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On the greatest prime factor of 2°—1 for a prime p
and other expressions

by

P. Brpdy (Budapest) and T. N. SwoRmY (Bomtbay)

1. For o natural number a, denote by P(a) the greatest prime factor
of @, Stewart [L0] proved that there exists an effectively computable
congtant ¢ > 0 such that

PaP—-1
(1) ¢ V*_(M...w...__) ,>/ %(Iogp)lh
. 2
for all primos p > ¢, Tn § 2, we shall prove that P (27 — 1) /p exceeds constant
times log p for all primes. In § 5, we shall prove that for ‘almost all’ primes p,
P2°—1) . (logp)*
= 3
» (loglogp)
For the definition of ‘almost all’, see § 5. Lot « > 3 and k > 2 be integers
and. denote by P{wu, k) the greatest prime factor of (w--1)... (u-+k). It
follows from Mahler’s work [6a] that P(w, k) » loglogu. See also [6]
and. [8]. In § 4, we shall show that for w > #**

(2)

P, k) > e, Flogloga

where ¢; > 0 is a constant independent of u and k. It follows from well-
known resalts on differences between consecutive primes that P(w, k)
= ool 1 whenever k=g <5 B Let @ < b be positive infegers which ave
compoxed. of the same primes. Then, in §3, we shall ghow that theve exist
positive constantd ¢, and 6 such that

b e @ 22 0y (log a)®s,

Erdos and Seltrideo (5] conjectured that there exists a prime between o
amd - b, _ . ‘ _

The proof of all these theorems depend on the following recent result
on linear forms in the logarithms of algebraic numbers.

Let » > 1 be an integer. Lt ay, ..., a, be non-zero algebraic numbers
of hieights less than or equal to 4,, ..., 4, respectively, where each 4, > 27.
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Let 8, ..., B,_, denote algebraic numbers of heights less than or equal
to B (= 27), Suppose that a,,..., a, and By ooy Bpoy all lie in a field of
degree D over the rationals. Set

=log4d,..logd,, = (log A +loglog B).

Limmnea 1. Given &> 0, there emists am eoffectively computable number
C > 0 depending only on s such that

lﬁllog iy +...+ lg?z—llog Aypr — IOg%f
exceeds
exp ( — (D)™ A (log A)* (log(AB))gEg’”“”")
provided that the above lincar forms does not vamish.

This was proved by the second author in [9]. It has been assumed
that the logarithms have their principal values but the result would,

hold for any choice of logarithms if O’ were allowed to depend. on their

determinations.

The earlier vesults in the direction of Lemma 1 (i.e. lower bound
for the linear form with every parameter explicit) are due to Baker [17
and, Ramachandra {8]. Stewart applied the result of [1] to obtain (1).
We remark that the result of [8] gives the inequality (1) with constant
times (logp)'*/(loglogp). The theorems on linear forms of [1] and [8]
also give (weaker) results in the direction of the inequality (2) and the
other results of this paper.

2, For a natural number a, denote by w(a) the number of distinct
- prime factors of 4.
Lmmyma 2. Let p (> 27) be a prime. Assume that

| P(2P 1) < pt. |
Then there exists an effectively computable constant ¢, > 0 sueh that
' @ (2% —1) 2 ¢, logp/loglogp.
We menfion a con.sequence of Lemma 2.

TueorEM 1. There evists an effectively compulable constand ep = 0
such that

P(2P—1) = eyplogp
fo'r all primes p.
Proof. Assume that
P(2¥ 1) < plogp.

Wmhout loss of generality, we ean assume that p > 2
By Lemma 2, we have

w(22—1) =

7. Then P(2% 1) < p2

glogp/loglogp.
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By using Brun-Titchmarsh theorem ([7], p. 44) and the fact that the
prime factors of 2” —1 are congruent to 1 mod p, we obtain ‘
P27 --1) 2= cplogp
for some constant ¢; > 0. Set ¢

P2

= min(l, ¢). Thus
1)z eplogp.

