On the greatest prime factor of $2^p - 1$ for a prime p
and other expressions

by

P. Erdős (Budapest) and T. N. Shorey (Bombay)

1. For a natural number a, denote by $P(a)$ the greatest prime factor of a. Stewart [10] proved that there exists an effectively computable constant $c > 0$ such that

$$\frac{P(2^p - 1)}{p} \geq \frac{1}{2} (\log p)^{1/2}$$

for all primes $p > c$. In § 2, we shall prove that $P(2^p - 1)/p$ exceeds constant times $\log p$ for all primes. In § 5, we shall prove that for 'almost all' primes p,

$$\frac{P(2^p - 1)}{p} \geq \frac{(\log p)^2}{(\log \log p)^2}.$$

For the definition of 'almost all', see § 5. Let $u > 3$ and $k \geq 2$ be integers and denote by $P(u, k)$ the greatest prime factor of $(u+1) \cdots (u+k)$. It follows from Mahler's work [6a] that $P(u, k) > \log \log u$. See also [9] and [10]. In § 4, we shall show that for $u \geq k^{32}$

$$P(u, k) > c_k k \log \log u$$

where $c_k > 0$ is a constant independent of u and k. It follows from well-known results on differences between consecutive primes that $P(u, k) \geq u + 1$ whenever $k \leq u \leq k^{32}$. Let $a < b$ be positive integers which are composed of the same primes. Then, in § 3, we shall show that there exist positive constants c_a and c_b such that

$$b - a \geq c_a (\log a)^3.$$

Erdős and Selfridge [5] conjectured that there exists a prime between a and b.

The proof of all these theorems depend on the following recent result on linear forms in the logarithms of algebraic numbers.

Let $n > 1$ be an integer. Let a_1, \ldots, a_n be non-zero algebraic numbers of heights less than or equal to A_1, \ldots, A_n respectively, where each $A_i \geq 27$.
Let β_1, \ldots, β_n denote algebraic numbers of heights less than or equal to B ($B \geq 27$). Suppose that a_1, \ldots, a_n and β_1, \ldots, β_n all lie in a field of degree D over the rationals. Set

$$A = \log A_1 + \cdots + \log A_n, \quad E = (\log A + \log \log B).$$

Lemma 1. Given $\varepsilon > 0$, there exists an effectively computable number $C > 0$ depending only on ε such that

$$|\beta_1 \log a_1 + \cdots + \beta_n \log a_n - \log e|$$

exceeds

$$\exp\left(-\left(\log D\right)^C (\log A)^\varepsilon (\log (\log B))^2 \exp^{2\varepsilon^2}\right)$$

provided that the above linear forms do not vanish.

This was proved by the second author in [9]. It has been assumed that the logarithms have their principal values but the result would hold for any choice of logarithms if C were allowed to depend on their determinations.

The earlier results in the direction of Lemma 1 (i.e. lower bound for the linear form with every parameter explicit) are due to Baker [1] and Ramaehandra [8]. Stewart applied the result of [1] to obtain (1). We remark that the result of [8] gives the inequality (1) with constant times $(\log p)^{1/2}/(\log \log p)$. The theorems on linear forms of [1] and [8] also give (weaker) results in the direction of the inequality (2) and the other results of this paper.

2. For a natural number a, denote by $o(a)$ the number of distinct prime factors of a.

Lemma 2. Let p ($p > 27$) be a prime. Assume that

$$P(2^p - 1) < p^2.$$

Then there exists an effectively computable constant $c_i > 0$ such that

$$o(2^p - 1) \geq c_i \log p / \log \log p.$$

We mention a consequence of Lemma 2.

Theorem 1. There exists an effectively computable constant $c_i > 0$ such that

$$P(2^p - 1) \geq c_i \log p / \log \log p$$

for all primes p.

Proof. Assume that

$$P(2^p - 1) < p^2.$$

Without loss of generality, we can assume that $p > 27$. Then $P(2^p - 1) \leq p^2$. By Lemma 2, we have

$$o(2^p - 1) \geq c_i \log p / \log \log p.$$

By using Brun-Titchmarsh theorem ([7], p. 44) and the fact that the prime factors of $2^p - 1$ are congruent to $1 \mod p$, we obtain

$$P(2^p - 1) \geq c_i p \log p$$

for some constant $c_i > 0$. Set $c_i = \min(1, c_i)$. Thus

$$P(2^p - 1) \geq c_i p \log p.$$

This completes the proof of Theorem 2.

