the coolficients ¢; in such a way that the degrees of A4,(¢) and A,(1) do
not exceed 2¢-k1, sinee this amounts to solving (non-trivially) a linear
systom of 2{(d--1) - (2r+-1)} = 2d —dr — 4 < 2r homogeneous equations
in 2r -1 wnknowns. . _

(iif) Thuos wo have found & k-vational curve I' (the locus of (4,(f),
Ay (8), A (L], Aﬂ(t)) ol degree m < 2741, passing through all the conju-
gatey of P. Since I'{k} 5 @, we may assume without loss of generality
that [ meets V in a finite number of points. Hence there is a residnal
cycie of degree & = 3m —d, which ig Z-rational by Corollary 1.5. If d = d,
then &= dy; and if € =d, then d =d, or 6 < d,. Since 3435, we can
also find o prime k-rational 0-cycle of degree & << 6 not divisible by 3,
and the assertion tollows from the induction hypothesis(™). m

This proposition enables us to concentrate on the case d =1 (mod 3).
The argnment, Lowever, does not give the descent from 3» 41 to 3r—1,
gince the number of equations is then egual to that of unknowns. And
indeed there is a servious obgtruction when r = 1, since one would have
to find a E-rationwl curve of degree 2 through 4 peints:

WxAdvin 3.2. If the point Pe P is defined over anm estension] K [k
with degree 4 such that the least normal extension K[k has Galots group %,
and 4f the four conjugates of P are not in o plune, then there are exactly three
curves of degroe 2 (three pairs of lines) containing the four points (see figure
overleat). None of them is k-rational, since they are exchanged by the Galois
antomorplisms. In fool, euach of them ds defined over @ cubic ewtension of
k (Corollary 1.2). w o

Tor degreed higher than 4 — where it js difficult to ennmerate all
possible curvos -- the situation ig inuch less clear. For instance, w.rhen.
# - 2, there exists w l-rational curve I of degree 4 through 7 points.
Tt meets the sudace in 12 points, with a residual intersection of degree 5;

) (18) Mineo I' has gonus 0, the last part of the proof can be completed without

the Bézowt theore, by purely arithmetic means: writ_e F(t). = f({lﬁt),..., Ay}
= (8- (1), whore D(2) i8 the minimal polyromial of 8, and distinguith a fow cases.
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we thus get the descent from 7 to 5. To show the existence, we note that
there arve atb least co? quadrics containing the seven points. The inter-
section of two of them is a curve of degree 4 and genus 1. (It really is
2 curve, since we may assume that the seven points are not coplanar

and since & acts transitively on them. The few degenerate cases are
readily dealt with (e.g. a twisted cubic and a line).) W.lo.g., I' is not
contained in ¥, by Corollary 2.6. ‘

One might think that the reason why Proposition. 3.1 did not yield
this descent from 7 to 5 lies in the fact that the genus of I is equal fo 1,
while the argument of Cassels works with curves of genus 0. But this
18 not the right explanation, since —working over an exfension of degree 2 —
it is possible to replace I" by a quartic ecurve of genus 0. Indeed (assuming
everything is in general position), take a non-singular quadric ¢ contain-
ing the seven points; by Proposition 2.1, it also contains some Z-rational
points. It may contain no k-rational line, but there is a quadratic extension
L of ¥ such that @ contains two skew lines, D, and D,, defined over L.
Then there is an L-rational cubic surface F that contains the sOVen
Points and the two lines. This represents only 15 linear conditions; there-
fore F can be so chosen that it does not contain @ as a component (20 -
~15 > 4).. Hence @NF = I"UD,UD,, where I" ix a quartic curve of
genus 0, defined over I.

This seems to indicate that the arithmetic proot of 3.1 could be
extended. But the geometric approach is often simpler, since we van
also use curves of higher genera. Thus {he descent from 8 40 7 malkey
use of a quintic of genus 0, but the geometrical argument using the inter-
section of two quadrics gives directly a descent from 8 to 4. More generally;
this idea of constructing o space curve I’ of degree 2r, but of nebitary
genus, containing the assigned k-rational set of ¢ —= 3p =+ 1 points, can
be used for a great many values of 4. But the details soon becomne rather

complicated, because I" could be reducible, with a component lying on V. -
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. 3t—-1) , )
Turthermore, whenever d iy of the form —-%—2-_——4—1, this construction
proves exceedingly bard, if not impossible (¢f. the case I = 2 and Example
3.2), In § 7 we shall see how the descent can be performed more simply
precisoly by studying the curves that lie on the surface.

L * %

Proposition 3.1 hay o divect spplication when % is a local fidld, i.e.
when k is complete with respect to o discrete valuation 'and has o finite
residue elass field, By residual characieristic we mean the characteristic
of the rewidue field. : :

Proposimroy 3.3, (C8) s true (with n = 3) for local fields of odd re-
gidual characteristic.

Proof. Write d = 3r-++g (p =1 or 2); the proof is by induction

con r. By virtue of Proposition 3.1, we may assume that ‘d is even, and

greater than & (Proposition 2.2). It is clearly sufficient to show that there
exists a field intermediate to & and K, and this follows from a more
general lemma:

TogwmeA. 3.4 Let & be o local field and K o finite extension of k. Suppose
that the degree [K : &) is neither a prime nor & power of the residual charac-
teristic p. Then there is o fidd L intermediate to & and K.

Proof("). We may clearly assume that K/k is either separable or
purely inseparable. The latiter case is ruled out, since [K :%} would be
a power-of p (and there would be intermediate fields anyway).. We may
further assume that K /& is either unramified or totally rawmified, since
otherwise the maximal unramified sobfield of K[k (see e.g. [17], eor. ;,
p. 64) is & convenient choice for L. In the former case, ﬁhe el':tfanswn 8
normal with a cyclic Galois group (the residue field being flnlt_e), am{i
the result follows from the assumption that [K : k] is not prime. In the
latter case, lot g|[X : k], where g is a prime different from z, and. let
p = (m} be the (non-zero) prime ideal of k. We will show that th(la. generator
of this prime ideal ¢an be so chosen that it has a gth rooi;. #in K; k()
will then be the vequired intermediate field. Now there is azl element
we K such that (@) == (a); and x/0? iy a unit of K. Since K [k is ‘?otally
ramified, the residue class fields are the same, and so tl}ere is o unib nqe k
such that v, (/w? —n) > 0. By Hensel’s lemma, the equation g (X) == #n.X*—
wgife? = 0 has & root & in K. Then & = of is a gth root of =/n, as re-
quired. m '

(1 amn indebted to Prof. Cassols for suggesting this proof, which i3 simpler
than my orviginal group-theorstie argument.

5 — Acta Arithmetica XHKX3
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It is quite clear that Lemma 3.4 expresses a very special property
of local fields. In particular, the situation of Example 3.2 can never take
place over Q, (p + 2), since — by the preceding lemma — any extension
of degree 4 of Q, is biquadratic. Over Q,, however, it is possible to have
an extension of degree 4 generated by a polynomial with Galois group &,
(e.g. o' —2¢~2). This is why we had o assume in Proposition 3.3 that
the residual characteristic was not equal to 2. That this restriction, i
artificial will be seen in the forthcoming seetion.

