On definite quadratic forms, which are not
the sum of two definite or semi-definite forms.

By
Paul Erdés and Chao Ko (Manchester).

Let

(a,=ay)

n
L= X ayxx
fj=1

be a positive definite quadratic form with determinant D, and integer
coefficients a,,. Call it an even form if all a,, are even, an odd form if at
least one a, is odd. Then f, is called non-decomposable, if it cannot be
expressed as a sum of two non-megative quadratic forms with integer
coefficients. '

Mordell *) proved that f, can always be decomposed into a sum of
five squares of linear forms with integer coefficients. Ko®) proved
that f, can be expressed as a sum of n -+ 3 integral linear squares, when
n=3,4,5.

When n==6, Mordell *) proved that the form

6

A

i=1

6
> xl)z — 2, X, — 22, X3

i= 1

(03]

of determinant 3 is non-decomposable; and Ko*) proved that (1) is the only
non-decomposable form in six variables.

1) Mordell, Quart. J. of Math, (Oxford) 1 (1930), 276—88.
2) Ko, Quart. J. of Math, (Oxford), 8 (1937), 81—98,

8) Mordell, Annals of Math, 38 (1937), 751—757.

4) May appear in Acta Arithmetica,
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When n==7, 8, Mordell*®) proved that the forms

n

2 X+

i=1

n

( > xl)z_zxi Xy~ 2x, X,

Yi=1

(n: 1, 8)

with determinant D, =2, Dy ==1 are non-decomposable.
In the present paper, we shall prove the following theorems:

THEOREM 1. When D_ =1, there exists an odd non-decomposable
form, if n > 12, except possibly for 13, 16, 17, 19, 23; and an even non-de-
composable form for all n =0 (mod 8). i

Hitherto the only method known for finding forms with D =1 for
n > 8 was that due to Minkowski®).

THEOREM 2. For every k> 0 and n>13k + 176, there exists a non-
decomposable form in n variables with D =k.

THEOREM 3. There exist non-decomposable forms for every n> 5.

From theorem 1, we can deduce that the class number A of positive
definite quadratic forms with D ==1 is greater than 2V7 for large n But
Magnus °) proved that the mass of the principal genus is greater than
A (1—e)/4 for n> n,, where e==¢(n,) is a small positive number, and so,
as Dr. Mahler points out, it follows that h, > n"* (1 —&)/4 for n> n,.

Any quadratic form can be reduced by a unimodular transformation,
i. e. integer coefficients and determinant unity, to the form

n—1

> l7‘.x,x,LH .

i=1

o
S axt+2

i=1

This and its determinant may be denoted by

a, a, B Y a,,) and |a, a, R S a,
bl I)u b,._.1 ) bl b, v b
respectively. If, however, say a,=a,=...aq,=~c and b, =b,=
...=p,_,=d, we may write (01 C(n—1) ) with obviously similar
1 (n—2)
extensions.
1. Some lemmas.
LEMMA 1. The determinant of order n

5) Gesammelte Abhandlungen von H. Minkowski, 1, (1909), 77.
%) Magnus, Math, Annalen, 114 (1937), 465—475.
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dy = | 2

I (n—1)

=Tl+1-

It is evident that d,=
all m <n, then

2 and d,==3. Suppose now d_=m + 1 for

di=2dy —diz2=2n—(n—-1)=n+ 1
LEMMA 2. The only squares which can be subfracted from the form

n—1
fl) = 2 Z’ x+2 Y xmy (> 3),
i=1 i=1
so that the remaining form is non-negative, are x:.l, (o, Fx)? (E=1,...,
n—1), and xﬁ.
Since we can write
n—1
f) =2+ 3 (utx) + <
i=1
the unimodular transformation
=y, ot g = (1) Ty, i=1,....,n1)
carries f{x) into
fly) = Z ¥+ (Z' ¥
i=1
. n
If F(y) = fiy) — (L) Liy) = X ay
i=1
is non-negative, then it is evident that @, can be only %1 or 0 since

F@,...,0,1,0,...,0) = 2 — a} >0,

L. Suppose first that one of the o' s is zero, say a, = 0. Without loss

of generality, we can assume that a ;= 1, Then

n—1 n—1 n—1

Sty —a) =2+ 3 a,+(2 )=+ 3 a
i=2 =2 i==2

F(a,,a,,..
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n—1
<1- XY a <o
=2

if at least two of the @,, ..., a,_, are not zero. Hence we need only consider

either ¢,=...=gq,_, = 0, and then L(y) =y, or only one of these a's

does not vanish, say a,=F 0. But then F(y) is indefinite, since as n >3,
F(2a,, 24y, —a,,—a,,0,...,0) =22 + 22+ 1+ 1+ 22— 4 <0.