Proof of Lemma 2. Let $1 > \varepsilon > 0$ be a small constant to be suitably chosen later. Set

$$r = [\varepsilon \log p / \log \log p] + 1.$$

We shall assume that

$$o(2^p - 1) \leq r$$

and arrive at a contradiction. Write

$$2^p - 1 = q_1^{e_1} \cdots q_r^{e_r}$$

where for $i = 1, \ldots, r$, $q_i \leq p$ are primes and $u_i < p$ are non-negative integers. We have

$$2^p - 1 = \prod_q (2^p - 1) - 2^{p - 1} = |q_1^{e_1} \cdots q_r^{e_r} - 2^{p - 1}|.$$

From here, it follows that

$$0 < |u_1 \log q_1 + \cdots + u_r \log q_r - p \log 2| < 2^{p - 1}.$$

By Lemma 1, it is easy to check that

$$|u_1 \log q_1 + \cdots + u_r \log q_r - p \log 2| > \exp(-p^{1/2})$$

where $D > 0$ is a certain large constant independent of ε. If we take $\varepsilon = 1/D$, the inequalities (3) and (4) clearly contradict each other. This completes the proof of Lemma 2.

For any integer $a > 0$ and relatively prime integers a, b with $a > b > 0$, we denote $\Phi_n(a, b)$ the nth cyclotomic polynomial, that is

$$\Phi_n(a, b) = \prod_{\zeta^n = 1} (a - \zeta^n b)$$

where ζ is a primitive nth root of unity. We write

$$P_n = P(\Phi_n(a, b)).$$

Stewart [10] proved the following theorem.

Theorem 2. For any K with $0 < K < 1/\log 2$ and any integer $n (> 2)$ with at most $K \log n$ distinct prime factors, we have

$$P_n / n > f(n)$$
where \(f \) is a function, strictly increasing and unbounded, which can be specified explicitly in terms of \(a, b \) and \(K \).

The proof of Theorem 3 depends on Baker's result [3] on linear forms in the logarithms of algebraic numbers. If that is replaced by Lemma 1 in Stewart's paper [10], then the method of Stewart [10] gives the following result for the size of \(f \).

Theorem 3. We have

\[
f(n) = c(n)(\log n)^{\delta} / \log \log n
\]

where \(\delta = 1 - K \log 2 \) and \(c(n) > 0 \) is an effectively computable number depending only on \(a, b \) and \(K \).

3. Let \(b > a \geq 2 \) be integers. We recall that \(a \) and \(b \) are composed of the same primes if

\[
a = p_1^{\nu_1} \cdots p_s^{\nu_s}, \quad b = p_1^{\nu_1} \cdots p_s^{\nu_s}
\]

where \(p_1, \ldots, p_s \) are positive primes and \(\nu_1, \ldots, \nu_s, v_1, \ldots, v_s \) are positive integers. We prove the following.

Theorem 4. Let \(b > a \geq 2 \) be integers that are composed of the same primes. Then there exist effectively computable positive constants \(a_0 \) and \(c_3 \) such that

\[
b - a \geq 8a_0(\log b)^{\delta_3}
\]

Proof. Let \(0 < \delta_3 < 1 \) be a small constant which we shall choose later. Without loss of generality, we can assume that \(a \geq a_0 \) where \(a_0 \) is a large positive constant depending only on \(\delta_3 \), since

\[
b - a \geq 2(\log a_0) \log a_0 \geq (\log a_0) \log a
\]

whenever \(a < a_0 \). We shall assume that

\[
b - a < (\log b)^{\delta_3}
\]

and arrive at a contradiction. Recall the expressions (5) for \(a \) and \(b \). Notice that

\[
p_1 \cdots p_s \leq b - a < (\log b)^{\delta_3}
\]

From here, it follows that

\[
s \leq 8a_0(\log b) / \log \log b.
\]

Further observe that \(P(a) = P(b) < (\log b)^{\delta_3} \) and the integers \(u_1 \) and \(v_i \) do not exceed \(8 \log b \). Now

\[
\left(\frac{b}{a} - 1 \right) = \frac{1}{a} (b - a) < \log b / a < a^{-1/2}.
\]

Further

\[
a^{-1/2} > \left(\frac{b}{a} - 1 \right) = [p_1^{\nu_1} \cdots p_s^{\nu_s} - 1] \]

\[
> \frac{1}{2} [(u_1 - v_1) \log p_1 + \cdots + (u_s - v_s) \log p_s] > 0.
\]