4. Quasi-local fields. A field K will be called quasi-local 1 it is compieto
with respect to a discrete valuation and if its residne olass field & — Olp
has properby (CS}. Any local field is quasi-local, by Corollary 2.4, but
the class of quasi-local fields — as a result of our Theorem 4.7 — algo
includes C(}) (ta, -y %))y Qylltyy .oes )y Fpllty, ... 1)), ete. In this
section we show that (C8) holds for quasi-local fields. _ :

The proof is based on the following extension of Artin’s conjecture
for cubies(**): Any cubic form f with coefficients in K that does not rep-
resent zero in K can essentially be writfen, up to equivalence, in the
form f = o+ p@, + pp,, Where p is any generator of the ideal p and ¢,
does not represent zero in & (i =0, 1, 2). The meaning of ‘“‘exsentially’
is made precise in the formulation of Theorem 4.5, which will be proved
only in §5. In this section we shall see how (0S) follows from that resul
and we shall derive a few other corollaries.

‘We first introduce some definitions: throughout this section, K will
denote a complete field with a discrete valuation, p its (non-zero) prime
ideal, and p a fixed generator of p. An integral form i3 & homogencous
eubie polynomial f(a,, «+vy 0,) With coefficients in . We ghall use Dem’-
janov’s notation: a;, g, dyp @re the coefficients of of, @y, Dy %y, Te=
spectively; we do not distingnish between Giires Sy €60, but there iy &
difference between ay and @, which is sanctioned by the following
definition: f is called friangular if & = 0 whenever 7 < j.

The. coefficients a, will be called the principal coefficients of f. As
nsual, two forms f and ¢ are said to De equivalont if there exists a non-
singular projective transformation that carrvies one into the ofher. Ki-
nally, a principal coefficient a, of an integral form will be called admissible
¥ it is not divisgible by p% and the form ityelf will- be called admissiile
if all of ity principal coefficients are. The following lemma plays a key
role in the theory; roughly speaking, it says that ome can very often
decide whether a form represents zewo by merely looking af ifs coef-

{1%) The original conjocture was proved, aimmg others, by Doewjanov [4] {whew
_the residual characteristio y is not equal to ) and by . A. Springer [18] in 1lie general

case. These two proofs are short and slogant. Mors complicated arguments were also
found by Lewis, Davenport, ste. :
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ficients. (Theorem 4.5 will enable us to replace ‘“very often’ by ‘always’
after a suitable normalization.) _
Lumva 4.1("). Suppose the integral form f(wy, .ovy @,) does mot rep-
resent zero in K. Then if p divides ay, for some h, p also divides ay,;, ag
and ayy Jor all 4 and j. )
Proof. It will simplify fhe notation fo assume for each of- these
three asserfions that h =1, 1 =2 and § = 3.
(1) p|ay Vi. Suppose pta,, and let oy =1, &, =0 Vi> 1. Then

6 2
fo) mayst =0 ) ol 5l (a) = a0 (b,

" and an application of Hensel’s lemma would vield a non-trivial solution

of f in K&, which Iz confradictory.
(i) pla; Vi Suppose pta, and let @ = —agfty, Ty =1, @ =0
Vi > 2. Then, using (i), we see thab:

'f(w) =5 Gy By 00 - G, 25 =0 (p) and

U2y = ayed = 0 (p),
A,

a contradiction. . . .
! fg I Gyt Ghog + fhgq
(ii)) p|ayy Vi, j. Suppose ptay, and let @ = — )

5 Bing
@y =y =1, @; =0 Vi>3. Then, using (i) and (if}, we geb:

Sflz)y = @am§+a23m§ma+a’szﬂ’2 85+ g + By 0y a7 = 0 (P)
and

o (@) == Gyogaly 2 0 (P.),
O,

a contradiction. m

CUROLLARY 4£.2. If p®|ay, then p? also divides ay Vi.

Proot. IE f(@y, ..., ®,) does not represent zero, then f{w,, #s, 0, ..., 0)
has the sane property. So it is enough to prove this corollary for a form
in two variables, say :

Ty, @o) = 00 A 3 85 + g B 03 + tis T3

Let my == 4y /P, Ty = yg; then
‘ 4 a . -
9{Y1s o) 1= Df(@y, @) = E}gygﬁ‘ 'E;E‘ Y1 Y+ G ¥1Ys T P0Ys

{16} A specinl case of this lemma was already proved by Dem’janov; T, A. 3 pljmgef
([197, p. 518) also uses a version of this resnlt.
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Is integral, by the lemma. But ginee now the coefficient of ¥3 is o multiple
of p, another application of the lemmsa shows that a,,/p also is, hence
PE|ay,. ™ _

CoroLTARY 4.3. If p*la; and p*la;, then p?la,, V.

Proof. As in the foregoing corollary we may assume that fis a form

in three variables. Apply the transformation

A Y,
1 =y Wy =y

» b
and multiply by p. Again, using Corollary 4.2, we see that f is transtorined
into an integral form g such that the coefficient of y3 is pa, and that of
Y1Yels 15 @y /p. Hence, by Lemma 4.1, p*|a,,. m
The next corollary is a trivial consequence of the lemma:

COROLLARY 4.4. If play, and play, then p%|a,. If, moreover, play
then p2|ay;. u

&

Tuporen 4.5, If f(@y, ..., 2,) does not represent zero in IC, then f ds,
equivalent to an admissible form
Po (mll rhte mr) +p{f]1(m1? ey By .ﬁ’?,.+1, seey Bey ma»}«l! ety ‘r"gu) +.(p2(1i2 (wlr Ty m‘)b)’
where .
ptag, ..., Oy

19||%+1: RS a’a: Pﬂﬂa’s—[-l} vy a’ﬂ:

and where
Po(®1; o0y @), O (Bygyy ey ) 1= @, {0, vy Oy By e 8, 0,000, 0)
and
Ta(Warqy ooy By} 1= Pa{0, oy 0y @y vy @)

do not vepresent zero in the residue class field (™) . Furthermore, if
711y ey By) 1= PLlByy veny By) — 04 (@pry; ey ),

we may arrange Jor each term of v, to involve & least one variuble @; with
t<r and at most one with © > s, counting wmatltiplicitics.

We defer the proof of this theorem until the next section, bubt we
may aiveady note that the assertions about Ty AT 8RSY  COLNGQULENCON
of the covollaries proved above. Indeed, if we know that f is equivalent
to an admissible form as described in the firgt paxt of the theorem, wo.
may clearly shift into p2g, any term of pr, whose coefficient is a multipls
of p* After this operation, each term of 7, involves at most one variable
with ¢> s (by Corollaries 4.3 & 4.3) and at least ome with 43 (by
Corollaries 4.2 & 4.4), as asserted, :

(1) With the usunal couvention that the form which is identically zuro (oo
~ not represent zero! ’
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The whole point about the condition on v, is that it is precisely what
is needed to prove the converse of the theorem:

Prorosuron 4.6, If f(x,, ..., @,) 48 of the form described in Theorem 4.5,
then &t does not represent zero in K.