II. Suppose next that none of the a's are zero. If two of them have
different sings, say a, = — a,, then

n
vay =n+ (Y a—n<(n —-22+n—-n><0.
=3

F(a,a,...

From I, and II, it follows that F(y) is non-negative, if and -only if
n

. n), or v, This clearly proves the lemma.
i=1

L) =y, (i=1,..

LEMMA 3. The form

n—1

fx) = ocx2 + 28x.x, + 2 Z x2 +2 2 XX
=2

with determinant D, <n, where a> 0,8 = 0 are infegers safisfying the
conditions:

g2 > o> (1 — 1/m@, 20 <n

is positive definite and non-decomposable.
By lemma 1, f(x) is positive definite, since its determinant is
D, = na — (n— 1)p* >0,

and clearly all its principal minors are positive.
First, we shall show that nondecomposition of f[x) involving a linear
square exists. As in lemma 2, we can transform f (x) into

y2+(2y:)2

f(y) = 0'-}’1 -+ 25}’1}’2
i=2
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By lemma 2, it follows that the only squares which need be considered are

(1) (@)t a0, (2) (qy, T )% (3 (ay, +~¥)* ({=3,...,n) and

n
@) (ay, +2, 92
i==2

The case (1) is ruled out, since D, — naf< 0. For the cases (3) and
(4), we need consider only the square (a,y, + ¥,)* since f(y) is symmetrical
in yy,...y, and the transformation

n

T: wos—2 v y>y (=1245...,n
i=2
n
permutes yg and (X y)2
i=2
Consider first the form

F,=/)—(ay,+y)?

n
= (a - ﬂ%) yf +2 (B —'11)}'1}'2 + 2 y?+ (E 3’1')2-
=3 (=2

The transformation

n
yg‘**E‘Y,’- Yi>Yi (=134, ..., n)
i=1

carries F, into

n n
Fi = (a—ally?—2(—a) 3,2, y) + Dy?
=2 =2

= Zz @i— E—a)y)+ (a— @ —(n—1)(— a,) 22

The maximum of the: coefficients of yi
A=o—a—(n=1)(¢ —a)?

for different a, occurs when @, == (n — 1) g/n. Since 0<p/n<1, we have
for a,=8, 8—1, respectively,
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A=0—p<0 and A=a—p+28—n<0,

so that F," is indefinite. This settles the case (2).
Consider next the form

Fs=71 () = (a,; +ys)?
n n
= (@—ad) v+ 2By + 2+ Dy (D v — 20
i=4 =2

The transformation T carries F, into’

n n
F3’=(u'~a%)y%+2ﬁy1y2+2a1yi(2 yi)+ Z y%
i=2 i=2

n

=2 (it ay)+ ot e+ a) ) Ho—ad—E+a) —(n—-2)ady.
=3

The maximum value of the coefficient of y?
A =0—a—~B+a)—(n—2)d

is reached when @, = — p/n. Since — 1 <<—f/n <0, we have, for a, = 0,1,
respectively,

A =0—f<0 and A =a—p-+28—n<0,
F, is indefinite and cases (3) and (4) are also settled.

Suppose now there is a decomposition
flx)=f"(x) + f"(x).

No term x? (i 22) can occur in either f'(x) or f”(x) for then a square can
be taken out of f(x). Hence we can assume f'(x), say, has a term 2x2,
Then f'(x) must also contain 2x__,x , for otherwise f’(x) assumes negative
values by choice of x,. Then f(x) contains also 2x?_,, for otherwise f’ (x)
will assume negative values by choice of x,—1. Proceeding in this way, f'(x)
will contain all the terms of f(x) involving x,x, _, .., x; Hence
J’(x) = ax} and so a square x? can be taken out from f(x), which con-
tradicts what we hawe proved.

LEMMA 4. If n==2% p%, 2p+, where p is an odd prime and o is a po-
sitive integer, then there exists an odd non-decomposable form in n variables
with determinant unity.

Consider the form
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= (% 20y
n={

in n variables. It is easy to calculate by using lemma 1 that its determinant
has the value

1(—2

D, ==nx— (n—1)y~
Putting D , = 1, we have to solve the congruence
2) ¥y =1 (mod n).
Since n==2% p«, 2p% we can write
n==a.b, (e, b) =1, a>2, and b>2.
Suppose y;, ¥. are the solutions of the congruences:
yy=—1 (mod @), y,=1 (mod b), 0<y, <m;
y,=1 (mod a), y,=—1(modd), 0<y,<n.
Both y; and y, satisfy the congruence (2) and since
‘ ¥t y,=0 (mod n), 0<y,<n, 0<y,<n,
we have
Vi + 3 =n.

