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1. Let A = {a,, a,,...} (Where a¢; =0 < ¢, <...<@a,<...) be an
infinite sequence -of non-negative integers. The sequence of numbers,
which can be written in the form Wy + Wiy +- - +a,h, ig denoted by k4
{for k=1,2,...). Furthermore, let A* = {a, dk, ..., af, ..} (for
=12 )

If there exists a mlmber k sueh that

) kA =10,1,2,...,m,...)

holds then A is ealled a basis (more exactly: an additive bagis of finite
order), and the least %, satisfying (1), is called the order of the basis A.

F. Dress raised the problem whether there existed sequences B,
¢ such that B is a basis but B* is not a basig, while on the other ha.nd
C i3 not a bagis but € iy a basis?

The purpose of this paper is to construct such sequences B, C.

In the second section, we shall give two lemmas implying that a
gsequence is not a basis; it should be hoticed that the basic idea of the
two criteria is the same ome: if a sequence 4 is such that for some ir-
rational number ¢ (resp. for an infinity of convenient rationals a) the se-
quence a4 = {aa@;, ady, ...} 18 badly distributed mod 1, then 4 is not
o basis. Note that one can find a larger list of similar criteria in Stéhr [3].

Both criteria may be used to construct sequences B and ¢ with
the required properties, but we shall use the “‘analytic” criterion (Lemma 2)
in the third section, in order to construct the sequence B since it gives
a fairly explicit result, and the “arithmetic” criterion (Lemma 1) in the
fourth gection since the comstruction of the sequence C is altogether el-
ementary.

. -For a real number 6, we ghall write: ¢(0) = exp(ZmB {6} for the

fractional part of ¢, and |f] = inf {6}, 1—1{8}).

One more notatzon
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Let @, i be integers, m > 0. The integer 7, uniquely determined
by the conditions

o = v (mod m),

3]-w<r<[3

(i.e. the absolute least residue of r modulo m), will be denoted by r(a, m).

(Clearly, for any non-negative integer & and any positive integer m
(2) r(a,m)l<a for ax0

-holds, furthermore, for any integers a, b, m (m > 0),

(3) C (e, i) < [ (@, m)] (b, m)]
and
(4) Ta—b, m)| = r(a, m)|— (b, m)].

The last definition: let A be a sequence of non-negative inbegers,
m be a positive integer, #, ¢ be non-negative real numbers. 4 is said. to
‘have property P(n, e m) if acd, a=n imply that [r{a, m)| < em.

2. In this section, we are going to prove two lemmas that we need
in the construction of both sequences B and O.

ImvMma 1. Let A be a given sequence of non-negative integers. Let us
suppose that there ewists aw infinite sequence p; < Prp< ... <Py < ... of
natural numbers gregier than one, and an infinite Sequence &y, oy ooy by +vs
of positive real numbers with
(5) ' lim g, =0

: Jo>-to0
such that, for some infinite sequence %y, fy, ..., nk, oo of non-negative roal
numbers, A has propeviy P(ny, e, py) for b = . Then A is mot & basis.

Proof. Let us argue indirectly and su;ppose that there exists a positive
integer 1 for which

(8) A ={0,1,2,...,7,..}.

By (5), clearly, there exists a subsequence p; << p;, < ... < py 1 of
"the sequence Py, Doy ..., Pz, ... such that
1 .
7y . &, <§ for j=1,2,...,1+1
and !
: Py : '
(8) s — > max{n, 12,...,%,2’} tor 3=1,2,...,{l.

&
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{To find such a subsequence Piys Piys ooy Py, Il we ha.ve o do is o

choose ;. to be sufficiently large depending on 4y, 4., . , after begin-

ning with an arbitrary 4, sueh that e < 1/8L}) '
Let m be any integer satisfying

D,
(%) [T(m,pij)[=[~?’] for § =1,2,...,141.

(6) implies the existence of integers Gy Oy, oy Oy SUCH that

(10)  m =ay +a, +...-~a, and aped for §=1,2,..., 1
We may suppose that
(11) iy 2 Oy 2 H.

‘We shall prove by induction that, for § =0, 1, 2, .'.., i,

(12). m— Za,t

in‘*lw—3+1

In this way, we obtain a confradiction. Namely, the difference on the

feft-hand side of (12) is positive algo for j =7 by (12), while, on the
other hand, the same difference must be egqual to 0 by (10). Thus to
complete the proof, we have to prove (12).