Proof. By the usual argument, @; = p&, ¥V < r, and hence

Propo(E1y oney &)+ @ulmy, ooy W) T PP (@yy o aey By) = 0.

Now ¢, = oy -1y and since each term of 7, involves at least one variable z;
with 4+ #, vy I8 a mwultiple of p; hence o, also is. Thus @, = p&; Vi< s;
and since each term of v, involves at most one variable z;, with ¢ > s,
v, i% then o multiple of p® (square!); hence we can divide by p, and the
regsulti follows. w

I iy now easy to prove (CS):

THROREM 4.7. Lel Ty, ..., 2,) be a oubic form defined over the quasi-
local field K, and let LIK be an algebraic extension of degree d prime to 3.
Then F represents zevo in K if and only if it does so in L.

Proof. Suppose I' does not represent zero in K ; then, by Theorem 4.5,
we may agsume that F is of the form @y - pe, - p2p,. Let = be a generator

L2 = O, ()
i [ I
KE—1ok = Ogl(p)

" of the prime ideal of L. Then p = 5-=®, where 5 is a unit of L, and the

residue class field ! of I is an extension of degree f of k. Since. 34d = ¢f
({17], prop. 3, p. 38, & cor. 1, p. 39), we have 341e and 31f; and we can
write F = g, + 57t +nia . : .

.We know that ¢, oy and e, do not represent zero in %, and henc
they do not rvepresent zere in I either (since K is quasi-local and 31f).
Tet ¢ = 3g-4p, with ¢ =1 or 2, and write:

- . 1 3 .
Y= i<y y=ata i r<igs; gy =a'n il s<ign,

Olearly, this transformation does not atfect solvability in I, and we have:
7 0y (Fpgry ooy W) = A0 (Yppas -+ Yads
5"52652(%4-1: S N ”29‘72(%»}-1? veuy Unh
and also (considering the special shape of z,):
TETL By voey B = T (Yrg oeny Yt

»
ATy (B, -y wn_) = 2075 (Ys +v ey Yu)s
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where 7 and v, are integral forms (over I) retaining the general shape
of 7, and vy:= @~ 0y. In particular, the last senience of Theovem 4.5
applies also to 7.

Therefore it -is enough to show that the form

PolYir oo ) F 101 Ypirs ooy Ya) H 70 (Fay ovvs Yu)b
+"?25’529{52 ys»{-l? cey B Jn).”l“'.”:!('yl: . r‘/n)}

does not represent zero in L. If p = 1, this is just Proposition 4.6 (with K
replaced by L), and if ¢ = 2, the proof 1§ only slightly more complivated
and will be left to the reader. m

- Among the corollaries of Theorem 4.7, we have the following:

PrOPOSITION 4.8. Tet % be a global field; then (CR) holds for the dluss
of cubie hypersurfaces satisfying the Hasse principle.

Proof. If V(%) = & and T satisfies the Hasse principle, there exists
2 prime p sueh that V(Tpp) @. If K|k is an extension of degree d prime
t0 3, there exists a prime $B over p such that the completion Ky/k, has
deuuee prnne 0 3 (since @ = }e;f;). By Theorem 4.7, V(Kg) = @, and

V() =

PROPO&ITIO\T 4.9. Let & be a quasi-local field and V < P a cubic hyper-
surface defined over Tt and such that V (k) =@, Then the degree d of any
k-rational v-cycle Z lying on V, of any dimension v, is a multiple of 3.

Proof. The proof is identieal with that of Theoremn 2.7: take a generic
k- mtlona] linear space IT of codimension »; then ITnZ is a k-rational
0- cyele %o, of degree d. By Theorem 4.7, d is a multiple of 3. (Z, may

be reducible, but the degree of every 1rreduelble component must he
divisibie by 3.) m

UoROLLARY 4.10. Let & be a global ficld and V < P o cubic hyper-

surface, defined over k and sobisfying the following condition:

()  There ewist o k-ralional hyperplane H and a prime p such that
(VAH) (k) = @.

Then the degree d of any k-rationsl r-cycle %

Iying on V, of any dimension
121, is a multiple of 3.

Proof. Without loss of generality we may assume that 7 iy irredue-
ible. Hence either |Z| = H, or ZnH is an {r—1)-cyele of degren ¢ lying
on VNH. In either case, we can apply Proposition 9, sinca VAl iy
a cubie hypersurface in P** and (VNH) (k) = (3. m

.9+ Proof of Theorem 4.5

{1y x 5 3 (after Dem’janov). We now proceed {0 the proof of Theorem
4.5, first under the assumption that the characteristic z of the residve
clags field is not equal to 3, since in this case the proof is very simple
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and entirely constructive. Our argument follows Dem’janov’s paper [4]

very closely, and we shall borrow two of his leramas..
Lemma 8.1, If f(@y, ..., 2,) does not represent zero in I, then f is equiv-

alent to o triangular form (char X # 3).

Proof, see [4], p. 839. m
We can thos assume without losy of generality that f is triangular;

we can adso assume that its prineipal coetficients a, are integral and not

divisible by p*% fov we can use transformations of the type @, > pax; to
bring it to thati shape if necessary. We claim that, as a matter of fact,
atl the coellicients ave then integral. Indeed, if some of the other coef-

ficienis were not integral, we condd multiply the whole form by a suitable

power of p s0 as to oblain an inbegral form, one of whose coefficients
would be a unif. But this would contradict Lemma 4.1, since all the prin-
cipal coefficients would be divisible by p.

We may therefore assnme that f is triangular and admissible. Tret

a8 renwmber the variables in such a way thatb

,p'ra'l?"'!a'.?" ,p“a‘r+l!"'7as; Pgua's-kli"'?a'ﬁ?

and let
| crey Bpy 04 0eey 0),
N R 1)

0oy -vvy @) = Floog,
Oy (@pagy ovey @) = f(0,..., 0, wr—m:_--

and

G (ws+i: an) =.f(0 s 0y Fopry - rvy T}

Clearly, the renumbering can be done in snch a manner that ¢, 5, and a,
are triangular.
The form f is now equal fo tp0+01 -]-%—l— g, where g contains all the

overlapping terms (like @@ %0, G,5%8,, ebte). Let Tof(wy, ..., o)

contain the terms of g whose coefficients are divisible by p% and z, (@, , ..., #,)
' 1. 1. 1. 1 .

all the remaining ones. Let o, = 50‘1, gy = —Eaa y Ty =—F, Ty = —— Ty}

a;l] these forms are i11teg1 al, according to Lemma 4.1, Finaily, let ¢y = o7y

The theorem w11] be pmved it we can thW that @,y oy and o, do not -
represont zero module p. And this is anofher lemma of Dem’janov’s
{[4], p- 891):

