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an example a simple proof that a triangle whose edges are all rationak
and whose angles are all rational multiples of = is necessarily equilateral.

Placing the triangle in the complex plane as shown in the TFigure
on page 239, we obtain the equation

o+ bo? 4 ew? =0,

where o is & primitive nth root of unity and p and g -are chosen so that ».
is minimal. Tf % is coprime to #, o is also a primitive root of unity, and
we obtain

a4 bo™ 4 ew®™ =0,

which correzponds to another triangle with the same edge lengths a, b, ¢,
the edge of length o being shared. The only other possible position is
the reflected one shown, corresponding to ¥ = —1, so we must have
(k, n) =1 implies k = 41 (mod #). But this implies n =1, 2, 3, 4, 6 so
that either all angles are multiples of right angles or all angles are mul-
tiples of ={3. Thus the only possibility for a proper triangle is equilateral.
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A stopping time problem on the positive integers
by
Rao Trrrag (Del Mar, Calif.)

Define o fonction X on the natural numbers N = {0,1, 2,...} by -
getling X {n) =1 when » iy odd and X{n) == 0 when # is even. Now define
& funetion T mapping N into itself by setting

Tn = (3%®n 4 X (n))/2.

Note that il # is odd then T'n = (3n+1)/2 else Tn = n/2. Given an ne N
the nunber T is to be regarded as a successor to #. We shall be infe-
rested in analyzing the sueccessor funcfion T when it is applied iteratively
to n.

Before deseribing the principal result it will be convenient to intro-
duee some additional notation. Set T° to be the identity function on N.
I 7% has been defined then define T%*' by setting T%n = T'(T%n).

Durwrrion 0.1, Set g(n) =k if & iv the smallest positive integer
sueh that T%n < n. Tf no such integer exists set x(n) == oo, The number
x(n) will be called the stopping time of n.

Observe that y(0) = y(1) = co. The conjecture concerning y is that
y(n) is finite for all # > 2. It is easy to see that this conjecture is true
if and only if for every integer » 2> 2 there exists a positive integer &
guch that T = 1. In this guise the problem has faseinated computer

seientists [3] and haw also circulated in popular mathematics civeles [1].
In mathematical eircles this problem is frequently reforred to as the Collatz—
Kalcutani problem.

The prineipal result of this paper touching on this problem is the

dewmonntration that g possesses » well defined distribution function

(0) S Ik =l (lfm)p{n < m| g(n) =k}

where u denofes the counting function. The distribution F will be devived
theoretically and it shall be demonstrated that LimF(k) = 0.

Ji—00

Parhaps the most useful technigue to evolve from the machinery
developed is an extremely simple technigque for computing,actual values
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of F(k) for large &. This technique concerns the computation of medified
binomial coefficients and is of general probabilistie interest. Although
these coeificients were computed in the case p = 1/2, the method extends
to arbitrary p which need not be fixed from trial to trial.

The various tables in this paper were computed on the Burroughy
B6700 computer at the University of California, San Diego.

The form of this paper has benefited from discussions with A. Gargia.
In particular, by using the notation Tn = (3%"..- X(n)j/2, he demon-
strated Low to give a more conecrete representation of formulas which
were previously otherwise defined. FitzGerald (unpublished) is said o
have used  method of bounds to exclude the existence of loops of fairly
large period.

1. The distribution function of y. Define a sequence of ftmetwns
Xy, Xy, Xy oo on N by sebting

Xy(n) = X(Thn) for % =0,1,2,...
ToeoreM 1.1 (Remainder representation). Let 8, = (Xo+X +...

+Xey) and Jy{n) = 2735, The dnteger T'n has the decomposition
(1) Tn = Jy(n)n+ g4(n),

where

(2) - o = (1/2) (Xuﬂfl-i-xlﬂz_”rm+Xk—1_1:?])-

Proof. We shall do an induction on k The formnlas hold in the
cage b = 1. Assume the formulas ave true in the cage t=1, Now
Ty = T(TFn) = 27356 Thy L 91 X, (n).
It follows that :
A (M) = 2TEFDZS 200
and thus

Oppr{t) ﬁl(ﬂ'k-i-l(ﬂ ‘12) (Xo 1(”)L+- . +-Xk-1(”)xlc(77')MI)_“ 2_1X1.~.(%)
= (R () [2) (o () Ay (0) ™ . Xy (1) A, RICONINN |
Next we shall prove a remarkable per iodicity phenomenon coneerning

the encoding mpwwnmtzon (of length k) which assigns to % the veetor
(Ko(n)y Xa(n), ooy Xyy(n)) = By(n).

