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1. Let
n
fax)= 3 ay x;x; (e =ag)
. ij=1
be a positive definite quadratic form with integer coefficients (i. e. a; are
. { s
integers) and A,-;) be the cofactor of the a;; in the determinant Dn=|ay].
A well known result by Hermite *) states that f is equivalent to a reduced
form for which ’

(1 a, <Y, D,

h i ; (n-1) .
Lvn:;; zfml: a number, e, g, (4[3]‘% depending only on n. It is also-
{2) L=VA3, 6=Y2, L=Y4 =58, 1,=Y64/3 ).

Prof. Mordell proved recently the following theorems 1
THEOREM 1. A decomposition

5=Xtg(x),

) Bachmann, Die Arithmetik der quadrahschen Formen II (1923 250-255.
) Bachmann, II, 327-328. ( >

®) Hofreiter, Monatshefte fiir Mathematik u i

" nd Physik, 40 (1933), 129.152, Bli
\ Mathematische Zeitschrift, 39 (1934), 1-15. ( ) 128152 Blichfeldt
) Mordell, Annals of Mathematics, 38 (1937), 751-757.
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where X ist a linear form and g(x) is a positive definite or semi-definite
quadratic form in x,, ..., x, both with integer coefficients, is possible i
either D,>[1, yDi™'l, (the square bracket denoting the integer part), or

it ifs adjoint form represents an integer less than or equal to D,.

THEOREM 1a. The form

6 6
3) ) x’i+ ( 2 % )2“2%1@—-23@:‘:\3

i=1 i=1

cannot be decomposed into a sum of two non-negative quadratic forms with
integer coefficients.
For the decompositions of forms in six variables, I proved the ¥)

THEOREM 2. If D¢ =|=04,7 (mod 8),(AY, D)) = 1, and if A is odd
when (Aff)/Do) = 1, (the symbol being that of quadratic residuacity), and
Dy =3 (mod 8), then f, can be decomposed into a sum of eight linear
squares with infeger coefficients.

These results naturally suggest the problem whether there exist non-
decomposable forms in six variables other than (3). As an answer to this
question, I prove in the present note the

THEOREM 3. If f; is not equivalent to (3), then it can be decomposed

into a sum of a linear square and a non-negative quadrati¢ form both with
integer coefficients.
. A consequence of this tlieorem is that any form in six variables can
be decomposed into either a sum of squares or a sum of squares and
a Mordell’s form (3). I conjecture that the numbers of squares required
are at most nine and three respectively.

2. The proof of theorem 3 requires the known lemmas:

1EMMA 1 %), If D, =0 (mod 4), the transformation

x, =Yy (i=11 e 5)1 2x5 =Y,

carries a form }; ~ f, into a form with integer coefficients and determi-
nant Dy 4.

LEMMA 2. All the forms in six variables with determinant <3 and
nof representing unity are equivalent to the form (3)

5) Ko. Quarterly Journal of Mathematics (Oxford), 8 (1937) 81-98.
8) Ko, Journal of the London Mathematical Society, 13 (1938), 102-110.
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LEMMA 36). All the forms in seven variables with jeterminant < 3 and
not representing unity are equivalent to the form of determinant 2

7 7
> a2+ (Z x,-)z—lexﬂ—-szx,.

i=1 i=1
This form represens only even infegers.
From (2), vo= GVGA‘K%V and so Ds< [y, ;’Dg] requires D < 14. By

theorems 1, la and lemma 2, we need deal with only those forms with de-
terminant greater than 3 and less than 15 and

(4) AY=>D,,

The form of determinants 4 and 8 are evidently ruled out by lemmas 1
and 2.
Let the adjoint form of f; be

6
F,= > Amx iXje

{=

Then its determinant is D}. Suppose f; is replaced by an equivalent form
for which F; is reduced, so that corresponding to (1)

(5) AW <Y/(64/3) D§.

It is easy to see that from (4) and (5), we need only treat the forms
with determinants

(6) Dy=5,6,1709, 10, 11, 12, 13, 14
and their corresponding minors
©) A9=6,17, 8 10, 11, 12, 13, 14, 15.

Examining the values of D, A{®in (6) and (6), the only forms which
possibly cannot be expressed as a sum of eight squares by theorem 2 are
those having the determinants

D=1, 11, 12 with  A® =38, 12, 13; respectively.