TEVMEA 5.2, IF (g, .oy @) 18 & Wriangular integral forim, all the prin-
cipal coefficients of which me fumts, then v vepresents zovo in K if and only
if it does so modulo p (y 5 3). ® |

The assumption x s= 3 iy essential in Lemma 5.2, as the following.
example shows: #7--5y° has the solution (1,1) modulo 3, but there is
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no non-trivial solution in Q. In fact, replacing @ by & -y, we get 28 + 32ty -
+ 3zy® +6y3, which clearly does mot represent zero in Q,, since it iy of
the form predicted by Theorem 4.5. In [3] we used this remark to con-
struct an effective proof of Theorem 4.5, valid without any restriction
on the charaeteristic; bat the argnment is laborious and does not present
an immense interest, However, the case of residual characteristic cqual
to 3 is important, since without it we cannot derive Proposition 4.8,
We shall therefore outline an alternative (non-construetive) approach,
following T. A. Springer [19].

(ii) x arbitrary (after Springer). This proof does not difter Very
much from the preceding one; Lemmas 5.1 and 3.2 are replaced by o
maximality condition on the number of variables ocowrring in P and
in o;. But the main idea of Springer was to use the formalism he had
developped for the study of quadratic forms in an earlier paper. Weo

- write the proof only in outline; the missing details are all in {19].

If 4e Z, let A, = {x< E* "up(f(m))?/@}. The M/s are D-modules,-
and - My > M; > M, > My =pM,. Let E = M,)M,, B, = M| M, ;
these are vector spaces over k = D/p. Using the completeness of I, it

2

is not difficult to check that dim B = 73 also Zdirn}ilﬂi = . We take
=0

is {E z) Fl z i ) = /
a bagis {g, ..., o} of By, {fy1;..y &} of By, {8y, ..., 8} of Zly, and
choose vepresentatives {e;, ..., e, such that

{61 oony b = My, {'3r+17 veey G} = M, {ts1as -y 0} © M,.

Then {e;, ..., ¢,} s a basis of K™ We may:write each vector we K" in
the form o = ¥, and then

fla} = 2 aiﬂcfz.'fjfl.:‘

ti=k

Let us define
-
O tmbidE,

LRl
1 7 1
_ 4+ ‘ ’ 1
oy (%) = » .f.}_: Ty &; §i  onle) = . ‘_}J i & Ej Env
r<igi s g il

Then f = @y-+poy+p°ey 40, where o contains overlapping terms only.
vine Ficiente L ae .
The principal coefficients ra of o; are units, by the definition of

the‘ M8, and therefore the o3 and f must have integral coefficients
a8 In Dem’janov’s argument. Finally it is easy to see that the oy dc;
not represent zero modulo p. Indeed, it oy{®) == 0 (mod p), With & == 5’&‘ 6
we can clearly assume that we M;. Hence f(a) = Po, () ::=.O‘(_4IJ¢{‘$,
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This implies that e M, ,, and therefore all the &’ are congruent to
zero modulo p, since the g’s form a basis of H;. = '

6. Curves and divisors. We now revert to the case of an arbitrary
ground field &, but we shall restrict our attention to the case of surfaces
(le. » = 3). The main idea we shall be using iz to construet curves I”
on the cubic surface V with relatively small genera, and to show that
they contain 0-cycles of sufficiently small degrees. In this section we
prove o few aoxiliary results we shall need in the study of those curves.

(8) Divikors on a eurve. For our purposes it is not natural to
call divisors only the simple subvarieties of I, since a double point of I”
is usually non-singulay on ¥ and is thus a perfectly legitimate 0-cycle.
We shall therefore adopt the following terminology:

A (k-rational) 0-cycle on I' is what Weil calls a {rational) 0-chain,
([227, p. 206); in other words singular points are tolerated (sometimes
welcome!). - i

A (F-rational) Weil divisor on I' is what Weil simply calls a (rational)
divisor; it consists of simple(™) points.

A k-Divisor on [ is a divisor in the sense of the theory of places of
k(1) ([2])

Fvery Waeil divisor detines a %-Divisor, and every k-Divisor defines

‘o O-cycle, in such 2 way that the degrees arve preserved; but there is more

structure in k-Divisors. _
The following theorem generalizes an old result of Poincaré on elliptie
curves ([11], chap. TV, pp. 178-180): .
TEEOREM 6.1. Let I' = P™ be an absolutely irreducible k-rational curve
of degroe m omd geometric genus g (over k) (*); suppose I’ contains a k-Divisor
E of degree e, and let & = ged(m, ¢, 2(g—1)}. Then T also contains posilive
-Divisors of degree 0 = j8, for every integer j such that 0 2 g. (And in fuct

it eomtaing at least o' of them.) .

Before proceeding to the proof, we may mention a few corollaries:
) (*%y Tn. what Tollows, the words ‘simple’, “absolutely simple’, ‘smooth’ and mon-
pingular’ arve congidered synmonymous {(Jacobian eriferion of simplicity}. A point
i called srogular’ if tho loeal ving at that point is regular. Smooth = xegular, hut
the converse doos not hold, unless b is perfect (ef. [26], pp. 263 I£).

(19) Thu theorem heeomes false if wo xoplace ¢ by the abselufe genus. The conelu-
glon of Corollary 6.2, for instancos dees not hold for the curve 12yted = g% P yS 4168,
which has no peint defined aver Fs((£). although the absolute genus iz zero (20).

(") As fthese asseriions may nof appear quite obvieus, we briefly sket.ch t}:te‘
proofs: (i) Since the eguation is homogeneous, v iy enough %o look for"solutl?ns in.
Fy[[£]]; then uso the p-adie argument of Proposition 4.6 (p = {f)). (iih Write X
=g 15y 15e, ¥ = ty, Z = #; tho alline equation becomes F? = X5, and this
is tho locus of (42, #%), with w = ¥/X2 m The relative genus is actually equal to 6,
sinco all the points are regular, . '
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COROLLARY 6.2 (Hilbert & Hurwitz [5]). Brery curve of genus 0 and
odd (resp. even) degree has infinitely many k-rational poinis (vesp. k-raiional
pairs of poinis). m

OOROLLARY 6.3 (Poincaré). 4 curve of genus 1 and degree m, contwin-
ing o k-rational set of e non-singular points, also contains a l-rational
set of 0 = ged{m, e) points. m

Note that Proposition 2.3 follows easily from this result. The next
corollary ecan be proved by a direct argument (consider the canonical
classl): _ ' '

OOROLLARY 6.4. A k-rational curve of genus 2 always contains poinds
with coordinates in k or in a quadratic extension of %. m

COROLLARY 6.5. .Let I' be an absolutely irreducible plane curve of degree 4,
defined over k. Suppose I" contains a k-rational set of d non-gingular points,
with d odd. Then I' also contains a k-rational set of 3 points. &