This completes the proof of Theorem 2.
Proof of Liomma 2, Let 1 > ¢, > 0 be a small constant to be wuitably
chosen later. Seb
# = [ logwpfloglogp] +1.
We shall assume that
w(2F —1) <1

and arrvive at a contradiction. Write

2Pl =gt gy

where for ¢ =1, ...

) ¥y ;5 p* are primes and w; < p are non-negative .
integers. We have

270 o (2P —1)27P 1 = g ... g 27T — 1.
From here, it follows that
{3) 0 < |udogg, 4... +ulogg, —plog2] < 277,
By Lemma 1, it is easy to check that _
(4) [ logq, +... +u,logg, —plog2| > exp(—p7)

where I > 0 is a certain large constant independent of &,. If we fake
g = 1[40, the inequalities (3) and {4) clearly econtradiet each  other.
Thix completes the proof of Lemma 2. .

TFor any integer # = 0 and relatively prime integers a, b with ¢ > b > 0,
wo denote @,(a, b) the nth cyclotomic polynomial, that is

e
b, (a,8) = [[ (a—t'D)
(i o

whers. £ is w primitive sth root of unity. We write
k 'Pn == P(Qﬁn(a, b))'

Stewart [10] proved the following theoren.
Tumorey 2. For any K with 0 < K < 1/log? and any inieger n (> 2);
with at mogt I lu;., logn distinet pmme factm s, we hcma

Py jn > fln
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where f 48 o function, strictly increasing and unbounded, which can be specifiod
caplicithy dn terms of o, b and K,

The proof of Theorem 3 depends on Baker’s result [3] on linear
forms in the logarithms of algebraic numbers. If that iy replaced by
Lemma 1 in Stewart’s paper [10], then the method of Stewart [10] gives
the following result for the size of f.

TrroreEM 3. We lLave

Flwy = e, (logny* loglogn

where 2 = 1—Klog2 and ¢, > 0 458 an effectively computable number de-
pending only on o, b and I,

3. Let b > a>2 be integers. We recall that ¢ and b ave compoxul
of the same primes if

(5) 4 =gl ph, b =i gl

where py, ..., Py arve positive primes and ,, ..
integers. We prove the following

TaeoREM 4. Let b > o 2> 2 be integers thal are composed of the same
primes. Then thers emst effectively computable posilive constants ¢, and o,
such that :

vy Ugy ¥y, ..., B, ATe posilive

b —a = ey (loga)®.

Proof. Let 0 < g3 <1 be a small constant which we shall choose
later. Without loss of generalify, we can asswme that a3 e wlere a,
is a large positive constant depending only on e,, since

' b—a>2 = (2/logasloga, = (2/loga,)loga
whenever o < a,. We shall assume that
b—a < (loga)™

and arrive at a contradietion. Recall the expressions (i) for 4 and b. Notice
that -

Py P 5 b—a < (loga)e
“Trom here, it fo’llowQ that
‘< 8.5-210? _lgg_a
~ loglogloga
Further observe that P{a) = P(h) < (loga)™ and the integers w, and v,

do not exceed 8loga. Now

b 1 lo
(,—»1) =—~(b—-a)<—-gﬂ'~< a1
o o @ o
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Further
~1f2 b g U Ug—V,
@ > E—wl = Pyt L ple e

> F (g~ 91)108 Dy . . . 4 (4, — v,) logp,| > 0.
From these inequalities, we obtain
{6) ' 0 < Huy —ovy)logp, +. .

By Lewmma 1, it is easy to check that

A (g — v, log py| < 7,

(7 (2 —v)log py 4.

where B > 0 i3 a certain large constant independent of £,. If we take
ey, = L[4, then the inequalities (6) and (7) clearly contradict each other.
This completes the proot of Theorem 4.

Let b > @ = 2 be integers such ‘rham Pla) =
proved that

THEBORTM 5.

A+, —0,)logp, | > exp (— (loga)®4]

P(b). Then Tijdeman [11]

b—a > 10™logloga.

The proof of Tijdeman [11] for this theorem depends on Baker’s
work [2] on y* == 2®-- k. We remark that Theorem 5 follows easily from
Lemma 1. The details for its proof are similar to those of Theorem 4.

