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tiirliche Zahl m, die durch eine nicht zum Haupitgeschlecht gehdérende
Form darstellbar ist, einen Primfaktor p mit (D/p) = 1. Nach [1] ist m
und damit anch p hichstens gleich a(e)} [ DP*.

5. Beispiele zu Lemma 5.
D =15 (p = 2), 35 (3), 84 (5), 91 (), 187 (7), 105 (7), 403 (L1), 420 (11),
485 (11), 483 (11), 632 (13), 555 (13}, 595 (13), 627 (13), 660 (13), 1012 (17),
1092 (17), 1155 (17), 1380 (19), 1428 (19), 1435 (19), 1995 (23), 3008 (29, 31),
3315 (29, 31), 5460'(37).
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- The Fourier expansion of Epstein’s zeta function for
totally real algebraic number fields and some
consequences for Dedekind’s zeta function

by
A. TErRRAS* (La Jolla, Calif.)

1. Imtroductiom. Let .If be a fotally real algebraic number field of
odd degree m > 1 (over Q). And suppose that the elags number of K
is one. We shall need. the following concepts from algebraic number theory.
For definitions, etc., one should refer to Lang [7]. Let Og denote the
ring of integers of K and Uy the unit group of 0. Suppose the m em-
beddings of K into R over @ are denoted @+ for j = 1,2,
Tet N mj[ ]1 o, for z¢ K. Lot dx be the absolute value of the discri-
minant of K and §; be the dLEfelent of K. The Dedekind zeta function
of K is

(1.1) te(s) = D Na=°, for Res>1.
0 Uxe

Here the sum is over non-zero infegers of K (0f = Ox—{0}) which are

not equivalent under multiplication by units. We use here the assumption

that the class number of X is one so that all ideals are principal in O.
We shall prove that

(1.2)  Lg(28)8™ 4 &l (m2L (1 — s)P(s)“l)m E(2—28) (1 —8)™

= —dZt = e

ale Ug,bad

1—28 m

H (K gos (2 AP B) +

-]

+dn Ia,(“b(f)]lfiﬂ_s(.‘/}n la,mb(’)])} .

K, (2) is the modified Bessel function of the second kind defined by (2.1);

ar, (=
K (2) = d( ) Here ¢ runs over non-zero integers of K non-equivalent
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nnder multiplication by unifs and & rans over non-zero elements of the
inverse different. Tt follows from (1.2) by setting s = 1 that

P JNb[exp{—zanJamb“H},

* oy L Je=1
ae0 | Uprited

(1.3)  x(2) = dZ"P (2nt)™

for example. This gemeralizes the following result of Schlomilch and
Ramanujan for the Riemann zeta function ({(s) = {y(s)):

L2y = ";f" ~+ 4m? 2 ay(n)exp{ —2mn},

nFEl

Y d. One could also use (1.2) to derive formulas similar
0<din
to but more complicated than Ramanujan’s other resalts of this type.

A good reference for such formulas is Berndf [2], which hag a long list
of papers on the subject. Another reference is Grosswald [4]. The re-
striction that K be totally real and the vestriction that m = [K :Q] be
odd are unnecessary except to simplify the results. Tt is a little more
complicated to drop the class number one assumption. It is possible

where ¢, (n) =

that (1.3) could have interesting consequences for totally real fields of -

odd degree and class number one. :

. Another possible use of (1.2) is the evaluation of {j in the interval
(0, 1). One might have thought that the natural formula to use in order
to study {x in (0, 1) would be Hecke’s integral formula ([5], page 205) —
& result which expresses the Dedekind zeta function as a certain integral
over 2 cube, the integrand being an Hpstein zeta function whose quadratic
form argument depends on the units and the integral basis of the field
as well as the variable of integration. If one substitutes the Fourier ex-
pangion ([12], formula (1.2), page 477) of the Epstein zeta function into
the integral, it is very difficult to see what is happening, becanse the
series expamsion converges very slowly, even for small discriminants.
Thus {1.2) may be of some use in such questions — the lack of integration
being its main virtue. ’

*The proof of (1.2) is to be found in § 3 and results from the Fourier

expangion. of the Epstein zeta function for the tofally real algebraio

number field K. Ti K = Q the Epstein zeta function has two arguments,
the fivst being a positive definite symmetric n x » matrix I and the second
a complex variable s with Res > n/2. The Epstein zeta function over 0
is defined by: '