The last corollary is in & sense the extension of (CS) to guartic curves,
We already know (Example 2.8) that it cannot be substantially improved,

Proof of Theorem 6.1. (i) Assume firgt that I' is non-gingular,
Let K be a divisor in-the canonical class, and M a k-rational divisor of
degree m, obtained by taking the complete intersection of 1" with a generic
k-rational hyperplane in P™ If is known that K can be chosen E-rational
{23}, p. 13). Let D = uM+sF +=EK, where um e+ %(2g —2) = 4,
and let je N*. By the Riemann Inequality, 1(jD) = j6+1—g¢ is posiiive
as soon a8 6 = jd > g. Hence the divisor jD, which is L-rational, is linesvly
equivalent to a k-rational positive divisor @ of degree 0, by 23], Prop. 2,
pp. 5-6. The family of snch divisors has dimension HiD)—1= 06—y,
by [22], cor. 1, p. 265. This proves all the assertions of the theorem when I°
is non-singnlar. Note, however, that in Weil’s theory the genus (of a
non-singular curve) does not depend on the ground field %; but in this
case, ¢ is equal to the absolute genus(®), _

{ii} Let us now consider the general case of a curve I' which may
be singular; but for simplicity we shall assume that F is & Weil divisor.
Then the obvious thing to do is to take a non-singular model I™* of I
([13], chap. II, § 5.4, theorern 10); this comes equipped with a finite nor-
phism ™5 T, which is also a birational equivalence. Therefore we can
lift; the divisor 1 to a divisor p" (B) on(22) I™, and similaxly o Weil divisor I
of degree m to () p* (M), and then use part (i) ol the proof: the required

{*1y This is an expresgion of the Tact that the genus aon, ehinge only i the pre-
sence of regular points that are not smooth (see {12], covollavy, p. 182; el. nlso [26],
PD. 45, 254-255).

: (*) and degp™(B) = degE, sinco B is a Wil divisor! :

() A trivial remark: tho degroe of I™ {which anyway depends on the ehoice
of an embedding) is vsually difforent from that of I (645, there i no non-gingular
quartic of gemus 2 In P21}, Thatb is why we also have to Ll w ilivisar B Trom I to I'™,
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positive 0-cycle iy the projection of @ into I However, this argument
is valid only if % i3 perfect, since the existence of a non-singular model I™
defined over b, equipped with a morphism p: I™ I also defined over %,
i not guaranteed otherwise (see [22], Appendix I, cor. 2, p. 346 and
the remark that follows (*)).

(i) When & is imnperfect, we thervefore need another argument.
Since we know (footnote(')) that we have to use the relative genus,
it is natural to employ the Riemann—Roch theorem for function felds (™).
We can proceed as in (i), using the Riemann inegnality for funetion fields
([2], p- 22), except that there is no need to assume I non-singular. The
reason why (hix approach iy successful, iz that, in an example like
4 == a¥ 1, the local ring at the singular point (', 0) is regular of dimen-
gion |; hence it iy & diserete valuation ring as for the non-singular
pointy of I\ m _

(b} Curves on a snrface. The nexi result we need is a theorem
of Max Noether, which appeared in a famous memoir tio the Berlin Acad-
ewy ([10], §6):

ProposirroN 6.6 (M. Noether). Let I" be a divisor of degree m, lying
on & non-singulay surface T, < P* of degree w. The arithmetic genus of I’
satisfies the inequality '

2a(T) < B(B—1) (B—2) +3(lu—2p) (1+s5—4),

where m == lu—F (0K F < u)
Proof. The modern proof makes nse of the formula

: Nr+x
pm(r) == '—("ﬁ—) +1

(see [16], chap. IV, no. 8, or [13], chap. VI, §1.4, thgorem 1), where
K = (u—4)H iy the canonical clags, and J a plane section, of 7, ([13],
chap. IIT, § 5.4). Hence

{#%) Dol L) = F(I)2 31 (s —4) -+ 1.

Suppose for emmple that § == 0 (the only case we shall require). Tiet Iy
‘ 1 i | e 72 0
be a complete intersection with degree lu; them (Ig)* = (LH )2‘——1 !w,. R0
that p, (1) = $lu(l+p—4)+1, and all one needs to show Is fthat —

(*y Weil gives the standazd example y? = pP—1t (p > 2}, where the ainglﬂaln'ity

& (147, 0) caniot be resolved over k = Fy(l). . i o

e {#8) )Oxm Las o cheek that the field of constants is &, in other woxjds that & is
algebruieally closed in % (I}, This follows from the assumpiion Iﬁhm:.l“ ig absolutely
frreducible and from (921, chap. I, § 6, theorem 8, and §7, theoren 5. T am graft;e-ful
to Dy T. Barbooei for many ueeful comments on {his mection, zmd' also for drawing
my altention to the nice example of an R-irredueible curve for whmhfhe ahove con-
d.ﬂimm % not satistiod: in I(x) [y]/(e? +y2), one has (y/w)i+1 =0 (1)
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for a fixed degree m = Iy — the genus is maximal on complete inter-
sections. This follows at once from the Hodge Index Theorem ([9], lecture
18): deg(I'—17y) = 0 and therefore (['— I')? < 0. Hence

(PP < 2L-To)—(Iy)* = 2lm—PBu = ()% u

In the case of a cubic surface V = F,, the above formula yields

3T(I—-1)

Pa(-ro) = )

+1, for a complete intersection I, = VNF,. More

‘generally, for any divisor I" of degree m, one hag p, (I} < [ﬁ(ﬂ%:—?i] -1

This conld also be found by using the plane representation(*) of V, or
by computing the intersection numbers in the Néron-Severi group of V
(ef. [207), g

Unfortunately we shall also require an estimate for the genus of
a curve lying on a singular surface. As a matter of fact, Noether’s proof
works for mormel surfaces F,  PS, But the “modern” argument indi-
cated above does not even make sense in that case (there is no good inter-
section theory for singular surfaces)! In addition, there are serions diffi-
culties due to the fact that I" may not he a Cartier divisor. Tt iy therefore
preferable to go Dback to the old proof, using Weil divisors:

LEyMumA 6.7. The geometric genus of an irreducidle curve I of degree 31,
lying on an drreducible cubic surface V with only finiiely many singular
points(*), does mot exeeed '

3I(1—1)

Imax = 5 +1.