For j =0, (12) asserts that

Pigyy
> .
Indeed, by (2) and (9),
' ‘ P Ps P
m = |?(m,_'p1-1+1)] =[ 21+1:|> l+1 ;-1

Let us suppose now that (12) holds for some § (0 <<j < l~1); we
have to show that this implies that (12) holds also for j+1, ie.

. i+l piz—j
(13) mmé‘ o, >
(10) and (12) imply that ‘
Py f+1

Za, = m— 2“‘

y=jf1
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Thus, by (11),

2 Bi_ s
y=j 41 I—j+1 Gt s L
(14) Gy = _ﬂ?x &, = 1] 8-~ &l i
(8), (11) and (14) give that

Pi_jiq
= 8?, p ﬂil-—j .

(15) a’il .2 aﬂz ?’ . ? a'fj,H_

By our assumption, 4 has property P(’i’bilm

&) Pz‘;,_j)i thus {7) and (15)
imply that .

Dy,
81
0) and (16} that

(16) |lr(ai,7 p@'i_:’-)! “<= Sil_j.p'l;z_j < ? v o= 1J N "?j—l'

We obtain from (2), (3), (4), (9), (1

J+l F4+1
m'_‘z: a’t,,? i"‘(m_z a’t,,:pi;_j)‘
) Dy . 2 —
2 !P‘I-Lj 2]7' a’i’.’p‘iz j [ IJ] '—(J+1)‘_§EE—J-
y=1
Py, _q Py ::’ .’Piz_j.
4 8l 8

Thus (13) and also Lernma 1 is proved.

LEMMA 2. Let A be a sequence of non-negative integers, and let us sup-
pose that there exists an irrational number o such that the set of the fractional
parts of the elements aa (where a belongs to A) has only o finite number
of limit poinis. :

Then A is not o basis.

Proof. Let @, @,, ..., ®, be the set of limit points of the set of the
fractional parts of the aa’s, and let ¢ be a positive real number; we wribe:

(17) Ay = {ned| Vie[1,k]: Jlaa~a) > o},

(18) - Ad,y={ocd| flua—o} <) fo¥ j=1,..,k,
I

(19) 4, = Ud;.

(i) By (17), (18) and (19)it is elear that 4 is the tmion of Al and 4,.
By hypothesis, 4, is a finite set, and the sequence .4, hag upper agymptotic
densﬂ;y

dAE = limsup*{a < N| acd}/N
Nooe

- (20) (h+1)4
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which does not exceed 2e%, because the sequence (an),.y is equidistributed
mod 1. Fhis is true for all & so that '

dd =o.

(i) Suppose now that, for some positive integer h, dhd = 0. Clearly,
we have

= (AL RA)U(R+1)4,.

The sequence A, + kA iz a finite union of sequences which are obtained
by translating %4, and so we have

(21) d(A!+hd) =

Let By, be the set of the fractional parts of all the sums x, et jr1d
Ey, is a finite set with at most 2**Y elements. The sequenee (h+1)4, 18
included in the set of the integers  for which there exists a in By such
that:

llam — &) < (h+1)e.

From the equidistribution mod 1 of the sequence (o) pmen, We get

(22) ' Z((h+1)A) < 26O (h +1)e. |
From (20), (21) and (22) we deduce:

(23) ' Z((h+1) 4) < 269 (h+1)s

Since (23) is true for all s, Z((h+1)A) equals 0

(iii) By induction, we see that for every positive in teger R, the se
quence A has a zero upper asymptotlc density, and so A cannot be
a basis.

{Note that we shall nse only a special case of this lemma, where

k=1 and @; = 0, ie. lim{aa} = 0.)
aed
=00

3. In this section, we shall construct a sequence B having the desired
properties. From now on, we write ¢ == (1+V5)/2. We need two more
lemmas: :

Lemma 3. Let P be a positive integer, b a rational integer with absolute
value less than 0.T3 P2, u and v two arbitrary integers and a a real number;

we have: .