Hence one of the y,, y, is less than {nand we take this value to be our y,
which satisfies the inequality 2y < n.

From D =1, we can obtain the inequalities Y>> x> (1 —1n)y?
Hence the form f, satisfies all the conditions of lemma 3 and is non-de-
composable,

‘ f.is an odd form if x==((n—1)y?+ 1)/n is odd x is evidently odd
if nis odd. If n is even, we write

x=y*— (y* —1)/n.
Then y must be odd and from the congruences

y=11 (mod a), y=F1 (mod b), (a,b)=1, ab=n,

1:1; is clear that if a is even, then b is odd, y *+ 1 is even and so (y*—1)In
is even and so x is odd.

icm
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LEMMA. 5. For any n=28m, there exisls an even non-decomposable
form in n variables with determinant unity,

Consider the form

N (8m 2m 2(8m~2)
f) am—1 18m—2)
in 8m variables. By lemma 1, the right lower corner (8m — 1)-rowed minor
or the determinant Dg,, of f(x) has the value

2m(8m—1) — (8m —2) = 16m*— 10m + 2> 0,
and so
Dg,, = 8m(16m* — 10m - 2) — (4m — 1)*(Bm—1) =1

Hence it is clear that f{x) is an even positive definite quadratic form with
determinant unity.

To prove the non-decomposability of f(x), we first show that no square
can be taken out from f (x).

Let Q be the matrix of f(x]7 then the adjoint form of f(x), say F, has.
matrix Q! . Since )

QQ™'Q=0Q,
F~ f(x), and so F is also even. Hence all the (8m — 1)-rowed minors of
forms equivalent tof (x) are even. Suppose now a square L* can be taken out
from f(x). A unimodular transformation carries f (x) into

8m

= 2 ax=

=

and L=x,. Then the determinant of f(x} —x?is

(@;=a,)

a,—1 a, ...aq,,
a a, ...a
21 2 2,8m —
. ! - 1 Al
TBomi1  Ygmz' * * Ogins8m

where A is the minor of the element @, in the determinant of f(x}. Since
A is even, 1 — A <0 and sof (x) — x? is indefinite.
Suppose nowf (x) is decomposable, say

f(x) =fi(x) +£2(x).

By the same argument used in the last part of the proof of lemma 3, one:


GUEST


110 Paul Erdés and Chao Ko,

of thef,(x), £, (x), say f,(x); can at most contain the variables x, and
x.. Since all binary non-negative forms can be expressed as a sum of
squares of linear forms, a square can be taken out from f(x). This con-
tradicts what we have just proved ).

LEMMA 6. If there exists an even positive form in n variables with
determinant unity, then n is divisible by 8.

Suppose there exists an even form f, with determinant D = 1. Then
by a unimodular transformation, we can change f, into

2a, 2a, 2a4 .20,

b b by ... b

1 2

2“")

n—1

A simple determinant calculation shows that D _is even if n is odd. Hence
n is even. Let the left hand corner principal minors of D, be 2D, D, 2D,
D, ...,2D,_,, and write D,=1, then

) 2D,=2q,,D,=4a,D,—D;b%,...,D,_=a, D, ,—D, ;8 ,,
D,=4a,D, ,— D, ,b ....,D,=4a,D,_,—D, _,b% =1

n—2 ~ n—1

From these relations, it is easy to see that (D, D,,)|D, = 1 and so

D,D, )=1fori=1,...,n—1 Since
0 0 0 ...0 0

D = | b, b, Bo.b =b,b,...b _, (mod 2),

all the b,,,, are odd. By taking congruences modulus 4 in (3), we have
D,=—b=—1, D,=—D,bl=1 (mod 4).

It follows, by induction, that in general

and

Dy,=—1 D,, =1 (mod 4).

Hence the D, are odd and n = 0 (mod 4), say n=4m. Write D, =
2241D;,,, where D) ., is odd. It is evident from the last relation of (3),

that the Dy _,, D,,_, satisfy the relation

7) This argument shows that the even positive definite form with
nant unity

determi-

8m 8m
— v Y
h(x)= ('El x(Z -+ (':1 20yt — 2x,x, — 2%y, 2(m—1)xgm

given by Korkine and Zolotareff in Mathematische Annalen, 6, 1873, p. 366—389 (brought
to our motice by prof. L. J. Mordell) is non-decomposable. It is probable that h{x) is
equivalent to our F(x) for the same m. o

icm
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(—‘DQM—-Z/D;m—i) = 1’
the symbol being that of quadratic residuacity. Since —D, , =1 (mod 4),
and D, ,=—1 (mod 8), whent, >0, we have

1=(D ;m—-l /D4m—2) = (D4m—1/D4m—2)'