(1.4) 2P,y =% Y Plaj

aeZ"
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2} S
where a e mus over mon-zero column vectors with integer entries
a;'ﬂ-
and P [a] == ‘aPa. The xpace of positive {Lefinite syrmmetric n x n matrices P
is the symmetric space (see [6] for definition) GL(n, R)/O(n) with GL (, R)
= the general lincar group of nxn invertible real matrices and O (n)
= the orthogonal group. It Ge GL(n, R), let P = ¢*G to oblain the above

identification. Then Z,(P, s) is an “antomorphic form” —- specifically

an Ilisenstein seriex - in the sense of Borel ([3], page 200 and example 2,
page 209). 'This wmeans that Z, satisties certain differential equations
in P and that Z, is invariant under the map P P[4] = ‘AP4, for .
any % xXn matrix 4 with integer entries and determinant --1.
Motivated by the simple algebraic fact that Qo = RG...OR
(o = [K : Q] copies) il I iy totally real, one sees that the Epstein zefa

- function over K ought to he afunction on

(1.3

(GL(my B)[O(n))x... x {GLifn, R)[O(n)),
This is analogons to the case of Hilbert modular forms (Siegel [10], pages
273-274). 8o let P = (PY ..., P") bhe a vector of positive definite
gymmetric # X % matrices and let s be a complex variable with Re § > « /2.
Then detine the lipstein zeta funetion over K by:
; i
Goily ) = Zy(Fy8) = 3 [J(RO[g)=,
. . UE(J%/UKJ=1

™M COopies.

The sum is over a complete set of representatives for n-tuples from Ox
(not all of whose entries are zero) with respect to the equivalence relation
from sealar multiplication by units. Tamagawa [11] indicates that the
usual theta function methods yield the analytic contintation and functional
equation of (1.5}, We have again an “antomorphie form™, whose invariance
property is: ' ‘

(1.6) Zo(Ly8) = Zo(PLA], 3),

“Tor A-in the diserebo group of matrices with entries in Oy and determinant

in Ug. Here _
(L.7) DAY e (POLAD, .., POLACYY),

with AY denoting the mairix obtained by replacing every element of
the matrix 4 Dby ils jth conjugate.

The nain vesnli of § 2 is Theorem 1, which gives the n -1 Fourier
expansions of Z% (P, 8), generalizing the result in the case K = ¢ obtained
in [127, Theorem 1, page 480. The vesult alio generalizes Asai ([17], formula
13, pages 203-204), The Iatter ix zeen to be the case » = 2 of onr result.

However Asai does not vestriet himself to totally real fields.

There are many open questions. One wonld like o generalize Asai's

G — Acta Arithmetics XXX.A
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results on logly(#)| for algebraic number fields ([1], Theorem 4, pages
207-208, and Theorem 5, page 210). Asai defines a function k. (2) which
has thiee properties of log|n(2)(, i.e., fiy appears in a Kronecker limit
formula for the Epstein zeta function (n = 2) over K. Also hx(2) is har-
monie in the wpper half plane. Finally the Mellin transform of hg(z) iy
Exls, g (s+1, 4), where {p(s, 1) Iz a Hecke zeta function with Grogsen-
character. The generalization to higher dimensions (» 2 3) appears difficals,
For example there are more invariant differential operators, so it is more
difficalt to be harmonic (see {6], page 432 or [9], page G4).

Another open problem is the extension of these results to other
Higenstein geries for the general linear group. Such series are considered,
by Langlands in [8], where he obtaing the functional equation and analytic
continuation. One should at least he able to generalize the Fourier ex-
pansion obtained in [14] fto Idisenstein series of one complex variable
over algebraic number fields.

A final question concerns the shape of the fundamental domain in

GL(n, R)[O(n) X... x GL(n, R}/O(n) for the discontinuous group of
invertible matrices with integer entries from the number field and unit
determinant. One ought to consider the question of the number of cusps
and the Fourier expansion at each cusp {cf. [10], Chapter III, § 2).

2. The Fourier expansions of Epstein’s zeta fumction over a totally
real algebraic number field. We need a few definitions before stating
the result on . the Fourier expansions of Z,(P, ). The modified Bessel
function of the gecond kind is defined Dby

1 F %
. 2
(2.1) K, (2) = —2—J ‘exp{wg (u - 1&“1)}@#“152%,
[¥]
for largz] << =/2. As usual I'(2) is the gamma function.
For any integer + with 1< r<{n—1, one obtains a decomposition
of PY in block form as in [12], formula (2.1), page 479:

pi o (TP ON[T 0] _H T 0\ (19 0\ /[T 0
Vo PO e [T \ew ol o Pl g 1)

where P is the » xr block in the lower right-hand corner of PO T g
the identity matrix, 0 is a matrix of zeros, and where j = 1, 2, -
= [K:Q]. Note that here P denotes the jth malrix component P
= (PY, ..., P™)rather than a jxj matrix, as it did in [12]. If P
= (PY, ..., Pt™) define : :