Prooi. For complete intersections, one still hag

34—
Pa(r) = "_(_2"1;)‘

((16], chap. IV, no. 7). Hence the proof given in [107, §6, is gtill valid:
Noether shows that, for any given degree m = lu, the genus iv maximal
on complete intersections; for this he nses only the basic properties of
the genus and the fact that the plane sections of B, (= V) ave in general
non-singular (this iz why we assume that there are only finitely many
singular points!). Tt may he worth, mentioning that his argument; depends
on an auxiliary result on non-singular plane curves, which is rather long
t0 prove but which is fortunately trivial in the case of cubies: indeod

+1

(26} see [21], pp. 12-17; and also [18], pp. 20-81 for an explicit deseription,
() For any surface ¥ < P9, this condition is oquivalent to saying that V is
normal; as follows from [25], eor. 12.12 and prop. 12.13,
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all it asserts is that, for positive divisors D 'of a fixed degree d, the index
of speciality is maximal on complete intersections; and since the canoni-
cal clasy of an elliptic curve is 0, there is nothing to prove! (I{K —I)
is always zero.) m

7. The descent on cubic surfaces. We now have all the necessary
tools o prove the following extension of Proposition 3.1: =

Tuwowsm 7.0, Let V< P8 be a now-singular cubic surface defined
over the perfect field o and containing a point P with coordinaies in an ol-
gobraie extension K[k of degree d prime to 3. Then there is on eatension Lk,
with degree 1, 4 or 10, such that V(L) 5= .

Proof, In view of Corollary 2.4, we may assume that % is infinite.
The swrgument I8 by induction on the degree d. Leti Z be the k-rational .

‘eyele gonerated by the conjugates of FP; wlo.g. k(P) = K, and so Z

congists of @ digbinet points (Corollary 1.2). Let 1 be the integer for which

313 —1) B+
5 )

Tn. what follows, we shall denote by F any k-rational surface of degree !
contaluing Z and such that V ¢ #y; by Lemma 1.6, we koow that such
surfaces do exist, wince ‘

(1) - 252
Leb f = 81(1+1)/2 — & be the extra freedom, i.e. the number of. conditions
we can further impose on the system of surfaces [F. The. idea of the_
proof is to apply Theorem 6.1 to a divisor I' = Vi F, of the linear system
cut out by ||. In a first stage (A), we shall aggume throughout 1}11@ ar-
gument that [" is an absolutely irreducible curve, evenlwhen we impose
addifional constraints on the system |Fy|. The reducible case 1ivﬂl be
considered soparately (B); as 2 matter of fact it Is essentially simpler!

(A) There are three subcases:

+L L d<

(i) d = 36—(%—}—)— 41, f> 3: In thiy ease, let & Dbe a k-vational set

of three points @y, Qu, @ on ¥ (e.g. the intersection of ¥ with a k-rational
line). Since f 3= 3, we can require F; to contam;la them as well. The cmves.g’
will therctore contain a k-Divisor of degree 1(*), so that & = ged(m = 31,
o w('-":;“;i:mu 1" oontaing a divigor of degree d and one of dogree 3 (the only reason
for introdueing the set 2 is to avoid difticulties with g.c.d.’s). Wo may cl.early assIMme
that Z is & Woil divisov, for if 2 were s multiple point of I, then all of 1Its eonj “f?:tci
would algo he, and the genus would be negative (pa (I} < d). .A s.tainrlaard: geome_lucaf
argument shows that we can also arrange for £ to be a Waeil dwmor:' the fami yp(j\r
surfacos F; containing the points of Z defines a rational trangformation ®: V—l
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e=1, 2(g ——_1)) =1, Since the geometric genus of I' does not exceed
2,(7). = 31{1—1)/2 41 (Proposition 6.6), we can find on V a k-rational
positive 0-cycle of degree 31(1—1)/2 +1 < d (Theorem 6.1). One at loash
of its k-irreducible components hag degree ¢ prime to 3, and there ig
an extension K'/L with degree d' < d such that V(K = @.
1l —
(i) d > a-1)

5 +1,f < 3: The argument is the same a8 in case (i),
except that there is no need to introduce an additional seé of three points:
6 = ged(3l, 4, 2g—2) 11, so that one can choose § = jé in Theovem 6.1

in such a way that it does not exceed (*)
3U(I—1) 81(1 -
.._._,2“__ + - ~1 < d

-t

(g—1)+20< (g —1)+21 < - 2 =
(providing f < I, which is certainly the case it I3 3; the case | =2 is
easily disposed of).(*%)
1l —
(i) d = A -1)
2
as large as 3I(1—1)/2+1 and we need a further trick to bring it down;
unfortunately, the method works only when f= 9, and this is whero the
descent breaks down when ¢ is equal to 4 or 10.
We take a k-rational set of three points Q1; @2y ¥ and impose on T,
the further condition that it should meet V at @1, Qs and @, with juulti-

+1, f>=9: In this case the genus of I' can be

(ef. the remark made after Bixample 2.8), where ¥ 5 > 4 {sines 3+ f). @ may not
be one-fo-one, bub it is easy to see that ils image is a surface, which gpans P, Since
there'.ls some freedom in lio choice of X, we may also assume that & (@) is non-singu-
%ar (\@r = 1,2, E%). The sections VA, are ecarried into hyperplane sections & (V)AL
in PV, If the lindar space IT spanned, by &(B1), P(Q;) and D () does not contain the
tangent plane T, at D(Qy), then there is a k-rational hyporplane II that contains
11" but not Ty ; and therofore @1 — hence also @, and @y — are gimple for the eorrespon-
ding F;. Therefore it suifices to show that we can choose 3 in such a way that /I .
. L(jh Gy,n be the grossmannian of m-planes in PR, and eonsider the vaelety
W e (T, X6, ) %G, consisting (generically) of triplos (G, 27, T) such that Qe X
= ILn¥ and II'> @(2). The fibro of tho firsl projoction WesV Xty above (@, [T)
corresponds to those Le G,y which contain @, and ut louss ono otlor point @y sueh
tj%a.t t,D.(Qz) sIIN®(F). This lagt sot iy ab most ane-dimoensional, Menee thoe (‘li:ﬁtmﬂi():l
c')I the 1’1]31'(;) does not excesd 1, sinee tho straight line 2 is andirely dotermined whon
the tfwn points ¢y and @, are given. Now the subsst of 7 x Gy i congisting of the puirs
(%1 1y} is only 2-dimensional. Thevelore the family of ‘bad’ linos (i.0. those which,
map to I7 = 1) has dimension at most equal to 3. This shows that il is always o8-
sible to choose a h-rational ine T in tie 4-dimensional apace ¢y in such o way that
T s %9,) ;1 re‘qi‘ired.l W (I owe this argnment to Prof, Zu.ris]ci.)"‘ '
“ & interval [g, (g—1) 42 T Tt

of 55 one ot eamy noﬁ?di(grisillai e+b ;]&eontmns 24 integers. Two of fhew are multiples
_ .(30} This argument can thus be wsed whonever F<i In tho case considered
here, it i5 casy to see that & is agtually equal to 1, 2 or 4.
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plicitiy ot least 2 (in other words the tangent space to F; at each point @,
must contain the tangent plane to V at @,). This represents nine linear
constraints (three for each @), and they can be satisfied since f3 9.
The curve I’ thus acquires three double points, and so its geometric genus
does not exceoed 3L —1)/2 —2. Since