THEORREM 1.2 (Perlodmlty) Two positive integers n and m have same
encoding vectors By (n) = Ey(m) if and only if m w= m mod 2%,

Proof. The formula T’(n—l—aﬂ’“) = T'n-+-r2%7'3% Dolds for 4 =0,
1, ...,k Smce 2*~13% §s even for 0 < i < k—1, it follows that

Xyl pr2¥) = Xy(n)  for i =0,1,..., k-1,
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Thus if » =2m mod 2* then # and m have the same encoch'ng vectors
of length k.

Conversely, suppose that # and # have the encoding representations
of length % Then S,(n) = §,(m) and g,(n) = g,{m), IL follows that
Thn— T%m ix an integer expressible in the form (3%/2%) (n—m). Thus 2°
divides #-—m and thus n = m mod 2%

COROLLARY 1.3. For fized k the function which assigns to a positive

- dnteger e the encoding vector Hy(n) ie periodic with period 2° and assumes

oll values in P70, 1}, the set of all functions mapping {0,71, ..., h—1}
mto §0, 1)

Proof. Both assertions are almost jmmediate consequences of the
theorem. Since Fp(n) must assume distinet values in I7¥71{0, 1} for =
in fhe interval of integers [1, 2%] it follows by a counting argument that
all values in JIF1{0, 13 are assumed. m

Let {s} be a B()olea.n sequence, i.e. 5 sequence such that g =0
or 1 dord=0,1,..., % -1 Let 4,< 4, < ... <iy_; be an increasing se-
guence of natural numbers. Let

A = [Xi-(, == &gy qul =y ey X'Ek_l = 1]
denote the set of integers ne{l, 2%~1] satisfying the condition that
X; () =g dor j=10,1,..., k-1 Let P4 denote the proportion of
numbers in [1, 20k-1)] which also lie in A.

JOROLULARY L. The sequence Xy, Xy, Xy, ... constitutes o family of
independent random variables ond the following formula holds for a vector
{e e IF~1{0, 1} and distinet integers 4;¢ N

(3) P [Xr'“ = By -ehy -Xi-k 1= &p_1]
= lim{l/m)u{n < ml X, ) =2, 0 <

Pi-red

E—1) = 1/2%

Proof. The above iy & direct consequence of the periodicity theorem
and ity Livst corollavy. m
For J =1 o particolar case of (3) iy given by

4y - PLX, - == 1im (L /) ,u{fn, < m) X;(n) = e} =1/2,

h—oa
At thiy dime we introduce a second stopping fime. There will not
he any confusion hetiween the two notions becanse each will be invoked.
by a different symibol.
Duwsrrron 1.5, For each ne N set v(n) == & if & > 0 is the smallest
integer such that A,{%n) < L. If there is no such finite integer % then set.
(#) = no. The number z(w) will he called the t-siopping #Hme of n.
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Let [n:%] = {me N| m = n mod 2%}. These sets shall be referred
10 a3 cosets. .

PropoSITION 1.6. If v(n) =k then v is constant on the coset [n: k]

Proodf. If meIn: k] then by the periodicity theorem it follows that
X;(n) = X;(m) holds for ¢ = 0,1, ..., k—1. It follows that Ay(n) = A (m)
holds for 4 =1, 2,..., k. Thus if z(n) =k then also T(m) =k m

Prorosrrion 1.7. The following inequalities arc equivalent:

.Tk’."b < n, ’
ox(n) /(1 Az (n)) < n.
Proof. The above claim is a co'nsequence of the remainder répre-
_sentation (1). m '

Proros1TION 1.8. The relation (n) < z(n) holds for all me N, o

Proof. By formula (1) we have T = 4, (n)n+ g, (n). If Ap{n) >1.-
then T%n > n. Tt follows that if y(n) = k then Ip(n) < 1, but since we
are not assured that & is the smallest integer such that Ap(n) <1 we can
only infer that z(n) <% m ' '

THEOREM 1.9. If 7(n) = k then there emists positive integer M suclh
that me [n: k] and m = M imply that x(m) = FL.