By using Baker’s work [2] on y? = ok, Keates [6] and Rama-
chandra [8] proved

TuroreM 6. Lot « (> 3) be an infeger. Then

Pllu-1) (u+2)) > eploglogu.

Theorem 6 also follows immediately from Lemma 1. The details
for its proof are similar to those of Thecrem 4. We shall use Theorem 6
for the proof of Theorem 7.

4. In this secfion, we shall prove the following
Tuwowem 7. Let v > 8 and k= 2 be inlegers. Assume that

(8) w= kP

Then thore cawists am offeciively computable constant ¢y > O independent of u
and I such that
P(u Iy > ey klogloga.

Proof. In view of Theorem 6, we can assume that &> &, where &,
is o large constant. Brdds [4] proved that P(u, k) > cmklogk for gome
constant ¢, >> 0. Ho it is gufficient to prove the theorem when

(9) B . loghk < loglogs.
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We write, for brevity,

P =Plu, k), r=[_2a(P)k]+2.

Let us write n = m'm’ where w < n<u--k snd m' iy the product
of all powers of primes not exceeding % and m' consists of powers of
primes exceeding k. Observe that

D o(m) < a(P).

n

Hence the number of integers # with w({m") = r does not exoeed B2,
Hence there exist at least [k/2] integers » _Wlth w{m") < r. For each
prime g < %, we omit amongst these #, one » for which ¢ divic'ie.s 7 1o
& maximal power. If star denofes omission of these =, then it fo]lows,
by: an algument of Erdds, that

<
(13
The number of »’s counted in this product it at least

[k/2]—n (k) > k/4.

So there exist, among these =, the integers n,, %, (%, %= 2,) whose m’
do not exceed %*' Write

ki L. v,
Ny = P, .p;‘r, Hog = Mo 7 ... gyr

where vy, my <k, Py, ooy Bys Gas -+, ¢ ave primes greater than & and
not exceeding . Observe that for 4 = 1, ..., », u, and v, are non-negative
. integers not exceeding 8logw. Using (8), we get

r . ¥
2 ulogp; — Z v, logp;

i=1 . =1

|
(10) 0< -

By Lemma 1 and (9), the left-hand side of this inequality exceods
(11) oxp (-~ (rlogPloglogu)®w).
Now the theoremn follows immediately from (9), (10) and (11).

The following theorem follows from the work of Baker and Sprindiuk.

TerorEM 8. Let () be a polynomial with raiional integers us coof-

Jicients. Assume that f(x) has at least two distinet roots. Then for every mnteger
X >3,

- P(f(X)) > oyloglog X
where ¢y > 0 is an effectively computable constant depending only on f.

By wusing a result of Baker on diophantine equations, Keates [6]
rpoved Theorem & for polynomials of degree two and three. The proof

- for every ¢ =1, ...
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of Baker and Sprind#uk for Theorem 8§ depends on p-adic versions of
inequalities on linear formg in logarithms. We remark that it is easy
to deduce Theorem 8 from Lemma 1.

3. A property U holds for ‘almost all’ primes # given &> 0, there
exists @, > 0 depending only on ¢ such that for every & z= &y, the number
of primes p = # for which the property U does not hold is at most sz /logz.
We shall prove that for almost all primes p,

P27 1) . (logp)*

12 p-3 .
(12) P (loglogp)® ‘ .

In fact we shall prove that

THmOREM 9. Given s> 0, {here exist positive constanls n, and ¢ de-
pending only on & such that for every m = n,, the number of primes p between n
and 2n for which :

(13) 19(21’—‘1)<(J ( logp )“

Toglogp
is at most en/logn.

It is easy to see that the inequality (12) fok ‘fblmost all’ prlmes P
follows from Theorem 9.

Proof of Theorem 9. We shall agsmme that Ty is a 1a1ge posltlve
constant depending only on e Sef

v = [enflogn]-+1.