P
N e (ohn® 4 an) l < TP

(24) » (1 4-1hj2)
n=1
- and
upP p+P

(25) Yy e(:z_g;mlnz)|<7Pﬂf{(1+m;1f2).

ny=u+l fg=v+1

2 — Acta Arithmetlca XXX .2
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Proof. (24) is obtained by combining the so-called fundamenial
inequality of van der Corput (ef. [1]), and Lemma 8a of Vinogradov
(cf. [4], D. 24),

(25) is a trivial corollary of Lemma 10b of Vinogradov (cf. [4], p. 29).

LeMMA 4 (J. F. BKoksma, cf. [2]). Let a and b be two positive integers
(n< b), ond 6 ¢ positive real number not exceeding 1, M an integer greater
tham 200, f, fo, fa three functions from [a, b] x [a, b[ wnio R; we write:

8 = 8(a,b, 8) = F{(ny, m)| o <n; < b, {fi(ny, W)t <O (§ =1, 2,3)],
30WY if  h#0,

L P if h=0,

b—1

b1 3
Z Z ¢ (Z By (ma, ”a))' Py Pry D1y

."Ll, Tugs h3 "y

j=

where the first summation is laken over the t?‘@pzﬁS (Ffory Bgy Ry} such that:
oIyl M (j=1,2,3) and - B +hi+h; 0.
We have

1200
(26) §—83(b—a)f| < T+ (b—a) .
. : M
We are now in a pogition o prove .
THEOREM 1. Let '
B = {neN]| {gnz} 193%"“2}, where s (1 +VB))2

the sequence B is o basiz of order at most 3, whereas _'B2 is not a basis.

Proof. It is clear from Lemma 2 and from the definition of B that B
is not a basis.

Remark first that.all the integers which are less than 3.193'% are
in 3B; thus it suffices to prove that any 1nteger N greaﬁcer than 2.160'2
is in 3B. Lef

(en - § = 193N
and
(28) : P =[N/2].

It suffices to show that there exist two inbegers n, and %, satisfying
the conditions:

1< <P, 1gn,<P,
{oni} < 6; {en3} <0, {0(N —ny —ny)% < 6,

since then n,, ny and N —n; —n, are elements of B.
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We shall use Lemma 4 with the following notations:
ai1=1, b:=P+1, M:= [P,
Falny o) 1= oni,  fa{ty, my) 1= Em'g: Ja(fyy Mo} 1= p(N — 0y —7y)°
‘We have to evaluate the sums '
(29) U, iy ) = | 2 2 (o +omd - Ty (B —my —mg)?))
‘ 1_1 nr)'=]

Let uz consider three cases:
(i) hy4hy 7= 0; by (24}, we have:

r P
(30)  Ulhy, hay o)< 3| 3 elothy+ Ao+ fny) | < 7P3""(1+ ZM)”")

7g=1 fiq=1

(i) hy+ Ry 5= 0; we obtain the same majorization in the same way.
(iii) hy = —hy = —hy; by (25}, we have

(81)  U(hy, o, ) = | 2 2 297»3(%1 H)lna—I)) < TP {1+ (231)5).
. gl fg=1 : ‘
In order to apply Lemma 4, we require also the inequality

(32) Z P ny" Py = B (Zi—o) 24 (;M’ia;‘?') +24(z 37?)

Ry, hy

304°
<8 (1 + 2 T) < 250000 (Log M),

h=1

With the notations of Lemma 3, (26) becomes, in view of (29), (30),
(31) and (32),

(83) |8 — 6P| < TP (14+V2P%) 250000 4% (Log P)? - 1201 ™,

Since P is greater than 160%%, LogP is less than 4.82P"* and (33)
becomes

(34) [§ — P2 < 6.16-105P*14 < 7.34-10° N4 P2,
By (27) and (28), we have |
(35) 0*Pt > 7.34- 105 N4 P2,

Comparing (34) and (35), we see that S ig positive, and the proof of
Theorem 1 is now complete.
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4. In this section, we will construct a sequence € such that O is
not @ basis but O? is a basis (of order at most 6). We need one more lemma,

Lievaa 5. Tet v be any odd prime numbe#, a any infeger. Then there -

exist indeqers @, y, # suoch that

(36) 22y -2 = a (mod. p?)
and o
(37) (@, p)l <V3p, ir(y,p)l <Vsp, Ir(z,p)i<Vsp.