Proof. Suppose that z(n) = k. Let ¢(n) = er(n)/(L—A(n)). By the
periodicity theorem it follows that ¢ is constant on [#: k] Find M go
large that o(n) <mn--M2* holds. Then for integers »> M we have
o(n+12") < m+ M2 < n 2% From Proposition 1.7 it follows that
T*(n+12%) < (n+92%). Thus y(n+r2%) < k, and since by Proposition 1.9
the relation z(m)< y(m) always holds it follows that x(m 125y =
when r = M. " '

’ DErmNtTION 1.10. Define P[z = %] to be the proportion of numbers
in [1, 2"] satisfying the condition that »(n) = &, i.c. define

Py =] = (1/2) u{ne [1, 2¥]| %(n) = I}

Let Pz < %] be defined to be a sum in the usnal manner,
It should be noted that nof every positive intewer 1 iy n stopping
time,

TumorEM 1.11. For each positive integer & the Jollowing it
(5) F(k) = Tim (1pm) p{n < m| z(n) > 1}
00

ewists and has value Plr = 1.

Proof. By. Proposition 1.9 the sets {ne V| T(#) = b} and {ne N|
z(n) = k}‘cem differ by at most a finite set of points. Since by periodicity
the equality Plv = k] = Dm(1/m)u{n < m| v(n) == k} holds it follows

=00 .

icm
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that Pz = &] =lm{1/m)p {n<<m| y(n) =k} also holds. By forming

0 .
sums one then immediately obtaing the formnla in the statement of the
theoren. m .
. Noxt we shall address ourselves to the problem of explicitly tabu-
Iating the valnes of F'(k).
By the definition of » one hag the following formula

(6) Ple k] = (12" ane 1, 28] 2y >1, 1<igh—1). -

The cowdition 4;(n) = 1, in light of the defining formula (1) = 277350,
iv equivatent to the requircment that

(7) Xg(m) 4 Xy (m)+... Xy (n) > iy,
where ’
(8) y = In(2)/In(3)..

It one now defines ¥,(n) = X;(n) —y then ome sees immediately thas
formula (6} iy equivalent to ' |

(9) Plezk] =P[¥,20, Yo+ Ti >0, ..., Vot Fyhoo o+ ¥y > 0],

Even thongh o formula for the probability in (9) is given by Spitzer [4],
this formula does not enable one to compute the aetual probability.
Tor the purpose of making such o computation we shall develop & moditied
binomial type recursive formula. ‘
DurNrron 1.12. Let y be the constant defined by (8). A sequence
{80y 8Ly vovy Bpm1) € 'H(?MI{O: 1}

shall be called admissible if for the indfiel truncations (g5, e, ..
with 14 k-2 the formula

(L0} Eg by By = iy

holds. Tt (10) holds for ¢ = & then the sequence will be called active. An
admissible sequence which is not active will he called ferminal.

Durryvrezon 1.13. Let n(e, k) denote the nmnber of admissible se-
gquences of length & containing ¢ zeros, Make the convention that

vy 8_1)

binomiad coefficient.

Lot e(a, k) == 1 if & < &{1 —~y) and otherwise let ¢(a, k) = 0. Note
that an admissible soquence with a zeros is termiinal if ‘and only if
cla, k) == 0 and ¢(a—1, %) = L

Tinornm 1,14 (Modified binomial recursion). With the initialization
A0y 1) == 1 and a(l, 1) = 0, the remaining values of n(a, k) satisfy the
Jollotving recursion o
(11} ele, Byn(a, B)+ela~1, k)n(e—1,%) =n(a, b+1).

