то, из (75), в силу (81), (86), получается

\[|S(T') - S(T)| < B + \Delta \psi_1(T) < \Lambda \psi_1(T) = \psi(T). \]

На этом доказательство закончено.

Литература

Поступило 9. 9. 1974
по исправлению 2. 12. 1974

A note on Waring's problem in GF(p)

by

M. M. DODSON (York) and A. TIEŤĂVĂINEN (Turku)

1. **Introduction.** Let \(p \) be a prime, \(k \) a positive integer, \(d = (k, p - 1) \) the greatest common divisor of \(k \) and \(p - 1 \), and \(t = (p - 1)/d \). Let \(\gamma(k, p) \) denote the least positive integer \(s \) such that every residue \((mod \ p) \) can be represented as a sum of \(s \) \(k \)th power residues \((mod \ p) \). In other words, if \(s \geq \gamma(k, p) \), the congruence

\[a_1^k + \ldots + a_s^k = N \quad (mod \ p) \]

has a solution for all integers \(N \). It is well known that

\[\gamma(k, p) = \gamma(d, p) \]

and that

\[\gamma(p - 1, p) = p - 1, \quad \gamma(\lfloor (p - 1)/2 \rfloor, p) = \lfloor (p - 1)/2 \rfloor, \]

\(p \) being odd in the last equation. In this paper we shall be concerned with the case when \(d < \lfloor (p - 1)/2 \rfloor \) and for convenience we define

\[\gamma(k) = \max_{\gamma(k, p)} \gamma(k, p): d < \lfloor (p - 1)/2 \rfloor. \]

In 1943 I. Chowla [3] proved that

\[\gamma(k) = O(k^{\alpha - \epsilon}) \]

where \(c = (103 - 3\sqrt{641})/220 \) and where \(\epsilon \) is, as always in this paper, a positive number. In 1971 Dodson [5] improved this estimate to the simpler result

\[\gamma(k) < k^{1/6} \]

providing \(k \) is sufficiently large and in 1973 Tietāvāniņa [7] showed that

\[\gamma(k) = O(k^{\alpha - \epsilon}). \]

Actually the first two results above were obtained for \(\Gamma(k, p) \), the least \(s \) such that the congruence (1) has primitive or nontrivial solutions for all integers \(N \). However in view of the immediate inequalities

\[\gamma(k, p) \leq \Gamma(k, p) \leq \gamma(k, p) + 1 \]
it is plain that the estimates given above are equivalent to the original ones.

In Theorem 1 of this paper we prove that for any positive number \(\varepsilon \),
\[
\gamma(k) = O(k^{1/2 + \varepsilon})
\]
or equivalently that if \(\frac{1}{2}(p - 1) \) does not divide \(k \), then
\[
\max_p \Gamma(k, p) = O(k^{1/2 + \varepsilon}).
\]
This result is almost best possible for in Theorem 2 we show that the lower bound for the exponent of \(k \) in \(\frac{1}{2} \), i.e. if \(a < \frac{1}{2} \), then
\[
\gamma(k) = O(k^a).
\]
Heilbronn [6] has conjectured that
\[
\gamma(k) = O(k^{1/2})
\]
and it is probable that this conjecture is true although we have been unable to prove it.

A related question is the representation of every integer in the \(p \)-adic field \(\mathbb{Q}_p \) by sums of \(k \)th powers of \(p \)-adic integers. Denote by \(\Gamma_p(k) \) the least \(s \) such that every \(p \)-adic integer is represented nontrivially by a sum of \(s \) \(k \)th powers. Then it follows from a recent paper by J. Bovey [1] that the estimates for \(\Gamma(k, p) \) can be extended to \(\Gamma_p(k) \).

2. Preliminary results and notation. Since \(\gamma(k, p) = \gamma(\phi, p) \) we may suppose that \(k \) divides \(p - 1 \) and since we are concerned only with the case \(\phi < \frac{1}{2}(p - 1) \), we can suppose further that
\[
k \leq \frac{(p - 1)}{3}.
\]
If \(p > k^2 \) then it has been shown ([5], p. 151) that
\[
\gamma(k, p) \leq \max\{3, (32 \log k)^{1/2} + 1\},
\]
so that we can take \(p < k^2 \) from now on without loss of generality.

Let \(Q \) be the set of \(t \) nonzero \(k \)th power residues \((\text{mod} \ p) \) so that \(Q \) is a subgroup of the multiplicative group \(\mathbb{F}^* = \mathbb{GF}(p) - \{0\} \) of nonzero residues \((\text{mod} \ p) \). Let \(Q_n \) be the set of those residues \((\text{mod} \ p) \) which can be represented as the sum of \(n \) \(k \)th power residues \((\text{mod} \ p) \) and let \(q_n \) be the cardinality of \(Q_n \).

For any integer \(a \), we denote by \(\|a\| \) the absolute value of the residue of \(a \) \((\text{mod} \ p) \) which has least absolute value. Also we define
\[
o(a) = e^{\text{int} a/p}.
\]

3. The main theorem. The proof of the main theorem (Theorem 1) depends on a number of lemmas. Lemma 2 and Lemma 4 give estimates for \(\gamma(k, p) \) under various hypotheses and Lemma 1 (which is Lemma 2 of [7]) and Lemma 3 are needed in the proof of Lemma 4.