From the relation D, =a, D, ,—D, b2 of (3),
t=(—D,,./D,, ;)

= (24m—3/D, ).(—1) 1 (D.,4m4+ K (D4m—2/D;m-—3)

= (2“‘"’—3/1)4,.— z)»( -1 1 Dns +4 (— D4m—4/D;m-—3)¢

since again from (3), D, ,=4a, ,D, .—D, ,b% .. Hence

1 = @4n—3D,, )(— 1)} PV T4 s =
= — (24n—3/D,,_, ) (2'm- 3D, Dy, /Dy
From the relation 4,,, ,D, _; — D

s Vi3 = Dy_n we have,
t,,_>0, since b, _;'is odd, D,, ,+D, , = 0 (mod 8). Hence

D iy
(D4m—3/'D

4m—4)

when
2
/D,,_,) = (2/D,,_,) and so
(24m~3/D, ;) (24n—3/D, ) = 1.
Hence
1=—(D,, /Dy,
or Dyps/Dy ) =— 1.
Continuing this process, we get
(Dyr—g1—3/Papgiea) = — 1.

Hence
Dypga™1y
and so 4m — 8i — 4= 0, or n is divisible by 8.
LEMMA 7. The positive definite forms:
7, _ (Sm 2m 2(8,"_3))
8m—1 4m—1 : 1am—3) ’
y _ (Sm 2m 2(8,"_4))
8m—2 am—1 g,y p
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4n 8m—1 and 8m—2 variables with determinants 2 and 3, respectively,
are non-decomposable.

Let us first consider the form f, _, From the argument used in the
last part of the proof of lemma 5, it suffices to prove that no square can
be subtracted from f, , Suppose f,, ,— L’ is a non-negative quadratic
form with integer coefficients, where L is a linear form in x4, . . ., xg,_,With
integer coefficients having no common factor. By an unimodular transfor-
‘mation, we can write L = x,, and then

8m—2

Jomoz ™~ Jomr = 2 8y 5%, (2 =ay),

ij =
‘where f; _, - x?is a non-negative form. Let the cofactor of ai; in ‘the’ de-
{erminant of f; _be A4,; then the determinant of foma 4288 3—"4,,
and ist not negative. Since the adjoint form of an even form in an even num-
‘ber of variables is even®), 4;;=2. Consider now the positive even de-
finite form

6 6 8m—2
Jona =882 6x, 2,2 5 A2 3 xw, T 3 aFg ¥
=2 i=2 ij =1

in 8m + 4 variables. On bearing in mind the method of lemma 1, the lower
right corner, say 1. r. ¢., (8m—1)-rowed minor of the determinant of £, ™
has the value 2.3 —2==4; the 1. r. c. 8m-rowed minor is 2.4 —3 =25, the
1c r. (8m + 1)-rowed minor is 2.5—4=6, the 1 r. c. (8m -+ 2)-rowed
minor is 2.6—5=7, the 1. r. ¢. (8m -+ 3)-rowed minor is 2.7 —6=28
and so the determinant of f; ., is8.8—3".7=1, which contradicts lem-
ma 6.

Next we prove that no square can be taken out from f; _ and hence
Jom 118 non-decomposable. If f, _ . — L* is non-negative, then L cannot con-
1ain a term involving x, (1<i < 8m — 2), for otherwise, by putting x,, _, =0,
we would get a decomposition of f, _, Hence L=1x,  Butf, ,—x% . is
indefinite, since the determinant of f, , —s2  is 2—3<0. This comple-
tes the proof.

LEMMA 8. Let the positive definite quadratic forms:

2l S CAVRIYE WP 8= ot (Koo 1 %,)s
&=ba  F 2k, T 8

having determinants D,, D,, D,, respectively, be non-decomposable. Denote

8) Bachmann, Zahlentheorie, vol. 4, part 1, 444,
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by A the value of the upper leff-hand corner principal (m — 1)-rowed minor
of D,. If there exists a positive definite quadratic form of determinant
D<D, D,
g=g+ ax:+1 + 2x, %00 T g
where a is an infeger and 0 < a < A|D,, then g is non-decomposable.
Suppose g has a decomposition

(4) g=h-+h.

If one of the h's has a term involving x; (i==1, ..., m), it will contain all
the terms of g, for otherwise we would get a decomposition of g, by
putting x,,, =..,= x, =0. Similarly, if one of the A's, say h, has a term
involving x; (i =m 4 2, ..., n), it contains all the terms of 8.. Then h must
contain the term 2x, 1t Xyt for otherwise, &’ will assume negative values
by choice of x ,,. Then h contains also a term b'x? , with &' > 0, for other-
wise, h will assume negative values by choice of £ Next b" = b, for if
b <b, on puiting x,=...==x =0,

h= g2+2xm+lxm+2+b’ xfn_(_l .
This is indefinite, since g, is non-decomposable. Hence A contains g,. Hence
we may suppose that either & contains both g, and g,, or A contains g, and A’
contains g,.