3 ~ Acia Arithmetlca XXX.3
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Proof. An admissible sequence of length %1 arises from an active
sequence of length k. If the sequence hag a zeros then the truncation
obtained by omiliting the last eoordinate must have either @ or g —1
zeros. Conversely any two active sequences of length & extend to admis-
sible sequences. Moreover, distinet sequences extend to distinet sequences.
Now ¢(a, k)n{a, k) is just the number of active sequences of length %
having @ zeros; and similarly e(a—1, B)n(a—1, %) ix the number of
active sequences of length & having a—1 zeros. It follows that w(a, k)
=o(m, Byn{a, ky-+e(fa—1, Byn(a—1, k). m

i
22
binomial coefficient, holds for all integers a and k.

COROLLARY 1.15. The inequality n(a, k) < (7), where (Z’;) is the wsual

Proof. The function ¢(a, k) is a Boolean function. The inequality
is therefore a congequence of induection on k coupled with the ugnal re-
cursion formmula for binomial coefficients. m

CoronLLARY 1.16. The following formula holds:

: k
Plrz k] = D nla, k)[2" = F(L).

TeROREM 1.17. The sequence I (k) comverges monotonly to 0.

Proof. Uonsider an admissible sequence {e;} in IIF~*{0,1}. Let o
denote the number of zeros in this sequence, and let & =k —a. If {e}
is active then 3°/2%> 1, whence a < %(1—y), where y is the constant
defined by (8). If {&;} is terminal then 3°/2% < 1, but because the last
coordinate is zero and corresponding truncation is active, it follows that
3°/2"'>1, whence a< (k—1)(1—yp). Thus n(a k) —0 whenever
a > [;’c(lwg_:)], where [#] denotes the greatest infeger function. Since
nle, k) < (Z) one is thus led to the relation

[tz Fe

" — ok - by A

(12) Plv b] = e, W2 D[
=1l theal)

However, the sum on the right is just a binomial probability and can
be estimated by the central limit theorvem. Indeed, let &, denote the
sum of k independent random variables sssuming values 0 and 1 with
probability 1/2. Then '

. [(1 -3 -
FARR A S 8, —ki2 -
oS e )

icm
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By the central limit theorem

‘ o S —ki2 1 T,
14y - limP (—kt— < w) = ®lg) = — [ a2 q.
(14) ol v e (@) == i

Given & > 0 there exists ze B such that $(w) < &. Bince 1 -2y < 0 there
exists K such that both of the following inequalities hold when %= K:

P((8,—5/2)[(VE[2) < @),

B 1
(ﬂ) gE < ¢

holds whenever &> K. Thus im#F(k) = 0. m

h—rec .

To actually program the computation of F({%) it is dexirable to modify

recursion formmla (11) slightly. Let p{a, k) = n(a, k)/2%. Let s(a, k)
= ¢(a, k)/2.

Prorosrrion 1.18. With the indtialization p (0, 1) = 12 and p(1,1) = 0

the remoining volues of p(a, k) mey be computed by the recursion velation

B(L-2y) <& and

It follows that
[-'C(l_—jl’)]

a=g

(15) ${a, k)pla, k)+s(a—1, k)pla—1, k) =p(a, b--1).
Table A. Values of the distribution function JF(%)
1 | 2F (k) % | 2T (k)

10 1.4844 %101 100 5.2793 % 10—*
20 5.7182 % 102 200 6.8875 » 106
30 2.3788 x 102 300 1.1543 %107
4 1.8189 x 102 400 2.4383 x 102
5 7.07468 x 10-% 500 B.5T33 10711
G0 3.8448 x 104 800 1.3484 3 10—12
70 2.3288 x 103 700 3.1438 x 1014
80 1.4149 x 10~} 800 8.1927 % 1016
g0 8.2156 x 10— 900 2.1675 x 1017

2. Values of v and y

Timorum 2.1, The following assertions about ke N are equivalent:

(a) There emists an dnteger ne N such that v(n) = k.

(b) The real interval [(k— 1)y, ky] conigins an inleger poind.

(¢} The inequelity 3V 251 = 1 holds.