Lemma 1. If \(q_n \geq 2k \) then
\[
\gamma(k, p) \leq w(1 + [2 \log p \log 2])/w).
\]

Lemma 2. Suppose that every coset \(aQ \) of \(Q \) in \(\mathbb{F}^* \) contains at most \(t(1 - 1/\log p) \) elements \(b \) which satisfy \(|b| < p/3k^{12} \). Then
\[
\gamma(k, p) < 17(\log p)^2 k^{12} < 68(\log k)^2 k^{12}.
\]

Proof. Suppose \(|b| > p/3k^{12} \). Then for any positive integer \(u \),
\[
\left| \sum_{j=1}^u e(jb) \right| = \left| \frac{1 - e(ub)}{1 - e(b)} \right| < \frac{2}{|\min(\pi/4k^{12})|} < 4k^{12}.
\]
Write
\[
R_u = \{jq: 1 \leq j \leq u, q \in Q \},
\]
where each element is included as often as it can be represented in the form \(jq \). Thus each element in \(R_u \) is a sum of at most \(u \) \(k \)th powers (\(\text{mod} \ p \)) and the cardinality of the set is \(ut \). Take \(u = [8k^{12}] + 1 \). Then for any \(a \equiv 0 \ (\text{mod} \ p) \) we have
\[
\left| \sum_{v \in R_u} e(ay) \right| = \left| \sum_{v \in R_u} e(jaq) \right| = \left| \sum_{j=1}^u \sum_{a=1}^u e(jb) \right| < ut \left(1 - \frac{1}{\log p} \right) + 4k^{12} \frac{t}{\log p} < ut \left(1 - \frac{1}{2 \log p} \right)
\]
since \(8k^{12} < u \).

For any integer \(A \), let \(N(A) \) be the number of solutions of the congruence
\[
y_1 + \ldots + y_r = A \ (\text{mod} \ p), \quad y_j \in R_u.
\]
Then
\[
g_N(A) = \sum_{y_1 \in R_u} \ldots \sum_{y_r \in R_u} \sum_{a=0}^{p-1} e(a(y_1 + \ldots + y_r - A)) = \sum_{a=0}^{p-1} e(-aA) \prod_{j=1}^r \sum_{y \in R_u} e(a y_j)
\]
\[
> (ut)^r \left(1 - (p - 1) \left(1 - \frac{1}{2 \log p} \right) \right) > 0
\]
when \(r > 2(\log p)^2 \). Hence
\[
\gamma(k, p) < 17(\log p)^2 k^{1/2} < 68(\log k)^2 k^{1/2}.
\]
If \(k \geq 20 \). The estimate \(\gamma(k, p) \leq [\frac{1}{2} (k+4)] \) due to Chowla, Mann and Straus [4] implies that \(\gamma(k) \leq 11 \) for \(k \leq 19 \) and the lemma is proved.

Lemma 3. Let \(k > 100 \). Suppose that some coset \(aQ \) of \(Q \in \mathbb{F}^n \) contains at least \(t(1-1/\log p) \) elements \(b \) with \(|b| < p/8k^{1/2} \). Then \(aQ \) contains an element \(b_1 \) such that

\[
|b_1| < \sqrt[4]{2k} < p/8k^{1/2}.
\]

Proof. Let \(q \) be a generator of the cyclic group \(Q \) and let \(\{b_1, \ldots, b_n\} \), where \(n > t(1-1/\log p) \), be the subset of elements of \(aQ \) for which \(|b| < p/8k^{1/2} \).

We assume that the conclusion of the lemma is false. It follows from this assumption that at most \(t/\log p \) elements \(b \) in \(aQ \) satisfy \(|b| > 2k^{1/2} \) and so for some \(b_1 \) in \(aQ \) we have

\[
|b_1|^2 < 2k^{1/2} \quad \text{for} \quad j = 0, 1, \ldots, \lfloor \log p \rfloor - 1.
\]

Now

\[
b_1 q = (b_1 q)^2 \pmod{p}
\]

and

\[
|b_1^2 b_1 q^3 - |b_1^2 q^3| |b_1| (|b_1| - 1) \leq 2k p.
\]

whence

\[
|b_1| |b_1^2 q^3| \leq 2k^2 < p
\]

i.e. there exist coprime positive integers \(c_1 \) and \(c_4 \) such that

\[
\frac{|b_1^2 q^3|}{|b_1^2 q^3|} = \frac{|b_1 q^3|}{|b_1 q^3|} = \frac{c_4}{c_1}.
\]

Moreover \(c_1 \neq c_4 \) since \(t > 2 \) implies \(|b_1 q^3| \neq |b_1 q^3| \).