(2.2)

(2.3) | =[] ot (2,

. =1

~ And for any Ogmodule M in K™ define M* = M —{0}.
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The Fourier ewpension of Hpsteins zeta-function 191

It is now possible (o state the Fourier expansion of Z,.(P,s) a8 a
periodic funetion of @ = (@™, ..., Q™). The regult generzlizes Theorem 1
of [12], page 480. . '

THROREM 1. For any totally real algebraic mumber Jield K,

LB 6) = 2,(Pay8) 57 (w1 5 ror| s, (70~ 2)+

s

+dz ™ (2" T{s) P HL (P, 5).
The notation is that of (2.2) and (2.8). Here

i (5) [ @
H,(P, ) = Py~ 3 e

{r~25}4
Pgﬂ—l [b(i):[ )

QEO%MT.IUK;M("E{I )1"' i=1

x oxp (2mi'BIQUaN E,, (2 VIO g0 PP [307]) ,

where the sum is over non-equivalent non-zero vectors @ in 0% with
equivalence defined by componentwise multiplication by units in Uk,
and over non-zere vechors b with components in the inverse different.
Finally H,(P,s) is an entire function of s.

Proof. The proof is an exaci analogue of thaf of Theorem 1 of [127,
page 480. We split the summation over the variable ¢ in (1.5) into two

parts g = (;), with @ in O% " and b in O%. Then from (2.2) it follows that

ﬁ (1;1(1’) [;Z;]) = ﬁ (T[] + PP QDo 4 300,

=1 Fral
Thus _
Zy(Pysy= ) o+ Y.
_ a—u;buogir}x aeoﬁ.“"[[‘fx; b0
S0
(2.4)  Z,(P,8)

=Z,(P,8)+ Z H (29 [a?] PP QY g® - p0])~3,

0 =g hen? Tl
mOK ,'UK.beDh

Now let wy,...,w, be a Z-bagis of Og. And let w},...,w) be a
dual basis with respect to the trace. Then

(2.6) (W) kmtyem H R . = T _
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Next apply Poiszon’s sumrmation formula to the sum over b in 0%

w .
= ( Y@ Zw,)". It follows that the sum over b in (2.4) i 2 fla, ¢}, where
= ‘

ol

fla, ¢) = f ﬁ (Tm [0\)7 - P [Q(f)a€:a‘)+ imkwg)])w y
3L =0 TR G=1 Jow ] |

m
e X
X exXD {27:@ 24 ‘c,nm,f} dwy ... dm,,.
' Jee 1
The natural course of action is to separate variables in the integral, So
we make the change of variables

m
vy == Ewkwg), j=1,..,m,
fe=1

where v; and #; arve in R" for j =1, ..., m. If we think of 9 == oy ven 1)

=@ ... and @ =% ..2,) = (@' ...&) as mxr matrices, then
v = (Mo... My’), where M =(wid), . . We already have the
inverse for this transformation thanks to (2.5), namely

— b W
M~ = (wia(j))j,kwl,...,m'

It follows that, as in [12], pager 480-481;
’ "

9 m
Fl6; 0) = di Pyl (w"le*(s. ——-;—) I‘(s)-‘) [ zorangyn=,
Jral

and if ¢ is a non-zero m xr matrix of integers, then:

X

‘ o m i) [a,(J’)] {re-28)i4
fla, 0) = d= Py~ (27" I'(5)~ ( ' )

—Ps(i‘”_l [b(d)]
- xexp{2ribOQRIIN K, (onV T [T EP ),

with (50 . 0% = (¢ . MYy i I - (@03 ... and ¢
=(¢t...d") £ 0 in Z™. Thus b ix the jth conjugate of an arbitrary
element b of (851, - -

This compleies the proof of the theorem except for the statement
that H,(P, 5) is entire in &. For this one needs the exponential decay of
the modified Bessel function of the second kind.