Proof. Wo shall show (a) implies (b). Say r(n) = k for some ne N.
Then A(n) <1 and A,_,{#)> 1. SBince X;_,(»y = 0 it follows that

Lo (0)+Xa(m) .+ Zya (1) = Xy(0) + Zy () o+ Xy ().
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Let b denote the common value of these sums. From 2, (n) = 3*/2% < 1 one
devives that b < ky, where y is defined by (8). Similarly, from g (1)
= 3"/2%" > 1 one obtains b > (k—1)y. Thus the real interval [(k ~ 1)y, Fy]
containg the integer point b.

Next we ghall show that (b) implies (¢). If b ix contained in ths real
interval [(k—1)y, ky] then b = [ky] and the inequality 3W71/2F-1 s 1
also clearly lolds. ‘

Finally, we shall show that (¢) implies (a). Suppose 3W1faF-1 g
Let & = [ky]. Define 5 =25, = ... =g_, =1 and g, = gy ... =g
= 0. Find ne [1, 2] such that B, (n) = {s,}. Since every initial truncation
of {s;} is an active sequence it follows =(n) > k. Since 8™/2% < 1, it
follows that {¢} is terminal and thus 7(n) = &. m

One may recursively tabulate the values of » by nsing either statement

(b) or (¢} of the preceding propogition. Observe that #(0) == 1 and (1) = 2.
By the (finite} values 6f * we mean the set {ke N| & = z(n) for some n e A

Table B. Values of the stopping time v

70 1 2 O3 T4 5 6
7 8 o 10 i1 12 13
14 15 18 17 18 e 20
21 22 23 24 26 26 a7
28 29 730 31 32 38 34
35 36 37 38 39 40 [J41
42 43 [44 45 46 47 48
49 50 51 52 53 54 755
56 57 58 59 60 61 62
[163 64 65 (166 67 168 69
70 on 79 73 74 75 76
77 78 779 80 81 82 83
84 85 88 187 $8 89 [e0
91 92 []938 94 195 96 97
C188 99 100 [J101 102 7103 104
105 [J106 107 108 - [J108 110 111

Table B tabulatos the values of 7 bebtwoen 1 and 111, Thoso & which are not
values of r are denoted by <[5,

We are intevested to what extent one can determine the values of
the stopping time y. We are able to produce an inequality which atter
a short search will enable ns to conclude that the numbers in table B
which were excluded as values of 7 are also forever excluded as values
of x. Theorem 1.9 implies that every value of » is also & value of x

TamoruM 2.2. Suppose that t(n) = & then the remainder term satisfies
the following estimate: : : ‘ ‘

b

16y . en(m) < [kyl/2.

icm
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Proof. The assertion that v(n) ==& implies that 1, < 1 and 1, > 1,
Aa> 1y, 4 A 1> 1. Since necessarily X,_,(n) = 0, and since by Theorem
21 X (w,) Xy(n)+... X, _,(n) = [ky], the formula to be proved follows
from (2). m : :

JOROLLARY 2.3, If ne N satisfies y(n) <
that =(n) = y(n) isthat n > M(k), where

il
31— 312

% then o sufficient condition

[ 4 =1,2, ..., 7{71-
J
Prooi. The inequality x(#) <k implies that v(n) = 4, where i< k.
Now by a previous remark A,(n) = 3"/2% Tf » > M (k) then in particular
> [iy][2(1--30427) > g,(n) /(1 — A;(n)). Thus Dby Proposition 1.7 it
follows that T'n < n. Fence y(n) =4. m
The bounds M (k) produced in (17) are not the hest possible but
do have the niee property that 3 (k) can be computed without computing
A (4) for i < k. Next we shall develop a more accurate result.
TiRORTN 2.4, There ewists a uwique seguence ve II5{0,1} suck that
Jor awy admissible ve ITT7{0, 1) the following holds for indices _7 =0,1,
vy B2

(17 M(k) == nnx{-

f

H ¥
() PRI
Fe=l) g=0

The sequence » may be recursively defined as follows. Set »y = 1.
If wy, v, %2, ..., %1 have been defined let b =w,4¥ ...+ ,. If
3%/2% < 2 then set v, = 1 else set », = 0. '

Proof. Uniqueness of » will be demonstrated first. Suppose (P)
holds for sequences », ne JII5°{0, 1}, Then }

e
=
-,
I
=
.
I
=

implies that equality 1101(1\ for all indices j. By hllb'(”lii»(tl()ll one obtains
that v == %; holds for all indices j.