Agsume that there are v primes py, ...
P27 —1) <( log n,

Pi loglogp;

» b, between n and 2n satisfying

’ 2
(14) ) (=1, ..., ).
By Lemma 2,
log p; . logn

2 5P -
o(@-1)> %Tloglogp, ~ loglogn

» #. Observe that for distinet ¢, j (14, j<r), the
prime factors of 2%1—1 and 2% —1 are distinct. This is becanse if ¢ is
a prime number and ¢ divides both 2" —1 and 2% —1, then ¢ = 1 (mod p;)
and ¢ =51 (mod p;). Thercfore ¢ =1 (mod p;p;). Since p;p; > n?, the
inequality (14) is contradicted. Hence

s

. \T (9P L B 046 —————.
as) ?}_1,“’(“ 1> e Toglogn ~ ¢ loglogn

Denote by
? ’ P =mazP(2%—1),
1y
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I a prime number ¢ divides 2#¢—1 for some i = 1, ..., r, then
@) gs<P
(ii) g —1 = ap; with an integer a.

(i) 1 < a < (logm)2

By Brun's Sieve method, we get
7

: . logloga@
. 1)< P—==_
(16) | ;1’ @(@—1) < P g

for some constant ¢, > 0. (For this, see page 207 of a paper of P. Frdos:
On the normal number of prime factors of p—1 and some related problems
coneerning Euler ¢-function, The Quaterly Journ. of Math. 6 (1935), pp.
203-213.) Comparing (15) and (16), we obtain

logn \?
> =
P c"ﬂ_( loglogn ) ’

for some positive constant ¢, depending only on e Observe that the
primes Pq, ..., , ie between n and 2n. Now the fheorem follows im-
mediately. '

L3

logloglogn
{logn)*

For this, one can refer to the above mentioned paper of Brdds. In view
of this, the Theorem 9 holds with

P97 —1)

Remark. In fact the iﬁequa]ity (16} with ¢, P is valid.

(logp)®
¥ (loglogp) (logloglogp)

in place of the inequality (13).

References -

[1] A. Bakor, Linear forms in the logarithms of algebraic numbers (X'V), Muathomatika,
15 (1968), pp. 204-216.
{2] — Contributions fo the theory of diophaniine equations: II. The dicphantine
© equation 3 == nc3+IL, Phil. Trans. Royal Soc. (London), A 263 (1068), pp.
193-208. :
[3] — A sharpening of the bounds for linear forms in logarithms (I1I), Aclo Arith.
.27 (1978}, pp. 247251,
(4] P. Erdbs, On waseeutive iniegers, Nienw Arch, Voor Wisle. 8 (LO55E), pp. 124128,
[6] P. Erdés and J. L. Sellridge, Seme problems on the prime fasiors of conse-
cutive integers [I, Proc. Wash. State Univ., Jonferenco on Numtber 'Fhoory,
Pullman {Wash.), 1971.
[61 M. Keatos, On the gremtest prime factor of o polynomial, Proe. Tdinh. Math.
Soe. {2Z), 16 (1969), pp. 301-303.
[6a] K. Mahler, ber den gréssten Primieiler spezielley  Polynome swetlen. Grodes,
Archiv for math. naturvid. 41 Nr 6 (1935).

icm

On the greaiest prime factor of 28— 265

{71 XK. Prachar, Primsahlverieilung, Berlin 1957.

[8] XK. Ramachandra, Applications of Baker's theory to two problems considered
by Brdis and Selfridge, J. Indian Math. Soc. 37 (1973).

[91 T. N. 8horey, On linear forms 4n the logamhms of algebrade numbefs, Acta
Arxith. 30 (1976), pp. 27-42.

{101 C. L. Stowart, The greatest prime frmm' of a%-- b,
Tp. 427-433.

[11] L. Tijdeman, On integers with many small prime feclors, Compositio Math,
26 (1973), pp. 319-330.

Acta Avith. 26 (1875),

MATHEMATIOAL INSTITUTE QF THE IUNGARIAN
ACADEMY O) SOIRNCES

Budapost, MTungery

SUHOOL OT MATHRMATIUS

TATA INBTUTUTE OF FUNDAMBNTAL RESEARCH
Bomboy, Indin

Received on I8, 1. 1375 (661}