We leave to the reader the task of generalizing the other results
of [12] to totally real algebraic number fields. Tt will he convenient however
to state the results of Theorem 1 in the special case # = 2 separately.
This is Asai’s result ({17, formula 13, pages 203-204) essentially, One
hag to translate from binary quadratic forms P > 0 to complex numbers z

icm
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in the upper hall plane in order to go from our‘ result to Asai’s. Thiy is
achieved by looking ab solutions 2 in the upper half plane of P[i = 0.
We make the simplifying assemption that K is a totally veal algebraic
number field with class number one. Then the formula (1.1) is a correct
expression for the Dedekind zeta function f, of K. Thus, setting » = 2
and » =1 in Theorem 1 vields:
(2.6)  Za(By9) = [Po| ™" (28) + g™ (w0 T (s — §) T'(s)2)m 1Py =8 ¢
KT g (28 1) + a2 T{s) P H,y (P, ),
where
(1—2a)2
- X

Na
Nb

H (P, 8) = |Py| 74 P24 7

¥ s L)
u:C)K;‘UK; bedKI

W

% H exp (2mi bGP AN K, (2 VTP PP [500])

Je=1

To study the situation when the class number is bigger than one,
Epstein zeta funciions associated with ideals as in Tamagawa [11] will
no doubt he necessary. We leave this question open.

3. Some formulas relating [, (2s) amd { (2s—1), We first prove
generalizations of Proposition 2 of [13] to totally real algebraic numbe.;
fields of class number one. The result appears more complicated than (1:2)
because we do not assume m = [K 1 Q] is odd.

THBOREM 2. Let {x be the Dedekind zeta function of a totally real algebraic

number field K with clase nwwmber one. Then | ‘
. 2

™y (28) (1~ (20 — 1)) ag (%’i rie=HI(7) txls—1)

(l—2a)2

. '.\‘ Na
s (VR (08 -1\m R
E] d}\ (ﬁ!f«‘ f'(s) ) > '

A1

N W
A0 e U esbad

(,‘S.: — JI) Kyjpog (27 [@ D)) — o [0 bmlEi}z—a (27 Iﬂ(j.)bwl)] -

Jeeal 4
L 1 . :

— ] [(,2 -+ _4_) Kipo(2m (@) b(s‘)n 7 Iap(j?b(j)l Ki/z—s(z'"’ |a(f)b(3')')]}_
J=1 ' c



194. ) ‘ 1.A. Terras

Proof. There are many possibilities for deriving such formulas.
We choose the following modifications of the proof of Proposition 2 of [13].
Let 2, ..., %, be positive real numbers and set

; 10 01 .
U(ﬂ)g(ﬁf 3), p =(0 wj) = U(f)[l 0], i=1,...,m.

Then Z,(U, s) = Zy(V,8) it U = (T, ..., U™) and V = (VI ... vioy,
Now equating the expressions for Z,(U, s) and Z,(V, s) given by (2.6)
yields:
(8.1)  {x(28) (B—|o|™)+

‘ + A (@ (s — 1) T'(5) 7 (28 — 1) (|o*=° — [ %)

Na {(1—-28)/2
= dg® (27 I'(s)~Y)™ 2 i X
) asOK/UK;beJEI

m "
[ [ By @y a6 — [ [t B w100
del : . =1
wm am
with o] =[] #;. Then apply ~———m——
i=1 _ 3501 '

Lo

t0 both sides of (3.1)

By =gy

to complete the proof.
CoroLLARY 1. If {y is the Dedekind zeta function of a totally real

algebraic number Jield K with oluss number one, then
™0 (26) - (1 — (28— 1)) i (221 T'(1 —8) D() ™) 2 (2 — 25)
Na (1—28)/2

= d_112(2TEEI‘ 1)m -E\T—I;- X

an:E/ UK;bsd;";_l'

m s 1 ’
X‘ {H [(E__‘.j:) Km-g(faw ia(j)b(ﬂi) — i“(j)b(j]|Klle8(2w |a(.’f) b(J)I)] .

Tl

11z +"‘)K1fzms(2“|“(j)b(j)0 a0 I, 2 )|

el

Proof. Combine Theorem 2 and the iuncmon&l equation of (g ([7],
Theorem. 2, page 259):

Fy(s) = (@l w"mﬂ)sr(g) Ex(s) = Fr(l—s).

The next corollary generalizes the formula of Schlémileh and Rama-
nujan for {4(2) = £(2) referred to in the introduction after (1.3) to zeia
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functions of totally real fields with class number one. The resulb appears more
complicated than (1.3) because we are not assuming m =[K: Q] is odd.

COROLLARY 2. If {3 is the Dedekind zeta funetion for the totally real al-
gebraic number field K of class number one, then

" By : = Ry
{2m)™ —d-w- Fdg e 2 ~iI\TbIexp{~--21-52’ia:,("’b(“|}><

Ce(2) = " moR/Upvbeaf Fm1
{] [ [ ZTE a0 )= +1]— ]][ 2 o) By -—1]}

Fasll
where Ry 48 the requlaior of K.