Wu proceed by induction on the length of », In cage & = 1 the only
possibilitien for admissible sequences are # == (1, 0) or-(1, 1), Property (I
holds because the sums reduce to », = 1, = 1. Suppose (P) has been
verified for all admissible e T80, 1% Tet ne I2{0, 1} be an admissible

. kel
sequence. One needs to verify (P) only for j =k —1. Let b = } » and
C ke i=b
let ¢ = ¥ #;. Then to verity (P) we need to demonstrate that
=0 _
(18) bty < Ok s
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Suppose the opposite inequality b -+v,_; > ¢-4-n,_, were true. Since b < e
holds by induction, it follows that b =e¢, »_, =1, and n,_; = 0. Now
“one has v,_; =1 if and only if 3°/2*~' « 2. This inequality leads to
31 (9% = 3°/2*¥ < 1. This is a contradiction because an initial trunc-
ation of the admissible sequence » must be an active soquence. m

CoROLLARY 2.5.
{k] vy =1}

The need to improve the bound given by (17) leads to the following
problem. If k¢ N i3 a value of 7 find & procedure to produce the maximum
value of g, on the set {n| v(n) = &} ' :

Let & be a value of 7. There exists & unique ne [1, 2%] such that

(Xo(”')y Xi(n), -y Kpa(n), -le—l{ﬂ’)) = (g, V15 vy Ppoay 0).

From the fact the v, , =1 it follows that the encoding representation
Ey(n) is a terminal sequence. Thus v(n) = k. Let m be any integer satis-
fying ={m) = k. Then the following mequahtleﬁ are & conseguence of
property (P):

The finite values of v coincide precisely with the set

ZX

Since a terminal sequence must necessarily have a zero in the last com-
ponent it follows that

(19) ZX(% (j=0,1,..

i=0

L k—2).

0 =X, i(n) = Xp (m).

From the fact that v(®#) = v(m) = &k it follows that

: : . k—1 k-
{20) 2 X, () = Zl X, (m).

From (19) one derives that A;(n) < A;(m) holds for § = 3,2, ..., k-3,
and from (20) it follows that Z,L( ) =4 (m). By utilizing these 1'elsb‘ni0n.~‘4
in (2) one then obtains that

(21) or(n) = o5 (m)

holds for all m satisfying »(m) = k. By the uniqueness assertion of Theoren
2.4: it ToHows that inequality (21) is shurp if m o 2 mod ° ’l‘h(n'e romarks
may now be summarized by the following theovem.

THmoREM 2.6 (Mini-Max). If k is o value of v then o by a maritmun
walue on the set {n| 7(n) = k}. The value in {ne[1, 2*] M r{n) =k} which
mapimizes g, is unigue.

To carry out the maximizatior procedure it is desirable to recash
the preceding in simplified form. To this end we shall define two sequences

icm
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p(k) and o (k) recursively for all ke N, but we shall actually be concerned

only with those & having the propelt*y that k41 is & value of .

Let w(0) =1/2 and x(0) = 3/2. Suppose w{0), u(1), ..., (k) and
(0}, o), ..., wik) have been defined. If (k) < 2 then define p(k4-1)
=3u(k)/2 and w(k-+1) = [Bo(k)+1)/2 else if w(k)>2 then deline
plk4-1) = p(k)/2 and o(k+1} = o(k)/2.

UOROLLARY 2.7. If k-+1 is o value of v then w(k)/2 is the maximun
valwe of Qg 0N 1”} T(n) = k+1} and p(k)j2 = ‘””]/‘?‘.

CoronLARrY 2.8. If z(n) is finite then the inequality

(22) n> o (1:(';:,}“1)/(2—-;4(1(@1)—1))
dmplies that T(n) = y(n).

CoNgecrre 2.9. The stopping time velation T(n) =
integers w2z 2.

TusorEM 2.10. If ne N satisfies x(n) < E then a sufficient condition
hat z(n) = x(n) 48 thot n >.m(k), where

(23) m (k) = max{[o(i—1/[2—ul—1))]] i<

¥{n) holds for all

k, ie R(z)}.