‘"Proof. If p == 3, the lemma is trivial, so we suppose p > 3. Since
p*® i3 congruent to 1 mod 8, we may write

(38) . a = rp+4-8 (mod p?),

where ¢, s are integers, such thab

(39) _ Or<<p
and '
(40) 1<s<3p, and s nobt congruent fo 0 or Tmod8.

By Legendre’s theorem, there exist non—negémtive integers b, ¢, d such that
(41) bryetdr =s.

(40) and (41) imply that |

Vs<V3p, 0<e<Va<V3p, o0<d<Vs<V3p.

By (40), at least one of the numbers b, ¢, d is positive; we may suppose

that b > 0. Then
I<b<V3p

which implies that (b, p) = 1. Thus also (2b
there exishs an integer v such that

42) 0<b<g

+?) =1 (pis odd); therefore

(43) 94b = r (mod p)
holds.
TLek

e =vp+b, y=e
Ther we obfain from (38), (41) and (43) that
2y 4-2% = (vp+ D)2 e d2 = vipi4-20bp +.b2+c=—|—d2
= 0*p?+4-20bp -+§5 =1p 45 = o (mod p?),

2 =d.

whence (36) holds.
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Furthermore, by (2) and (42),

Ir(@, p)l = lr(op+b, )| = Ir(b, p)| < b < V3p.
The other three inequalities in (37) follow immediately from (2) and
(42). (Clearly we need not put equality signs in (87).

THBEOREM 2. There exists a sequence O such that O is mot a basis but O°
i85 & basis (of order at most 6).

Proof. Let p, (5 =1,2,..
Pr=23, Py =5, py =1T,... Let

(44) . fy, = 12 (Pl?z Pt for
Let ux define the sequence ¢ in the followmg way: let

.} denote the &th odd prime number:

E=1,2,

On[0,n,]1 =10,1,2, ..., n,}.
If % > ny, then for some positive integer &, n, < n < 1. Then neC
holds if and only if

(45) rin, o)l < V3p, for i=1,2,... %

By our construction, the sequence ¢ has property P (n,“ ]/—3—, @k)
: . Pr '

for k =1,2,...; thus ¢ is not a basis by Lemma 1.

Thus we have to prove only that ¢ is a basis. We will show that
C* is a basis of order at most 6, i.e., for any given non-negative integer
m, there exist integers Oy, ¢,, ..., C; such that

[
(46) m= N0
. i=1
and
(47) CieC for j=1,2,
For m < n,, the existence of such numbers 01, Oy, ..., O i trivial.

Assume next m > n,. Then
(48) ' Wy <MK Ny

for some integer k.
Let us apply Lemma 5 with @ =m, p = p; where i =1,2,..., k.
We obtain that, for 4 = 1, 2, ,k there exist.integers m, ¥, % such
that . '
@; +yi -2 = m (mod p)
and : '

(@, 2| < Vps, Wiy, 2l <V3pg, (2, 2l < V3p;.
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Tt us denote the least non-negative solution of the congruence system
(6 =1,2,.., k)3
(t=1,2,..., k);

x == w,; (mod p)

y = 1,; (mod pj)
Tesp.

(modpi) (¢ ='1,2,--_-,75)_§>

by ¢, Cs, resp. C.
We may now choose A, A, 4, belonging to {0, 1}, such that:

.8
Z (C; +A;01P2. .. P)* = m—1 (mod 4)}.
i=

Let O; = O+ 4p....0; (§ =1, 2,8). Then clearly,

(49 0< 0 <2(p1Pa---08) for j=1,2,3.
By the definition of the s, y’s,2’s and O (i =1,2,...,k
i=1,23), : '
(50) R0 = m (mod (pyp;. - P)?)
and ' ' _
(51)_ |T(Oj1'.pi)|<]/;p: for §j=1,2,8,i=1,2,...,k
(44) and (49) give that _
(52) 0< 6 <n, for j=1,2,8.

By the construction of the sequence €, (51) and (52) imply that
CyeC . for j=1,2,3.

To complete the ﬁroof that 0% iy a basis of order at mogt 6, we have
“to gshow that the number :

(53) B t = m—(C+Ci+ )
can be written in form ' _
(b4) = O3+ 03+ 0}
where

(55) 0;eC  (j =4,5,6).