Proof. Substitute § = 1 into the preceeding Qorollary, using the
following formula from Lang [7], Theorem 2, page 259:

(3.2) hm{sl’( ) La(8) 1—- —2"R,
&0

since K iy totally real and thm has onlv two roots of unity.
One obtaing

m 2
¢K<2>+d£-1(1 tim 272 Y o o0 11— sy te(3 - 2
2 ronl 2 3
" By
j—=3 ——— 2 m'———-
Lac(2) = (@mm 2E
And the preceeding CQorollary implies that
m ‘RJ\ v ﬂ ~1/2
e e S N

ae() K/ Ug: berS
"

x| [ [ UHEa (21690 — 7 90 20, (2010959 ] —

Foml

— l ] [%]{m(gw la,(d)b(f),) ~|~rcla(")b(”|K;m(2n ]aU)bU)D]}.

._'iw 1

From K, (2) = l/ﬁ% e™%, it follows that

Kipt =~ o )

K”ﬂ( )”“231{[[4 ]/.ZIWQ@_E —1+1)
31‘{3')2(2) ~|-2zK1/2( ) == 271:26 z( Ml“"‘"l)- .

Bubstitution of these results into the term in braces eompletes the proof
of the corollary.

Thus
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Next we prove another generalization of the Sehlbmilch—Ramannjan
formula. This resuli is equivalent to (1.3).

CororLary 3. If K is a tolally reol algebrate number fidld of class

nuinber one and odd degree wm == [K : Q] > 1, then

e
219 & - o Wl i ]
fe2) = de= N Walexp{—2n Y a0,
usa;.kt/(fK;le};:lm : Fesl
Proofl. Multiply both sides of the formula of Corollary 1 o Theoren 2
by I'{s)™ and let ¢ approach zero to obtain:

g - - Na [
D (27) L {2) = —2d5H2am ;}d |7
m[’)_;c/ Uy ibed ;11
ki )
X n [iKlfz(ZWf“mbml) -1-7riaa(j)b(ﬂIK;/;,(BW!CE(")?)(JT)I}].
=1 o
Since Ky, (2) + 22K, (2) = —V2mze™, the proot of Covollary 3 is complete.

Next we prove formula (1.2).
THEOREM 3. If {x is the Dedekind ecta function of a totally real algebraic
number field K of odd degree m = [K : Q] and having class number one, then:

Lxcl28) 8™+ dg P (Ve D(s — ) I(5) 7 £ (28 1) (L —g)™

- N |0-2)2
= _dilﬂ(ﬂ.slﬂ(s)Hl)m : T
. 24 MEC
@)l U pibedp:

m
% | [ Uy a (27 1aB01) e | DB I, (2 D50,
. j=1 ‘
"~ Prooi. Proceed as in the proof of Theorem 2, except multiply (3.1)
’ m
by |#** before applying . Thux (3.1) is replaced by

Qs mm iy v |

Ony ... 8w,

(3.3} Lg(2s) (Jol* — 2|~ + : .
_{_dr—{llz(,ml/ﬂ Ils—1) F(s)wl)mcﬁrtzs —1X Wl‘[,’z-«s/z - |mgs/2w1(2)
. ! Ng |[0-2002
—_ :1/22 8118--15% \ ! X
K (TL' (8) ) ) . Nb
sl U pesbes 72t
' i ' o ‘
x{ [ [ B K gy (2o | gD B e [ [ B K g () |a”’b“’|)},
=1 _ F ‘
[ S
with |o] = [T,
F=1

_ COROLLARY 1. If {x ds the Dedekind zela. Jfunction of the totally real
algebraic wumber field K of odd degree m = [K:Q) and dlass number one,
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then
™ Eye(28) A (L= ) g™ (5 I — ) D(3) ™ £ (2 — 2)
Na (1—28)2

I d—ch’ﬂ ot (g1 1
£ (s) ) T3 X

T T
({cOKJ'U];,ImYK

T H
X ! [ Uy g (27 [0 B e s | D 5D (2 10D 5091
fral :
Proof. Troceed oxactly as in the proot of Gorollary 1 of Theorem 2.
Next we give another proof of the formuln of Corollary 3 of Theorem 2.
Conorravy 2. Let &y be the Dedelind zetw Sfunction of K, a totally
veal field of odd degree m = [K 1 Q1> 1, with class number one. Then

m
Lel2) == dP ety 31 [Whjexp {—2n )] B,

L. —1% fzm
mOK]UK;bEaKI Fa=1
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