107524,

y ) 3 T—1
B o ged (3, d, 20 2)ged (1, @ = 2HEH) -1) =\ it 1 =2 (4
= H

we obladn a descent from d 1o

d' e= di(ﬂz, 1) ) or M

2 2

-1,

This completes thé proof under the assumption that I is absolutely
irreducible. This is more or less the general case, because in view of the
gsecond theorem of Bertini (ree e.g. [24], § L.6) we may assume that the
surface Y is irreducible (**), and one might hope to prove that the divisor
cut out by F; on V can also be chogen irreducible. Unfortunately, it is
not very easy to show that there are no fixed components. However,
when I is reducible, the genus of each component is quite small and
the preceding argument should continue to apply. We use this idea to
complete the proof: _

(B) Wo assamo that I iy absolutely reducible and that the cycle Z
it contained in a k-irreducible component ¢ = ¢,u...w(,, which ftself
consists of » absolutely irreducible components O;.. We now have two
subeases: :

(1) r == 1. Without loss of generality, the degree m of Cis a multiple
of 3 (by Corollary 2.6}, say m = 31 with A < {; now the genus of ¢ does
nob exceed 34(4—1)/2 41 and the descent again follows from Theorem 6.1:
§ == ged (B4, d, 2g—2) divides 1, and so there is always a § # 0(3) such
that {*) '

; : - 3t(i—-1)-
[T j@ _535"1. 'u(ﬂ'z 1) -} 26 < Sﬂ(ﬁz 1) + 31 .____(_2___)_ < d.

(i) # 3= 2. Sinee the action of the Galels group ¢ on the Cy's is tran-
sitive, each of the components ¢; contains an equal number v of con-
jugates of L. Lot us asswma that Pe Oy; we know that ¢ is defined over
an extension Ik of degree r {Corollary 1.2). If €y is the only component .
containing I, then none of the conjugates of P belongs te more than
@1y There is uo fixed componont, boenuse the family of smfaces with degree I
conimining Z includos all the redueiblo surfaces which contain ¥, Thus_only ¥ could
be @ fixod somponent, and wo kuow that this is not the case. For esgentially the same:
reason, the gystem is not composite with a peneil.
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one component of €, and so »r = d. Since 34'd, both » and » are prime
t0 3; and since P has exactly » conjugates on ¢, it follows that P is defined
over an extension of I with degree ». The same situation ocours if P belongs
to precisely two components of O, except that(®) w = 24,

We may then assume that the degree u of 0y is a multiple of 3, say
# = 31, since otherwise V(L) % @ (Corollary 2.6) and since(%%)

[L: k] =r <3l §£—(~g~y——<d;

in addition 312 ru = 3r4, since all the ;% have the same degree (Lemina
1.3). We can therefore use the same argument as in case (i): on 0, we
can find an L-Divisor of degree 0, > ¢,, where g, is the genus of ¢, and
thiy induces a k-Divisor of degree 0 =0, on ¢. We need only checlk
that 6 < d; but{®)

3A(A—1)
2

The last inequality but one holds when A2 2; but 4 = L=y = 3, and
then U, contains an L-rational poing {by Corollaries 6.2 and 6.3).

This completes the proof, because P cannot helong fo more than
two components of 0. Indeed, if P belonged to s > 2 distinet components,
the total number of intersections i = 20,0, would be = {8 —1)d.

F<k

54+1 _ 8L{1—1)

g ——<d.
.)4'

6 =a-61gr(g1—1+22)§w( +2A) =7

On the other hand, it iz known that

i = pa{0)~ a0 +(r—1);

F=1
therefore, even if all the 2.(0;} are zero, the maximum value that i can
~take iy 3I(1—-1)/2-+r. Hence ‘

) .8l l—1 —
2 (s—-1)d< i é(—2~—) +r < ﬂ%wi)_ +d,
in contradiction with the fact thaf
d> ﬂ(—%ﬂ-—ﬁl) 41

If % is not perfect, the theorem remains true, at least in a #lightly
weaker form: . '

ProPOSITION 7.2. I (CR) holds (with n = 3) over all Fiwite ewtonsions
of k when d =4 or 10, then it holds for oll values af d.

(%%) It we knew that (C3) held over all finite extensions of & when d = 4 or 10,
we cc_)'Eﬂcl now complete the proof by induetion, ingtead of using the argument of the
following paragraph. ‘

(*3) exoept when I = 2, but this caso is trivial, .
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Sketich of proof. The argument is essentially the same, but one
fivst xhows that there is no loss of generality in assuming %(P)/% separ-
able. Indeed we may suppose that k(P)/k is either separable or purely
ingeparable of prime degree p, since otherwise there exists an intermediate
field. T E(L}/%k ix puvely inseparable, we use Proposition 3.1 to replace
it by a separable extension with degree equal o p--1 or smaller than p.'
Then the argument which served to prove Theorem 7.1 can he repes-
ted, with only minor changes: in particular, when d = p +1=31(1 —1)/2 +2,
one proceeds ay in ease (A) (#l) - instead of (A) (i) —in order to
geli an extension of degree strictly less than p. There is no problem with
the relative genus g, which does not exceed the arifhmetic genus, though
it ny be greater than the absolute genug. This follows from [12], Theorem
11, p. 181, which implies that & = g-~ 3§ does not depend on the ground
tield, and from [G], Theorem 2, p. 190, which asserts that — over & —
= 9,07, Ci [16], p. 8L (note). = '

8. Severi-Braner varieties. We shall now apply the result of the
previous section to prove (O8) in a few special cases. We recall that a
non-gingular cubic surface Iy sald to have property g, if it contains a
I-vational wet of » skew lines (terminology of B. Segre). Then we have
the following .

ProrosrrroN 8.1, (C8) - holds for the class of cubic surfaces V having
properiies g, oF 04

Proof. It is enough to prove the proposition when 4 is equal to 4
or 10. Suppose ¥V contains a k-rational triplet of lines and & = 4. Then
there iy another cubic surface Fy that containg the lines and the four
conjugates of P (this represents only 16 conditions). Let I' be the residual
intergsection of V and JF; with respect to the three lines. I' is a curve of
degree 8 and we claim that its arithmetic genuns is equal to 1. Indeed
it follows from formula (), used in the proof of IProposition 6.6, that

Pall) = $(I)E—pdegl'+1 = (T2 —2

and it suffices to prove that (I"? == 6. Bub the class of I' in the Néron—
Saveri group (™) of V is '

. 5 p
y=dn—dy =l —hy = 0 —4 3 1 —3 3,
Tml i=4

V (*) We uge tho notation of [20]: 4y is the class of a twisted cubie (corresponding

to a gencrie lino in the plane), and A, ..., A are the classes of a sob of six skew lines

(the excoptional divisors), m denotes the class of a plane seetion. :

The thres given lines beloug to two sextuplets [1], § 3, p- 70; therefore we are

allowed to eonsider thew as gencrators of the Néron-Severi group. For the same reason,

it would bo sufficiont to deal with the case g, working if necessary over a quadratic
extension of k.