In the first case, &' can only contain the terms or part of the terms of
g— (g, + 8) =ax?  +2x x .. Then ' = ex?  with 0 < ¢ = o, since
if A contains the 2x %1 I will assume negative values by choice
of x . Hence

h=g—cx?,,

Since the cofactor of the coefficients of x? 1y in the determinant D of g, is
D,D,, the determinant of his D — ¢ D, D,. By hypothesis, D — D, D, <0,
A is indefinite.

In the second case, h must contain the term 2x_ x "y for otherwise A’
will agsume negative values by choice of x_, Then h contains also a term
c'x? ¢ >0, for otherwise i will assume negative values by choice of x

m1e
Also

h= g+ 2x_ - 4= c'xt . B =g, ~+ dxi'_H,
since A’ contains g,, Hence a=c + d and so ¢ = a for d cannot be nega-
tive, as g, is indecomposable, It is easy to see that the determinant of A is
¢’ D, — A. By hypothesis, ¢’ D, = a D, < A, and so h is indefinite. Hence (4)
is impossible and the lemma is proved.
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LEMMA 9. For every n =:12, except possibly for n=13, 16, 11, 19,
23, there exists an odd non-decomposable quadratic form with deferminant
unify.

Suppose n -+ 2 can be expressed as the sum of two positive integers '

ny, n,, where n, = 8m or @ — 1, and n, =4, p?, 2p%, p being an odd prime
and o an integer. Let the form

®) (%, @y %y i, )
b, b b .. b,

in n, — 1 variables with determinant 2, containing a minor

6)

a a a, e @

b

be non-decomposable. Such forms always exist, for if n,=8m, we can by
lemma 7, take the form

n~3 a"r‘z

=3

3 =3

(8m 2m 2 m—3)) ,
am—1 1g 4

and if n, = a* — 1, by lemma 3, the form

(02—1 2(0—2)
a (n~3)""
Consider now the odd form:
;o= a a, ay e 8y o a, 4 3 2(—3) x)
n b, b, b, ... b, 1 1, y
in n variables with x, y satisfying the relation
) nx— (n— 1)y =1.
From (5) and (6),
a a, a, 12 a,, 3 ‘
N ! =3,2—3=3
b, b, b, ... b, _,
and so as in lemma 1,
a, .. ap_n a3 2(n,—4) ' - 1
b, ... ba—2 1. lne—) M b
P S an_4 3 2(ny—3) l =n
by ... ba—2 1 1(n—3) b

and the determinant of £, is nyx — (1, — 1)y* = 1. From lemma 8, on taking
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I —
& = ( ' b a'h 2bn,——2 " 1)’ Do=24-= 3

= (2(n,—4) 2 x) 2(n,—3) 2 x
& ( lm—e) y ""=1' gﬂz( : Lin—3) y )

D, = ! 2(n—3) 2 =x

9, = l 2(ny—4) 2 x '
1n—9 y

1(n—4) y

4 ’

f, is non-decomposable if g,, g, are non-decomposable. From lemma 3, we

~fieed only show that

(8) x <y,

9) . 2y<n,—2,
the determinant of order n, — 2,

(10) D, <n,—2,
and the determinant of order n, — 1

(11) D, <n,—1.

By lemma 1 and (7),

(12) D,=(ny—2)x — (n, — )y’ =1 — 2x + 2y
D= (n—Hx — (0, — 2Jy* =1 — =+ 2

We now solve (7). Since n, = 4, p% 2%,

Y?=1 (mod n,)
has a solution ¥ satisfying the inequalities
(13) 1<Y< 1n,

Then taking y=1Y in (7), we have a solution (x,.y). Then (8) evidently
holds, as from (7) and (13),

=yt (1= y)n <y
If n, is even, (9) follows from (13). If n, is odd, say n, —~2n.‘ +1, yn,

“since n? == 1 (mod 2n, + 1) for n, 3 3. Hence from (13] y < ng—1 and

9) holds again. Since from (12), D,—~Dy=y*—x>0, (11) holds if
(10} holds. From (7) and (9), we get
y? —x=0"—1D/< n,/4.
Thus (10} follows if n, 7= 6, since
¥
Dy=1+42y—2x<14nf2 <n, —2

is true for n, =:6. But n,== 4, p% 2p% and se-n, = 8, hence f; is non-
decomposable.
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Now from lemma 4, we need only prove that if n=2% p* or 2pt
where n = 12, n==13, 16, 17, 19, 23, the equation
n--2==n+m
is solvable with the conditions n,=:8m or a*—1, n,=3=4, pe,
n >0, n > 0.
Small values for n, — 2 are

2p> and

" 6,13, 14, 22, 30, 38 and 46.