From these inequalities, we obtain

\[
0 < [(u_1 - v_1) \log p_1 + \cdots + (u_s - v_s) \log p_s] < a^{-1/2}.
\]

By Lemma 1, it is easy to check that

\[
[(u_1 - v_1) \log p_1 + \cdots + (u_s - v_s) \log p_s] \geq \exp\left(-a^{1/2}\right)
\]

where \(E > 0 \) is a certain large constant independent of \(\delta_3 \). If we take \(\delta_3 = 1 / 4E \), then these inequalities (6) and (7) clearly contradict each other. This completes the proof of Theorem 4.

Let \(b > a \geq 2 \) be integers such that \(P(a) = P(b) \). Then Tijdeman [11] proved that

Theorem 5.

\[
b - a > 10^{-\log b}.
\]

The proof of Tijdeman [11] for this theorem depends on Baker's work [3] on \(y^2 = x^3 + k \). We remark that Theorem 5 follows easily from Lemma 1. The details for its proof are similar to those of Theorem 4.

Theorem 6. Let \(u > 3 \) be an integer. Then

\[
P((u + 1)(u + 2)) > \frac{c_3 u \log \log u}{\log \log \log u}.
\]

Theorem 6 also follows immediately from Lemma 1. The details for its proof are similar to those of Theorem 4. We shall use Theorem 6 for the proof of Theorem 7.

4. In this section, we shall prove the following

Theorem 7. Let \(u > 3 \) and \(k \geq 2 \) be integers. Assume that

\[
u \geq k^{2h}.
\]

Then there exists an effectively computable constant \(c_{11} > 0 \) independent of \(u \) and \(k \) such that

\[
P(u, k) > c_{11} k \log k \log u.
\]

Proof. In view of Theorem 6, we can assume that \(k \geq k_0 \) where \(k_0 \) is a large constant. Erdős [4] proved that \(P(u, k) > c_{12} k \log k \) for some constant \(c_{12} > 0 \). So it is sufficient to prove the theorem when

\[
\log k < \log \log u.
\]

4 — Acta Arithmetica XXX:3
We write, for brevity,
\[P = P(u, k), \quad r = [2\pi(P)/k] + 2. \]

Let us write \(n = m' m'' \), where \(u < n \leq u + k \) and \(m' \) is the product of all powers of primes not exceeding \(k \) and \(m'' \) consists of powers of primes exceeding \(k \). Observe that
\[\sum_n \omega(m'') \leq \pi(P). \]

Hence the number of integers \(n \) with \(\omega(m'') \geq r \) does not exceed \(k/2 \). Hence there exist at least \([k/2] \) integers \(n \) with \(\omega(m'') < r \). For each prime \(q \leq k \), omit all \(n \) for which \(q \) divides \(n \) to some power. If \(\pi \) denotes omission of these \(n \), then it follows, by an argument of Erdős, that
\[\prod_n m' < k^2. \]

The number of \(n \)'s counted in this product is at least
\[[k/2] - \pi(k) \geq k/4. \]

So there exist, among these \(n \), the integers \(n_1, n_2 \) \((n_1 \neq n_2)\) whose \(m' \) do not exceed \(k^2 \). Write
\[m_1 = p_1^{m'_1} \ldots p_r^{m'_r}, \quad m_2 = q_1^{m'_1} \ldots q_r^{m'_r} \]

where \(m'_1, m'_2 < k^2 \), \(p_1, \ldots, p_r, q_1, \ldots, q_r \) are primes greater than \(k \) and not exceeding \(P \). Observe that for \(i = 1, \ldots, r \), \(u_i \) and \(v_i \) are non-negative integers not exceeding \(\log P \). Using (8), we get
\[0 < \left| \sum_{i=1}^r u_i \log p_i - \sum_{i=1}^r v_i \log p_i + \log \left(\frac{m'_1}{m'_2} \right) \right| < u^{-1/6}. \]

By Lemma 1 and (9), the left-hand side of this inequality exceeds
\[\exp \left(-2r \log P \log \log u \right)^{2u'}. \]

Now the theorem follows immediately from (9), (10) and (11).

The following theorem follows from the work of Baker and Sprindžuk.

Theorem 8. Let \(f(x) \) be a polynomial with rational integers as coefficients. Assume that \(f(x) \) has at least two distinct roots. Then for every integer \(X > 3 \),
\[P(f(X)) > c_4 \log \log X \]

where \(c_4 > 0 \) is an effectively computable constant depending only on \(f \).

