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to discover 13 numbers with v(n) = 135. By a separate check it was de-
termined that z(n) = y(n) holds for 3 < n < 868. By the jump value
table one then econcludes that v(n) = x(n) holds for 3 <'n < 250000,
This new information and the jump value table allows us to conclude
that 7(n) = y(n) when z(n)< 2592. Since points with T{n) > 2592 are
extremely rave, if is rather likely that our conjecture concerning = and x
15 actually true. o

Among the hypothetical numbers # for which x{n) may be infinite
there may exist some larger than 2 which have the DPleasant property
that %5 = g for some positive & Such numbers will be said to generate
loops. For a loop point the smallest & such that T%n = n will be called
the period of the loop. One notes that a consequence of (1) is that v(n) < &
holds for any loop point with period %. At the same time we may assume
without loss of generality that n < TP lolds for all indices and thus
x(n) = oco. Thus if v(n) = y(n) holds for all » with 7 (n) finite then there
can not exist any loops, The jump value table thus excludes loops up
%6 period 2592, .

The anfhor was able to defermine some details on the history of
the problemn after the submission of the manuseript. In it original
form the problem was devised by Lothar Collatz in 1931. Subsequently
the problem attracted the attention of Kakntani and Hasse. The name
“Syracnse Problem” was devised by Hasse during a visit to Syracuse.
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ACTA ARITHAMETICA
XXX (1676)

The diophantine equations (& —c)* = (#*£2)y" +1
by
J.IL B, Comw (London)

It is the object of this note to demonstrate that the two esquations
of the fitle have only finitely many solutions in positive integers @, v, ¢
for-any given infeger ¢ # -1 and to provide a method for finding all
the solutions by veducing the problem fo finitely many diophantine
equations i two variables, each of which will have only finitely many
solations In integers. The cases ¢ = +1 are in principle similar, except
that there may be vather trivial infinite familiex of solutions. Compare
also [17. :

The results are somewhat exceptional in that for every fixed & = 4 242,
there are infinttely many values of ¢ for which the equation (@°—e)?
2a (13-} k)y? -1 has infinitely many solutions in positive integers a, 4, .

In the fitst place any solutions with #2—-c¢< 0 andfor ##-2 < 0
are finite in number and can be found by simple enumeration. Secondly
-2 =2, ie. t =2, we find since #*—¢ > @ that .

(02— -2y =1,

(#°—0) +y V2 = (1+V2), nz1.

Thas | )
A Y2y —Voym.
g 1Y) :1;(1 V2) ’
2 1)t = (1 _H/E)n_(l “‘]/5‘)"’ :
e Va

= 2% say,

where 2 is o rational integer. Thas &% --22 == ¢-£1, which can be solved
immediately, giving only finitely many possible valnes for «, if ¢ 5 -1,
and henee only Tinitely many possible corresponding values for v.

We therefore suppose from now on that #* —¢> 0 and that D =

#4222 8,
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Consider first the case D = {* 2, where the equation #?—Dv? =2
has golutions, with fundamental solution e, say. Then the fundamental
solution of w?—Dwt =1 i3 § = tab Xf now (xt-c)®— Dy? =1, then

(@ —0)+yVD = §* = (Fa?)",

ie.
2n a0
P = o _—ta
- g+l
Then
oA 2
___{_ a K
=041 = —(——-—— )
271.+1 )

since ao’ = 2. If n is odd, this yields 22 —¢+1 = #* where # is a rational
integer, and this is easily solved. If » = 2m iz even, then

ot —c+1 = 27
where :
.aZm + a’2m (a-m + a'm)a

= e— oo m-1+-~——-——-----=’f)2—

o g 1 or 20%—-1,

where # i3 a rational integer, a.cccudlng as m is odd or even.
Thus we obtain either

x* = 20 — 4024 (g 1)
or

a? = Bt — 8- (¢ 1),
and each of these equa,tlons has but a finite number of solutions in integersy
for each given ¢ % — 1. Thus for each given ¢ there are but finitely many
possible values of @, and hence of corresponding y and t.

The case D =#84-2 i3 entirely similar, except that now « is the
- fundamental solution of w*—1w? = —2, ag’ = —2 and § = 4o’ Then

@t —o+yVD = f* = (Jo2)"
azn‘_l_afzn
T

(aﬂ, + a’n)g

P =

PP—e =

r:—o+(—

It n is 0dd then #®—¢—1 = 2% ete., as before. If n = 2m iy even, then

#?—e-1 = 222
where

.‘m_[_a

= 2m+1 - (

( M I_a’m)

)'DHI_[ 2m o = f.‘)?'-—!—l or 2ot . 1.

The diophantine oquations (a2 — o) «= (18 £ 2)y2.1 1 250

Thus we obtain in this case, either

@? = 2t 4o H (¢4 1)
or

P = 8t =82 (e+1),

and the result follows as before. This concludes the proef of the main
repult: of. the paper.

However, if & = 42k, then the equation
(@ = )2 == (12 T)yR 41
®y U, t where § = 2u, { = |k|u provided

= (2ku*+1)%,

iy safistied by Integers
(@8 —0)? = (BPut4-k) - dud1
i.e. provided that either
1 =-2ku =¢ 11
or
@+ 2kt = ¢—1,

and since & o -2k, one of these equations has infinitely many solutions
for suitable valuey of e
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