Suppose first that n = 0 (mod 4). Then we need only consider n=2 k,
If 2 #=2 (mod 3), then we can take n, ==24—14 or 24— 38, if n > 38,
unless
2k — 14 = 238, 2k — 38 = 2.3%.
They give 38 —37==12, which is impossible. But if n
exceptional case n=32.

If 2k=1 (mod 3),
n > 46, unless

< 38, we get the

then we can take n,=2#—22 or 24¢—46, if

2t — 22 = 23F, 2t — 46 = 2.37,

‘They give also the impossible equation 3* — 3" =12 and we get the
exceptional value n==16.

Suppose next n =2 (mod 4), we can take n,==n—6, unless n, =4,
i e. n=10.

Suppose finally n is 0odd and so n=p*. Ifn == 0 (mod 3), we can take

m=n-—6 or n—30, if n> 30, unless

n—-6=3 n_3=

They give the equation 3% — 37 =24, which has only the solutions f =3
Ie'ading to n==33 == p *The only exceptional value n==p* < 30 is 27.

If n= 2 (mod 3), we can take n,==n—14, or n— 38, if n>38,
unless

n—14=3% n_38=3

They give the equation 3% — 37 =
and this carresponds n==41,
23, 29

If n=1 {(mod 3),~

unless

24, which has the only solution B =
The other exceptional values < 38 are 17,

we can take n,=n-—22 or n— 13, if n>22,

icm°
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n—13=3";

They give the impossible equation 37—3% =9, and so the exceptmnal
values in this case are only 13, 19,
Hence the exceptional values are

n—22=3F

n==13, 16, 17, 19, 23, 27, 29, 32 and 41,
Since ‘
41 — 6 =35,

and 21, 15, 35 3= 4, pe, 2p*, we can rule out the cases 27, 29 and 41. Hence
the only exceptional values are

27— 6=21, 29—14==15,

n=13, 16,17, 19, 23 and 32.
But 32 can be excluded from the last. Write

- (35 2(30) ) =(35 2 5
S5 6 129)/) f”_ 1029 2 )

Then f,, has determinant 5=35.31—6°.30, f,. has determinant
1=5.5—2%(35.30—6*.29). By lemma 3, the form fy; is non-decompo-
sable. If there exists a decompo:sltmn for f,, s

faz = h:«z + hsz

2(29)

and one of the A’s, say hy, must vanish identically if we puf xy, =0, for
otherwise, there would exist a decomposition for fs» Hence hy,' contains
only cx?, with c=1. This is impossible, since

35 2(29) 2

5—¢|_,
6 1(29) 2 "“1 5¢<<0.

Hence f£;, is non-decomposable and our lemma is proved.

It should be remarked that for n==8"), 9, 10, 11, 13, it is known
that there exist no odd non-decomposable forms with determinant unity.
It still remains to be investigated whether there exist odd non-decomposable
forms when n==16, 17, 19 and 23 with determinant unity.

LEMMA 10. For every odd integer n>176, a non-decomposable
Torm in n variables with determinant 2 exists such that the upper left-hand

) Mordell, J, de Mathématiques, 17 (1938), 41—46. Also see Ko, Quart. J, of
Math, (Oxford), 8 (1937) 85. )

19) Ko, ,On the positive definite quadratic forms with determinant unity"”, which
may appear in Acta Arithmetica,
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(n—1) -rowed principal minor of its determinant is odd and greater than
anity.

We prove first the existence of two such forms in 16k 4 1, 224 -+ 1
variables respectively.

Consider first the form in 16k -+ 1 variables:

(14) f _(2(15) 23410 2014 34 10  2(14...34 10 . 214 34
16k+1 = 1506 1 109y 6 | 1(14)...6 1 114 6 )

where the part (341 10 1“4)2(14) 6) occurs k—1 times, Denote the up-

per left - hand i~ rowed minor of its determinant by 4, Then At is
the determinant of figpt1.
For k==1, the form in 17 variables

/ =(2(15) 2 34)
1 1(15) 6

is non-decomposable by lemma 3. By lemma 1, 4 15 =16, Ajg =17, and
A3 =34.1T—6>.16=2,

Suppose now that for k=m, in (14) the form fimi1 is non-~decompo-
sable and Ai6n =17, Aigmi1=2. Take k=m--1, Then Atsmetz = 10, 2—17
=3, Aumts=2,3—2=4, and so step by step, Atemt1s =17, Aggmprr =
34.17—6%.16=2,

From lemma 8, on taking
8, = fromt1, D, =2, 4=11,

= (2(13) 2 3 - —62 14 =
g ( sy 6 ), D,=34.15—62, 14=6,

= (2(14) 20 34\ g o 9 g
& ( e 6 ) D;=34.16—6.15=4,

and a=8, then § =fisni1 is non-decomposable, since from lemma 3, 8y &
are non-decomposable. Hence /11 is non-decomposable for any & > 0.