Now we shall deal with these forms separately in the following
lemmas:

LEMMA 4. The forms having D,=", 12 and Al =8, 13, respecti-
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vely, can be decomposed into a sum of a linear square and a non-negative
quadratic form with integer coefficients,

L Suppose first for /s that D;==17 and A{)=8. We show now that
there exist definite forms /, of determinant 3 in seven variables .
Jo= @y ax2 4 2a;, %%+ £ (%, 0, 5.
It suffices if
a,,D, ' al, A9=3, i e Ta,—8a%=3

and so we may take @, =2, a,,=>5. By lemma 3, this form represents
unity, Hence we have

j‘7=y%+ P [T ¥e)r

where the y's are linear forms in x, ..., x; with integer coefficients and
the ‘determinant of ¢, is 3. It is clear that y, cannot contain x; only, as 3
is not a divisor of 7. Now by putting x, = 0, we get the required decompo-
sition for /.

II. Similarly when in f; D;=12 and Al =13, since 12.10
— 13.3>=3, we have correspondingly

(7 f7=10x%+6x1x7+f5=}’%+q)s(%r-~-73’a);
where, by lemma 2, either
(8) Y=y + U (P1s--¥s),

when 1, represents unity, or

6 6
2
) 9= Zl y§.+( P yi) —2y192 2.y,
i= i=1
Suppose first (8) holds. Then y, and y, cannot be both zero, when we
put x;,=0 in (7), since y, y. are not linearly dependent, Hence the re-
quired decomposition is evidently obtained in this case.
Suppose next (9) holds. Put x,=0 in (7). The lemma is proved if

.= 0. Suppose then y.=0 in (7} and let v;= 2 by, i Xj
j=1
and |by| be the determinant of the y's. Then|b; = = 2, since 3 l by =12.

5

i=1,...,6)
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Hence there exists an unimodular linear transformation T in the x's, for
which )
6
yh—>2xk-|" > PXj Vi (0<i<1, i=Fk; p;=0 or 1).
j=kt-1
Since the permutations of either y,, y, or 'ya, Y ¥sr leaves 1, unchanged; we
_need consider only the cases k=1, 2, 3.
Prof. Mordell has shown') that the adjoint form of 1 in (9) is

2 5 5
V=30 3 v+ 3 (44 (=) 3 Y Y LR,
=23

i=1 i=3

Suppose first k=1, Then the adjoint form of 1, after applying the
{ransformation T (i. e. the adjoint form of an form which is equivalent
tofe) is

5
Fo=12 (X1 (X, — 1, X2+ 2 (K= 3 X, — (b do— dp) X))
=3
5 5
F4X— 1 X X1 G et 2 e ie) X)) = 126,
i=3 i=3
say. This is easily obtained by transforming the form 22 W, with the inverse
transposed transformation of T
le‘}Xl' Yir:Xim%piXI (1‘22:,...,6).
Then by theorem1 our lemma is proved if we can show that G<1 for
every set of the ¢'s.
a) Suppose first g,==0. Then we have evidently
G<1/8+1/116+1/16-+1/16 +(4/3) (1/4) = 31/48 <1,
by putting X, =1, X,=0, X;=p; (i=3, 4, 5); and choosing X, such
that to make the last term of F, within the square < }.

- b) Suppose then @,==1, Since p,;==0 or 1, two of the p, p, s
must be equal and so we need only consider the following two cases:

b1) Suppose two of the ¢, p,, p, are zero. Since they are symmetrical
in Fy, without loss of generality, we can assume o, ==p, =0, Then

") Bachman, Die Arithmetil der quadratischen Formen, I, 308—310.
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G<1/8+1/8+1/4+ (4/3) (1/4) =5/6<1,

by putting X, =1,X; =0 (i=2,...,5) and choosing X, as above.
b2) Suppose now two ot the p, p,, p; are one, say p, =p, =1, then
we have also

G<1/8+1/8+1/4+(4/3) 11/4)=5/6<1,

by putting X;=1(i=1,...,4), X;=p; and choosing X, as above.
Suppose next k==2. Then the inverse transposed transformation

of T is
V=X, YV,=3X, Y;=X;—4p; X, (=3,...,6),

and so the adjoint form of v after applying the substitution T becomes

5
F/=120X, 4+ 3 (X~ +10) X, — 31X,
i=3
5 5
+4X,— 1 X Xt (ot X 0) X, H1X)) = 12G
i=3 i=3

say. It is easy to see that G’ <1 for X; =0, X.=1, X;=p; (i=3435)
and X, being chosen in such a way to make the last square of F’ <1/4.
Suppose finally k==3. Then the inverse iransposed transformation