The above allows one to verify Conjecture 2.9 for large » from existing
tabulations of y(n). To thiy end we shall tabulate m (k) for values of =
which lie in the interval [1, 3000]. Call & a jump value of m if m(k—1)
<< w (k). The appropriate information is assembled in table C.

Table C. Jump values of the function m

I3 | ulkE—13/2 r al{lkb—1)/2 ‘
4 | 0.562500 0.31 1
5 0.848750 0.72 5
8 0.946218 1.25 25
27 0.962169 4.09 109
46 0.975280 6.97 282
65 0.988603 9.88 - 868
149 0.980669 22.58 2420
233 1,992740 35.30 4863
317 0.994816 48.05 9207
401 1.9906894 60,82 19585
485 0.998078 73.62 72059
1539 0.90p022 284,45 238672
2503 0999065 303.27 420845

Now we shall demonstrate how to use fable C in discussing some
topics of interest. When the values of x(n) were fabulated for 3 < =
< 280000 it was observed that the niaximum value of ¢(n) was 135,

© g value which was assumed only ounce. One had ¥ (38635) = 135. In view

of the fack that F(135) = 5.3312 > 10 one might actually have expected
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to discover 13 numbers with v(n) = 135. By a separate check it was de-
termined that z(n) = y(n) holds for 3 < n < 868. By the jump value
table one then econcludes that v(n) = x(n) holds for 3 <'n < 250000,
This new information and the jump value table allows us to conclude
that 7(n) = y(n) when z(n)< 2592. Since points with T{n) > 2592 are
extremely rave, if is rather likely that our conjecture concerning = and x
15 actually true. o

Among the hypothetical numbers # for which x{n) may be infinite
there may exist some larger than 2 which have the DPleasant property
that %5 = g for some positive & Such numbers will be said to generate
loops. For a loop point the smallest & such that T%n = n will be called
the period of the loop. One notes that a consequence of (1) is that v(n) < &
holds for any loop point with period %. At the same time we may assume
without loss of generality that n < TP lolds for all indices and thus
x(n) = oco. Thus if v(n) = y(n) holds for all » with 7 (n) finite then there
can not exist any loops, The jump value table thus excludes loops up
%6 period 2592, .

The anfhor was able to defermine some details on the history of
the problemn after the submission of the manuseript. In it original
form the problem was devised by Lothar Collatz in 1931. Subsequently
the problem attracted the attention of Kakntani and Hasse. The name
“Syracnse Problem” was devised by Hasse during a visit to Syracuse.
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The diophantine equations (& —c)* = (#*£2)y" +1
by
J.IL B, Comw (London)

It is the object of this note to demonstrate that the two esquations
of the fitle have only finitely many solutions in positive integers @, v, ¢
for-any given infeger ¢ # -1 and to provide a method for finding all
the solutions by veducing the problem fo finitely many diophantine
equations i two variables, each of which will have only finitely many
solations In integers. The cases ¢ = +1 are in principle similar, except
that there may be vather trivial infinite familiex of solutions. Compare
also [17. :

The results are somewhat exceptional in that for every fixed & = 4 242,
there are infinttely many values of ¢ for which the equation (@°—e)?
2a (13-} k)y? -1 has infinitely many solutions in positive integers a, 4, .

In the fitst place any solutions with #2—-c¢< 0 andfor ##-2 < 0
are finite in number and can be found by simple enumeration. Secondly
-2 =2, ie. t =2, we find since #*—¢ > @ that .

(02— -2y =1,

(#°—0) +y V2 = (1+V2), nz1.

Thas | )
A Y2y —Voym.
g 1Y) :1;(1 V2) ’
2 1)t = (1 _H/E)n_(l “‘]/5‘)"’ :
e Va

= 2% say,

where 2 is o rational integer. Thas &% --22 == ¢-£1, which can be solved
immediately, giving only finitely many possible valnes for «, if ¢ 5 -1,
and henee only Tinitely many possible corresponding values for v.

We therefore suppose from now on that #* —¢> 0 and that D =

#4222 8,