Consider next the form in 22k - 1 variables
(15) £, =(22D. 2 24 13 2¢0) 24 13 200)...24 13 2020 24)
( )f“"+1 ( lens 1 1o 5 1 1@0)...5 1 120 5

(24 13 220
1

the part 1(20) )5 occurring h—1 times.. Denote the minors

corresponding to the 4's above by A,
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For h=1, the form in 23 variables
= (2(21) 2 24
23 1oy 5

is non-decomposable by lemma 3. By lemma 1, 4, = 23, and Ay’ =
24.23—5.22 =2, Suppose now for A=m, in (15) the form f2mt1 "is non
decomposable and that A;Zm-{-l =23, A;2m+1 =2. Take h=m+1. Then
A;2m+z =13,2—23=3, A2'2m+3 =2.3 -2=4 and so step by step,
Ao =23, App, 3 =24.23—52,22=2,

From lemma 8, on taking

&= foamt1, D, =2, 4 =23,

— (2a9) 2 24y o g
&= (% g 25 ) 0= 2001 — 520 = 4,

= [2(20) 2 24
& ( 10y 5 ) 2,
and a==11, then g=f;2m+23 is non-decomposable, since by lemma 3, g., g,
are non-decomposable. Hence f',,, 41 is non- decomposable for any h>0.
" Finally, we consider the form in 16k + 22 - 1 variables S ot =
(2(15) 23410 219)...34 10 20149 34 10 200)24 13 20)...24 13 2(20) 24
10506 1 1(14)... 6 1 10199 6 1 120F5 1 120)...5 1 1¢20) 5
with 2> 0, > 0. Denote the corresponding minors now by 4. Then"

I

2422 — 5221 = 3,

A”t6k+1 = Atskd1 = 2, A”16ht2 =A16rd2 = 102 — 17 = 3,
A" 16043 = As'= 4, ete., A" 16k+22h = A2k = 23, A 16kt 22041 = A 22h+-1= 2.

From lemma 8, on taking

& = fleetrl, D, =24 =11,
2 2 24

g2=((19) g ) D, = 4,

1(1‘9)
2(20 2 24
4 = ( (20) )

10209 , D,=3,a=8,

the form g=—= Ft6k-4-22h-11 is non-decomposable, Then as in the proof of
the non-decomposability of # “22h-1> we can show that 1615051 is non-
decomposable for any £ >0, A>0.

Now every integer n==2m -+ 1> 176 is of the form 16k + 228 -1,
since m==8k -~ 11h has a solution with A= 0, 2 =0 for m> 87. Our
lemma is proved.
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LEMMA 11. There exist even and odd non-decomposable forms in
less than 13F variables with determinant k - 2.

Let r be an integer such that
e 106> r>2k - 4 & > 0).
Such integers always exist, for if we write

rP>2k44 " (r—1)%, -

< 2k + 44+ 1)2 = 2k + 5+ 2V2k + 4,
Then (16) holds, if
10k > 2k + 5 + 2V 2k + 4
* 8(8k — 11)k -+ 9>0,
which is true for all 2> 1. If k=1, r =3 suffices.

Consider the form in r® — & — 2 variables

v 2 r— 1)
Uss ( ; Ly 7 .
By lemma 1, its determinant is (1) (P ~k—2) -1 (r*—k — 3)=k+2.
It is non-decomposable; for by lemma 3, it tuffices to show that
r—hk—2>%k-2 r< P —h—2.
The first inequality follows from (16), The second is true for & ==1. For
k==2, we can take r ==4. For k> 2, we have r = 4. Suppose then the se-
cond ineqaulity is not true, i. e. 2r >r* —k —2, and so
‘ r—1):<k+2
Then from r* = 2k + 5, we get
2(r—1)2<r?,

which is false for r = 4. Hence f, 2—p_p 1S nom-decomposable.

Consider next the form in (r--1)?—k—2 variables with deter-
minant k + 2

2 (r-4-1)7— 1)
@D ——t) T +1 .
It is non-decomposable; for by lemma 3, it suffices to show that

(r+1)*—k—2>F 42, 2(r+ )< (r+1)2—k—2.
Both of the inequalities follow from r* > 2k + 4.