of T is
Y, =X;(i=12), Y,=4X, ¥;=X;—40; X; (i=4. 5, 6),

and the adjoint form

5
Fy=12 (XX (XG—X-XP+ 2 (X~ e X, — 1 X,—1X)
i=4¢
5 5
X1 Y X~ X o) N+ X HIX)) =126,
i—=4 i=4
say. Putiing X,=X,=0, X,=1, X;=p; ((=45),and X, =1; clearly we

get G <1,
Hence by theorem 1, the lemma is completely proved.
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LEMMA 5. The form f, with D,==11 and A} = 12 can be decompos-
ed info a sum of a square and a positive definite quadratic form both with
infeger coefficients, if f, represenis an odd integer,

We show first that there exist definite forms f, of determinant 2 in
seven variables

fr=a,x2 + 2ap 3,2, F f (xyy 000 X
It suffices if
a, D,— a3 A =2, i e 1la,—12a} =2
and so we may take @, =10, a,,=3. If /, represents an odd integer, by
lemma 3, we have
5= 0 (Ve Yo

where the y's are linear forms in x,, ... x, with integer coefficients and o,
has the determinant 2,

Since 2 + 11, y, connot be zero when we put x,==0 in f,, and so
a required decomposition is obtained.

Now there remains for the proof of theorem 3 to discuss all the forms
Jfo with Dy =11, AlY =12 and representing only even integers. To do this,
we requires lemma 6 due to Charve and lemma 7 of which I give a proof.

LEMMA 6%). The reduced forms in four variables with D, < 12 and
not representing odd integers are equivalent to one of the seven forms:

3
far=2 2 (x;—dx 2t 422
i=1
Jaa =2 (x,—§x )20, = §2 + § (x — §x,)2 + §d,
3
Sea=2x 242 X (a—dx P,
i=2

Jaa =2 0o — ) $a2 2 (x, — 42, )2+ §x,

- fas= 2x, T 2022 (x;— 4x, )2+ §x2,

8) Charve, Comptes Rendus Paris, 96 (1883), 773.
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2
fre=22 (x;— 3 )2+ 4 (x;— fx )2+ $x3,
i=1

J1a=2(x;— 322+ 4 (x, — fx;— §x,)? 3 (x;— £x, 2§24
LEMMA 7. The positive forms in five variables with D;== 12 nof re-
presenting odd 'integers are equivalent fo one of the three forms:

2
Sor =2 2 (x;—dx, —3x)? +2 (3, — $x, )+ 322+ 342,
i=1

3
Fa=2(x,—3x)+2 3 (x— txy+ 2 +i2,

=2
Jo3=20c, ), —x, P H4(a,—Fx,—hx, )t 3~ SR (x—dx ) Al

Suppose f; with D; =12 does not represent odd integers. Let the
adjoint form of /; be

5
— ¢
FS - 2 Ai? xixi.
i=1
Its determinant is 12% so we can find a form f’; ~ f; such that in F’;
AP <[V 12 =12
Hence

4
S~ agxi+2 .Zz a5, x5%; T £, (xys2, )
i=

where f, is a form in four variables with determinant D, = A’lJ<12.
From lemma 6, 7, is equivalent to one of the forms 7, , (i =1,...,17).

L f oo /i We can write

3

{10) fs~2 2 (g dx, e )P+ (x, Fax) 34,
i=1

where 'the a's are rational numbers and 0> a;>—1 on replacing if need be
x; by x;texs (i=1,2, 3, 4), and the coefficients of x? is 3 since J, has
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determinant 12, Hence from the coefficients of x;x;, we get the congruences:
(11) 2q,=20,=2a,=—0¢,—a,—a,T{a,=0 (mod 1),
and Q,=2d?+2a%+2a2+ 42 =0 (mod 1).

Multiplying Q, by 2 and using (11), we get a2=0 (mod 1) and so
a,=0. From (11), we have

(12) 20,=2a,= 20,5 a,+a,+a,=0 (mod 1).

On observing the symmetry of the expressions involving x,, x., x, in (10},
we need only consider the two following sets of solutions from (12},
¢, =a,=a,;=0 and a,=a,=—1% a;=0.

The first set gives (10) a form representing an odd integer 3. The second
set gives /; | .