By using a result of Baker on diophantine equations, Keates [6] proved Theorem 8 for polynomials of degree two and three. The proof of Baker and Sprindžuk for Theorem 8 depends on \(p \)-adic versions of inequalities on linear forms in logarithms. We remark that it is easy to deduce Theorem 8 from Lemma 1.

5. A property \(U \) holds for 'almost all' primes if given \(\epsilon > 0 \), there exists \(\epsilon > 0 \) depending only on \(\epsilon \) such that for every \(\epsilon > \epsilon \), the number of primes \(p \leq x \) for which the property \(U \) does not hold is at most \(\epsilon r \). We shall prove that for almost all primes \(p \),
\[\frac{P(2^p - 1)}{p} > \frac{(\log p)^2}{(\log \log p)^3}. \]

In fact we shall prove that

Theorem 9. Given \(\epsilon > 0 \), there exist positive constants \(c_5 \) and \(c_6 \), depending only on \(\epsilon \), such that for every \(\epsilon > \epsilon \), the number of primes \(p \) between \(n \) and \(2n \) for which
\[\frac{P(2^p - 1)}{p} < c_5 \left(\frac{\log p}{\log \log p} \right)^2, \]

is at most \(c_6 n \log n \).

It is easy to see that the inequality (12) for 'almost all' primes \(p \) follows from Theorem 9.

Proof of Theorem 9. We shall assume that \(n \) is a large positive constant depending only on \(\epsilon \). Set
\[r = \left[\frac{\epsilon n}{\log \log n} \right] + 1. \]

Assume that there are \(r \) primes \(p_1, \ldots, p_r \) between \(n \) and \(2n \) satisfying
\[\frac{P(2^{p_i} - 1)}{p_i} < \left(\frac{\log p_i}{\log \log p_i} \right)^2 \quad (i = 1, \ldots, r). \]

By Lemma 2,
\[\omega(2^{p_i} - 1) > c_4 \frac{\log p_i}{\log \log p_i} > c_4 \frac{\log n}{\log \log n} \]

for every \(i = 1, \ldots, r \). Observe that for distinct \(i, j \) \((1 \leq i, j \leq r)\), the prime factors of \(2^{p_i} - 1 \) and \(2^{p_j} - 1 \) are distinct. This is because if \(q \) is a prime number and \(q \) divides both \(2^{p_i} - 1 \) and \(2^{p_j} - 1 \), then \(q \equiv 1 \pmod{p_i} \) and \(q \equiv 1 \pmod{p_j} \). Therefore \(q \equiv 1 \pmod{p_i p_j} \). Since \(p_i p_j > n^2 \), the inequality (14) is contradicted. Hence
\[\sum_{i=1}^{r} \omega(2^{p_i} - 1) > c_4 r \frac{\log n}{\log \log n} > c_4 \frac{\log n}{\log \log n}. \]

Denote by
\[P = \max_{1 \leq i \leq r} P(2^{p_i} - 1). \]
If a prime number q divides $2^p - 1$ for some $i = 1, \ldots, r$, then

(i) $q \leq P$.
(ii) $q - 1 = \alpha p_i$ with an integer α.
(iii) $1 \leq \alpha \leq (\log n)^4$.

By Brun's Sieve method, we get

\[\sum_{i=1}^{r} \omega(2^p - 1) \leq c_4 P \frac{\log \log n}{(\log n)^4} \]

for some constant $c_4 > 0$. (For this, see page 207 of a paper of P. Erdős: On the normal number of prime factors of $n - 1$ and some related problems concerning Euler's ϕ-function, The Quarterly Journ. of Math. 6 (1935), pp. 203-213.) Comparing (15) and (16), we obtain

\[P \geq c_{1,2} \left(\frac{\log n}{\log \log n} \right)^2 \]

for some positive constant $c_{1,2}$ depending only on ε. Observe that the primes p_1, \ldots, p_r lie between n and $2n$. Now the theorem follows immediately.

Remark. In fact the inequality (16) with $c_4 P \frac{\log \log n}{(\log n)^4}$ is valid.

For this, one can refer to the above mentioned paper of Erdős. In view of this, the Theorem 9 holds with

\[\frac{P(2^p - 1)}{p} < c_4 \frac{(\log p)^3}{(\log \log p)(\log \log \log p)} \]

in place of the inequality (18).

References