; | 2((p1y? —kt
f(’wg_k_z_( ()" —k—4)

On definite quadratic forms, which are not the sum of two definite. 121

“Since (r 4 1)? ~k—2 <13k and the number of variables of ‘one. of
the forms £ _,_,, fioity—p— is even and of the other is odd, the lemma is
proved. ' :

2. Proofs of the theorems 1, 2 and 3.

Theorem 1 evidently follows from lemma 5 and 9.

To prove theorem 2, we put n=m + 1 + s, where s > 176 is an odd
integer and with the rof (16), m=r*—k—2 or (r+1)*—k—2, the
choice being determined by m-= n (mod 2). Let the form in s variables
obtained in lemma 12 be /. Then the upper left-hand minor A,_, is odd
and > 1. Let . . . ‘

1

u=4(4,_+3).

Then u is an integer and 0 <u—2 <} .4 _,. Suppose first m==r*— k—2.
Consider the form

Jo= 2k, tux? Fox, xS CPYPRNF SN )
where f»_, , is the form obtained from lemma 11. Denote the upper left-
hand i-rowed principal minor of £, by A, Then

A=24, =2u—4,_ =3, A, ,=23—2=4, etc,
A’+,2_k_3=r2—"k—l y A;—\\—r”—k—z:'z——k;

and so the determinant of £, is (r? ~1) (P—k) —1* (r2 —k_ 1) =Pk,
From lemma 8, on taking

8=/ D=2, A=A4_,=3,8,=f2_,_, D,=k+2,

gy = 20y 2 r2—1) D,=k+la=u—2,
ey T '

g==/f, is non-decomposable, if g, is non-decomposable. By lemma 3, g, is
non-decomposable, if D, <r*—pk—1, or 2k 4+ 2<r* and this follows
from the choice of r in lemma 11. '

Similarly, /, is non-decomposable if m==(r +1)*—k—2.

Hence theorem 2 is proved.

To prove theorem 3, by theorem 1, we need only supply special re-
sults for n=2¢, 7,9, 10, 11, 13, 17, 19, 23, )
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Since 6 = —2,7 = —1, 23 = — 1 (mod 8), by lemma 7, we have
a non-decomposable form for n==6,7*), and 23. For n==9, 10, 11, 13, 17,
19, we have that by lemma 3 the forms

(15 2 ) (i+1=9,10,11, 13);
4 1(,)
24 2 ) , _
U +1=17,19
( 5 1“) (i 1 19)
are non-decomposable.

In closing, we should like to thank Prof. Mordell for suggesting shor:

ter proofs of lemmas 2, 3 and for his kind help with the manuscript.

(Received 28 March, 1938.)

——

1) These are the same forms given by Prof. Mordell, See footnote 9.

icm°®

Zur Verallgemeinerung des Galoisschen
Kriteriums der algebraischen Auflésbarkeit.

Von
S. Lubelski (Warszawa).

Das beriihmte Galoissche Kriterium *) der algebraischen Auflssharkeit
eines Polynoms kann gruppentheoretisch folgendermassen formuliert wer-
nen: ,Eine Permutationsgruppe & vom Primzahlgrad p kann dann und nur
dann auflésbar sein, wenn E=9 P ist, wo ¥ und ¥ zyklisch sind, dabei ist
¥ bzw. Avon der Ordnung p. bzw. d, d/p—1". Wir wollen in dieser Arbeit
vor allem zeigen, dass dieses Kriterium eigentlich die Folgerung eines allge-
meinen Permutationssatzes ist:

Ist p prim, so ist der Normalisator einer p-Sylowgruppe § der
symmetrischen Gruppe S von p Elementen, Produbt zweier zyklischer
Gruppen A und P, wo A die Ordnung p—1 und D die Ordnung p hat
(s. Satz 1).

Das Hauptziel dieser Arbeit ist aber den Galoisschen Satz auch auf
solche Polynome, deren Grad nicht prim ist, zu erweitern und zu verallge-
meinern. Zu diesem Behufe betrachien wir zunichst verallgemeinerte auf-
l6sbare Permutationsgruppen vom Grade p", die einen Abelschen Normal-
teiler von demselben Grade p» haben. Fiir derartige Gruppen beweisen wir
den nachstehenden Satz. )

Voraussetzung: p ist prim und t eine natirliche Zahl, § ist eine Per-
mutationsgruppe vom Grade p', die einen transitiven Abelschen Normal-
teiler Y enthdli.

Behauptung: © enthilt nur solche Permutationen, die héchstens eine Zif-
fer unverdndert lassen, oder es finden sich solche Permutationen S +Ein @,

) E. Galois, Oeuvres, S. 48, (herausgegeben von Liouville im 11. Bande des Journal
de mathem. pures et appl. 1846, S. 381 — 444).
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