1L fi~/,, We can write,
(13) fy~o2(x,—3x,Fax, P +2(x,—4x,+ ax)? + § (x;— §x, + apx,)?
(e, Fax)+ 122
Hence as above we have
(14) 2a,=2a,={a,—a,=0 (mod 1),
and Q,=2al+2a2+ 4al+$a2= ¢ (mod 1).

Multiplying Q. by 6 and using (14}, we get 5a={ (mod 1), which gives no
solulion for rational a,. Hence (13) is impossible.

UL fy~~fy;- We can write

3
(15)  fy~2(xtax) 2 X (x;—dx,+ apxs)? + (x, T a,x,)? 4§k
=2

Hence
(16) 2a,=2a,=20,=—a,—a,+a,=0 (mod 1),
and Q,=2d}42a 4224 a2=% (mod 1).

Multiplying Q, by 2 and using (16), we get 2a2= 0 (mod 1) and so a, =0,
Trom (16), a; (i=1, 2, 3) can only be 0 or — 4. Since Q, = & (mod 1), af
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least one of the a,, d., @, must be —%. From (16), we have either a,= a,= g,
=—1 or a,=—%, @,=a,==0. It is easy to see that the first set gives aform
representing an odd integer 3 and the second set gives f;,.

V. fy~f, e We can write
an  fi~2(x—dxtax)+ 3 (ot ayx;) -+ 2 (o0, — dx, 4 apx)?

3 Fag P+ i
Hence
(18) 20,=3a,—a,=20;=3a,— ;=0 (mod 1),
and Q,=2a*-} §a2-2a3 4 4a}=} (mod 1).

Multiplying Q, by 2 and using (17), we get 3(a-+ap) =3 (mod 1). On
observing the symmetry of the expressions involving x,, x. we need only
condider the set of solutions @,=0, a,=—!s0or—¥3. We can take a,=

=—1/g, for if @, =-—%3 we need only replace x, by —x, and x, by —x,
+ x,.From (18), we get a,=0, ¢,=—1% and (17) becomes ’

fs ~2 (x1 - %xzw + %7% +2 (x3— —lix.; - %xs)z +4 (x4 - ?xs)z + '%xgr

which is easily verified to be equivalent to fs, by the unimodular trans-
formation

, , ’ , .
X, Xy X, — X X3 X X Xy XXy

V. fy~F,s We can write

2
(19)  fy~2 > (x;Fa; %,)* -+ 2(x,— a3 (=g +apx)?+ .

i=

Hence
(20) 20,=2a,=20,=%a,—a;=0 (mod 1)
and Q,=2a?+2d} 4202+ 30;=0 (mod 1).

Multiplying Q, by 2 and using (20), we get 3a; = 0 (mod 1) and so a,==0.
From the fourth congruence of [20),‘ we get a,==0. Then (20) and Q;=0

(mod 1) give
2a,=2a,=2(a}+-a2) =0 (mod 1).

The solutions of this are evidently a, = @, = 0 and @, = @, = — }. The first
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set of solutions gives (19) a form representing 1. The second set gives (19)

2
fs ~2 Z (xi_ %xs)z +2 (x::, - '%x4)2 + in _l— x?:
i=1
which is evi-de‘n‘t\ly equivalent to 7 ,.
VL fy~/f45 We can write

2
21 fi~2 2 (e 42, + apx P+ 4 (e — o+ 0 2P 3 ayx )2 - 7

i=1
Hence :
(22) 2a,=2q,=40;= $a,—a;—a,— ¢, =0 (mod 1),
and Q,=2a’ 422+ 4ai4{a2=0 (mod 1).

Multiplying Qe by 4.and using (22), we get 3¢} = 0 (mod 1) and so a,=0.
From the last congruence of (22), we get 24, = —2a,—2a,=0 (mod 1), Sub-
stituting this value into Q,=0 (mod 1}, we have 2(a?+ a?) = 0 (mod 1).
Then we have

2a,=2a,=2a,= a,--a,4+ 0, 26222 =0 (mod 1).