We obtain from (44), (48) and (52) that

=m—( +02'|"G) S [
and :

b= m“(O%'i' O3+ Og),> ;”h;‘““l?’ (P1Ds---P1) = 0,

icm
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thug
(56) 0 <t Nysy s
Furthermore, it follows from (50) and the definition of ¢ that &
= 0 (mod (p,...p,)"). Let
(67) ot g(pipe. Py

By Legendre’s theorem, there exist non-negative integers g, gs, ¢s
such that

(58) {=Q+GE+a6
gince 1 =1 (mod 4), and &0 ¢ =1 {mod 4).
Let
O = @_3P1Ps---2r {§ =4,5,6).
Then (b7) and (b8) give that
6 6
(59) 30 = 3 (GaPiPe D) = (D2Do- PG+ B+ )
i=a 7=t
= g(prPs---Dx)* =1
thus (54) holds.
Furthermore, by (56} and (59),
(60) SViSt<my: (j=4,5,6)
and clearly,
(61) [ (Cpy 23)] = |1 {gsP1Pa- - Ppy P}l =0

(=4,5,6;4=1,2,...,%).

By the construction of the sequence ¢, (60) and (61) imply (55), and
thus we have proved that ¢* is a basiz of order at most 6.

5. Tt can be proved by a similar construction that, for any given
positive integer &, there exist sequences D, F such that D is a basis but D*
iy not a basis, while # is not a basis but E* i a basis (only the compu-
tation beeomes slightly longer). The same idea even could be applied
to construet a sequence F such that F is a basis but 2 Fis not a basm

=21
(but the construction would be even more compheamed). '

Furthermore, we remark that the sequence B constructed by us
wad 2 basis of order at most 3, while €° was a basis of order at most 6
(but neither B® nor 0'is a basis). We guess that there exist also sequences
@, H such that @ is a basis of order 2 but G* is not & basis, while H is not
a basis but H? is a basis of order 4
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Finally let I be a set of positive integers; is it true that there exigts

a sequence A such that A" is & basis if and only if » belongs to L% The

answer iy yes 1f there is only & finite number of integers which do not
lie in L. '

Added in proof. The first named author and E. Fouvry proved in a paper
which will appear in the J. Londen Math. Soe. that for any set- I of positive in-
tegers there does exist a sequence .4 such that A% iz » basis if and only if » belongs
ti0 I it is elear from their proof that there exisis also a sequence H which is not
a basis sueh that H* is a basis of order at most 5.
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A sharper bound for the least pair of
consecutive k-th power non-residues of
non-principal characters {modyp) of order % >3

by

Rrcmarn H. Hupsow (Columbia, 8. C.)

1. History of the problem. Let 5 be a non-principal character (mod p)
of fixed order % and let n,(k, p) denote the smallest positive integer
satisfying

(1.1 e, p)) # 0 or 1,  x(na(k, p)+1) 0 or 1.

The first significant success in providing an upper bound for ny(k, p)
was that of P. D. T, A, Blliott ([3], p. 52) who showed that for real valued
characters (mod p), i.e. Legendre symbols (p > 2), that

(1.2) ng(k, py = O(p+**)

for each 6 >0 and p =5
Although (1.2} is a relatively easy consequence of D. A. Burgess’s

[1] deep and thoroughly remarkable character sum estimates, Elliott

improved (1.2) when, in addressing the Number Theory Conference in

Boulder, Colorado in 1972 [4], he showed that ' '

}. (1_ g—10

2 +‘
(1.3) ni(k,p) = 0(p*" * )
for each > 0 and p = b.

)

2. A new bound for n,(k, p). An “alternative bound” for ng(k, p)
was provided in [7] where I proved that

(2.1) - malk, 2) < (@R, 2)—1) {22k, 2))

where ¢,(k, p) and g,(%, p) ave, for each fixed k, respectively the smallest
and the second smallest positive primes with 2(q: (%, p)) # 0 or 1,
x(galk, p)) 5 0 or L.

I asserted in [7] which was written in the Fall of 1973, and I an-
nounced when I spoke in Oberwolfach, Germany in January, 1974, that
(2.1) leads to an improvement of (1.3) for all non-principal characters