-

4 — Acta Avlthmelles X¥X3
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so that (y)! =81 -3:16-3-9 = 6. Now, since /7 contuing the four eon-
jugates of P and has genus 1, it also contains a rational set of 2 Doiuts,
by Corollary 6.3. (The reducible, or degenerate, cases are hawmless, just
as in the proof of Theorem 7.1.)

The other cases ean be done similarly and ave deseribed in the fol-
lowing table: '

4 {eondi- | -

& I d ' Xy ‘ tiorns) oy
o R
3 ‘ 4 3 16 ' G
3 1 10 4 25 )1
[ 4 f & 40 3]

[ 10 G 52 30

This is very satistactory,‘except for the last row, where p, (1" == d (1},
But the (vector) space of sextics has dimension 84, and it includes 20
redueible surfaces containing ¥'; hence the freedom Jis equal to G4 —n2 1
== 11. Therefore we can certainly impose 9 additional constraints aul
require that 1"NI; should bhave three assisned double points. Then the
geometric genus will not exceed 10 —3 = 7, and this complotes the proof. m

It may be worth mentioning that, when % is a nunber field, tho
above résult also follows from a theorem of Chitelet on Severi-Brager
varieties (see [21), Theoreny 7, pp. 15—16) and from Proposition 4.8. But
we hﬂNQ made no assumptions on the field . Similarly, Skolewn’ vesuli;
that singular cubic surfaces verify the Hasse principle [187 has an ana-
logue in onr theory: ' : v'

. PrRoPOSITION 8.2, Over a perfect Fiold k, (OS) holds for the class of
singular eubic surfaces. ‘

‘Proof. By the known classification ‘of singular cubie surfaces (see [14]),
We may assuine, Without loss of generality, that V has only finitely many
singular points, and hence at most four. The cases 1, & and 4 a..lre“t]:i:vi:'lfl';
there is always. a k~1'q1:io1uml point(¥), Therefore we need orly  consider
the ease in whieh T has exactly thres donble points. l '

Suppose fivst fhat d = 4 then there 8 4 - rabional quartic cmeve S
containing the 4 conjugates of P and the 3 donble boinks (e e inbor-
section of two quadrics, passing also through. o 'pm'h'lz not on 1, so hat

T 3 mtets i p "
I"¢ ¥). The iutersection of /" and V lus degree 12 and thus coutaing

{¥5) The casicst way to see that in the eago 4,15 to take any
the Tour double points. The residual interaeelion is o k-va

argument can he used to prove that s normal culie swtace
singular points. -

twisbod enbic containing
tlonal point. The swnoe
caunot have more than 4
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g residioal set of 2 points (since eaclh of the donble points counts as two
intersections). Now duppose 4 == 10; then there iy a curve I of d egree 9
going through the 16 conjugates of P, the 3 double points and an ad-
ditionnd wet of 3 points (e.g. the intersection of two cubies, passing also
through a poiut not on ¥, so that [' ¢ V), The intersection of 1M and V
has degree 27 and thus contains u residual set of § points (27 —10—3-2 - 3).

Thus the two cases d = 4 and d = 10 are solved. It remains to see
whether wo can apply Theovem 7.1, since ¥ is singular! Now, we made
the assmpiion of non-singularity only in order to avoid difficulties with
fhe genas. But, in part {A) we gsed only the formula giving the arith-
metie gonus of o conaplete intersection, and we saw in the proof of Lemma
6.7 that this remaings valid when V is singular. In the first subease of
part (B}, we also requived an upper bound on the geometric genns of
an irreducible curve of degree 31, which was not necessarily a complete
interyeetion, and for thix we definitely need Lemma 6.7 (but a weaker
swtimate would suffice). We also used this result in the second subcase
of part (B), but it is simpler to make use of the remark contained in foot-
note (™).

Finslly, the formuala

Pa(C) = D' py(Cy)+i—(r—1)
I

is o general theovein on non-singnlar surfaces, and we aquld have blown
up the singulavitics of V before applying i6(*). m .
What happens in the general case when d = 4 or 10% If the con-
jugates of P lie in u plane or on a quadric respectively, ‘the_ argument
used in § 7 still applies; but otherwise the genus of Vn.F; cannot be made
sufficiently small. This is not unlike the case of quartic curves, for which
we know (Example 2.8 and Corollary 6.5) that the most we can get is
a descent down to degree 3. Of course, we have seen many examples
in which the conjecture depends more on the field % than on the geometry
of the rurface. And o one may still be of the opinion that (CS) is plaus-
iblo at leagt when & is a global field, since the local result holds. But

it i% not clear how one could prove a globalization theorem.
Added in proof. As [ found oub vecently, Theorem 6.1 has also been discussod

hy B. Segre in Rendiconti Acead. Naz. Lincei, 13 (1952), pp- 355--340,
T Another argument for Proposition 8.2, which in partioular avoids the nse of

Toemyma 0.7, will appear shortly in Compogiido Mathematicn.
I is wy pleasant duty io thank Professors Casgels, ' Swinnerton-Dyer and

Zariaki for their very gencrons help while T wus engaged in this regem'ch.
(36 Alternalively, we may use the much more genoral formula established by
Hironaka: [6], Theorom 3, p. 180, : :
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Comportement local des fonctions
a série de Fourier lacunaire

par
Mrowmn BruNsAw (Le Belvedere, Tunis)

En hommage ou professeur A. Zygmund

La propriété 1a plus rvemarquable des fonctions & série de Fourier
lacunaire est qu’il suffit de connaftre leur comportement au voisinage
de Porigine pour en déduire leur comportement au voisinage de chaque
point. Mais si on s’interesse non plus & leur ,nature”, mais plus précisé-
ment & leur ,,allure”, il est néeessaire, pour cobtenir une propriété de cet
ordre, d’adjoindre & la notion de ,lacunarité” celle ,,d’équilibre”.

I. Séries de Fourier lacunaires et équilibrées. _
(a) Suites équilibrées. T désigne le tore R/Z identifié a [, i[.
{-} est la partie fractionnaire. Une suite (u,) de nombres réels strictemens
positifs, tendant vers -+ oo, est dite équilibrée si, pour presque tout 0o <1,
la suite & valeurs dans TV
{1) —({pty @}y {ftn4a1 %}y -0 (b e}y )

admet 0 pour valeur @’adhérence; par ailleurs elle est dite lacunaire st

(2) inf L2415 1
neN fhy,
et & rapports bornds si *
(2/) Sup uu'n,-il < —|-OO.
neWN [y '

Pour toul nombre réel 6> 1, la suite (6%) est équilibrée (voir (63, En

revanche il existe des suites lacunaires et & rapports Dhornés gui ne sont

pas Gauilibrées; ’est ainsi le cas de la suite (2™ 41).
() Fonetions & série de Fourier équilibrée. Une fonetion
f: TR, admettant un développement en série de Fourier
. Cdea . '
2 (5,008 27005, @ + B §in D7y, )
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