If we replace \(b_1 \) by \(b_1 q \) and repeat the argument we get

\[
\frac{|b_1^2 q^3|}{|b_1^2 q^3|} = \frac{|b_1 q^3|}{|b_1 q^3|} = \frac{c_4}{c_1}.
\]

and repeated application with \(b_1 q \) replaced by \(b_1 q^3 \) and so on gives

\[
\frac{|b_1^2 q^3|}{|b_1^2 q^3|} = \cdots = \frac{|b_1 q^3|}{|b_1 q^3|} = \frac{c_4}{c_1}.
\]

Hence

\[
|b_1| = (c_1/c_4)^{\lfloor \log p \rfloor - 1} |b_1^2 q^3|^{\lfloor \log p \rfloor - 1}.
\]

and so there exists a positive integer \(c_5 \) such that

\[
|b_1| = c_5 |b_1^2 q^3|^{-1} \quad \text{and} \quad |b_1^2 q^3|^{11} = c_5^{11} q^{11}.\]
Thus it follows that for \(i = n, \ldots, 1, m_i = m_i', \) which implies that the numbers (2) are all incongruent (mod p) and so indeed represent at least 2k distinct residues (mod p).

Since for each \(i = 1, \ldots, n, b_i \in Q, \) there exist \(n \) \(k \)th power residues (mod p), \(q_1, \ldots, q_n, \) say such that

\[b_i = aq_i \text{ (mod p)} \]

for \(i = 1, \ldots, n. \) Consequently the expression

\[m_1q_1 + \ldots + m_nq_n, \quad 0 \leq m_i < t_i, \]

which is a sum of at most \(3k^{1/2} \) \(k \)th power residues (mod p), represents at least \(2k \) distinct residues (mod p). Hence by Lemma 1,

\[\gamma(k, p) < 3k^{1/2}(1 + [2 \log p / \log 2]) < 10k^{1/2} \log p < 20k^{1/2} \log k, \]

and so Lemma 4 is proved.

Since the hypothesis of either Lemma 2 or Lemma 4 must hold, we obtain

Theorem 1. For all \(k \) we have

\[\gamma(k) < 6k(\log k)^2 k^{1/2}. \]

Hence given any positive \(\epsilon, \)

\[\gamma(k) = O(k^{1/2+\epsilon}). \]

4. Other theorems. As we have remarked Theorem 1 is almost best possible and we have

Theorem 2. There are infinitely many \(k \) for which

\[\gamma(k) > \frac{1}{2}(\sqrt{3}k - 1). \]

Proof. Since there is an infinity of primes of the form \(1 + 3k, \) it suffices to show that

\[\gamma(k, 1 + 3k) > \frac{1}{2}(\sqrt{3}k - 1). \]

Let \(p = 1 + 3k. \) The number of \(k \)th power residues (mod p) is \(t = (p - 1)/k = 3 \) and since their sum is congruent to 0 (mod p), we can take \(Q = \{ 1, a, -1 - a \}. \) Then

\[Q_w = \{ x + ya + s(-1 - a); \quad 0 \leq s + y + s \leq w \} = \{ x + s + (y - a); \quad 0 \leq x + y + z \leq w \} \subset \{ u + va; \quad -w \leq u, v \leq w \}. \]

The cardinality of the latter set is \(\leq (2w + 1)^2, \) whence

\[Q_w \neq \text{GF(p)} \quad \text{if} \quad w < \frac{1}{2}(\sqrt{3}k - 1) < \frac{1}{2}(p^{1/2} - 1) \]

and the theorem follows.
In conclusion we remark that Theorems 1 and 2 can be extended to the p-adic case. We have

Theorem 3. Given any positive e,

\[
\max_p \{ I_p(k) : d < \frac{1}{2}(p - 1) \} = O(k^{1+\epsilon}).
\]

This theorem follows immediately by combining our Theorem 1 with Theorems 1 and 2 in Bovey’s paper [1].

As in the (mod p) case, this result is close to best possible as the following theorem, which is similar to Theorem 2, shows

Theorem 4. There are infinitely many k for which

\[
\max_p \{ I_p(k) : d < \frac{1}{2}(p - 1) \} > \frac{1}{3}(\sqrt{3k} - 1).
\]

Proof. Let p be a prime and congruent to 1 (mod 3). Then there are infinitely many integers k of the form \(p^m(p - 1)/3 \). Also there are just 3 nonzero kth power residues (mod \(p^{m+1} \)), including 1, and their sum is congruent to 0 (mod \(p^{m+1} \)), so that we can write them 1, a and \(-1-a\) (mod \(p^{m+1} \)). The form

\[a_1^s + \ldots + a_r^s, \text{ where } s < \frac{1}{3}(\sqrt{3k} - 1),\]

is therefore congruent to the expression

\[u + va + w(-1-a) \text{ (mod } p^{m+1})\],

where \(0 \leq u + v + w \leq s\),

i.e. to

\[(u-w)+(v-w)a \text{ (mod } p^{m+1})\],

where \(-s \leq u-w, v-w \leq s\).

Since \((2s+1)^2 < 3k < p^{m+1}\), the form cannot represent every residue (mod \(p^{m+1} \)), whence \(I_p(k) > \frac{1}{3}(\sqrt{3k} - 1)\).

References

[2] — *On the congruence \(a_1x_1^s + \ldots + a_rx_r^s = N \) (mod p)*, Acta Arith. 23 (1973), pp. 257-268.