This evidently give only two sets of solutions, i. e a@;=a,=a,=0 and
a,=a,=-—1. a,=0. The first set gives the form (21) representing 1.
The second set gives

2
f5 ~2 2 (xi - %x4 - %xs)z + 4 (x3 - %‘x&l)z + 'sz + x?’
i=1

which is easily verified to be equivalent to'f; , by the unimodular transfor-
mation

Xy — X Xy — Xy Xy— — X, Xy X Xy — Xy Xy — X7
VIL f,~ f,; We can write
(23) fo~2(x, — 32, + a4 (x, — Joar,— $x, 4 ax ) (g —
A a - Ge - a)

8

Hence

(24) 20, =40, = {a,~a,— a, = fa,— $a,~2a,= 0 (mod 1),
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and Q;=2a} 42 fa2 + $4a2=0 (mod 1).
Multiplying Q, by 20 and using (24), we get 24al=
a, =0 or—1,

Suppose first a,==0. Multiplying Q. by 4, we get 522 =0 (mod 1)
and so a,=0. Then 2a, = $8,—30,;= 0 (mod 1) and Q; = 0 (mod 1) gi-
ves 2a}=—(2a,* = 0 (mod 1). Hence a,—0. From a,=%a;—a =0
(mod 1), we have a,=0. This set of solutions 4, =a,=a,=a,=0 gi-
ves (23) a form representing 1.

Suppose next a,=—1. Multiplying Q, by 4, we get 5az - 1=0
{mod 1), and so a,=— % or —2. The first solution gives the last con-
gruence of (24)

0 (mod 1) and so

40,=12a,/5—3a,=—1/54+4/5 (mod 1),

which contradicts 4a, = 0 (mod 1). The second solution gives similarly

20,=64,/5~3a,/2=~3/5-1-3/5=0 (mod 1),

end so from Q, = =—1/5—3/10

2
4
0 (mod 1), we

a,=—} gi

0 {mod 1), we get 2a2= —4a]— a2 — fa
=—1 (mod 1). Hence a,—— 1. From 5¢/4—a,—a, =
get @,=0. This set of solutions ¢,=—1, a,=0, a,=—1%
ves the form f, ..

Hence lemma 7 is completely proved.

LEMMA 8. All the forms fo with D, = 11, Al® = 12 and not repre-
senting odd integers are equivalent to one of the three forms

Joa =200~ dx,~ dx— dx 2 -2 (xp =, = 3)? + 2 (x4, —x)?
13 b 1
Jo2= 200 by~ P + 4 (x, — x,— 2%, dx ) ] (— fx,— 3

—%xﬁ)z +' g [x4—%x5— %’x5]2+(x5_ %xﬁ)z 1Ly

1276
fﬁ,z =20, ~x,—{x,)2 -4 (o, == 32)°+4 (¥, — 42, — R A

T A = ) - (g — dxg 2 - 112,

and all of them can be decomposed into a sum of a square and a positive

definite form both with infeger coefficients.

By the same argumentas in the proof of lemma 7 (with some inter-
changes of the variables, we can choose Al =12), we have
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5
fi= i +2 2 agxgx - fi X,

i=1
where f, is equivalent to one of the forms f; |, /5 or Jsx

L fi~f;, We can write
2
(25) fg~2 2 (2 $x,— 3% a2 06— $x,+ agxg)? 4 g (g agx
i=1

+3 0 e + L

Hence
(26) .2¢,=20,=20,=}a,—a;—a,—a,=3a,—a,—a,=0 (mod 1)
and R, =2a2 42024202+ 4a24-3a2=1/12 (mod 1).

Multiplying R, by 2 and using (26), we get 6a2 =1 (mod 1) and so a;=—1/6
or —}. We can take a, =—3, forif a,=—4, we need only to replace x; by
—x; (i=1,2,34), x; by—x;- x,. Substituting the value of a; in R, and
multiplying it by 2, we get a>= 0 (mod 1) and so a,=0. From

ta,—e¢,—a,—a,=3a;,—a,—a, =0 (mod 1),

we get a, = —1%. Since the expressions involving x,, x, are symmetrical in
(25), we can take a, =—3, @, =0 for the solutions of the congruences
(mod 1).

Substituting these values into (25), we get f, , which can be decomposed
into a sum of x? and a positive definite form, as AY) in f;, is 4.

IL fi e~ 75, We can write

2a,=2aq,54—a,—a,=0

3
@) fio2(x—dxhax 4 2 X (x— bxy ot amg)? - (2 agx,)?
i=2

+ § G asx)* + i

Hence
(28) 2a,=20,=2a,5a,—a,~a,= ja,—a, =0 (mod 1),
and R,=2a+2a+2a2+ a} + §a2 =5 (mod 1).

icm
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Multiplying R, by 4 and using (28), we get 6a2=1/3 (mod 1), which gives
no solution for rational @,. Hence (27) is impossible. :

1L f; '\"fs,a' We can write
(29) Jo~2(x,—dx,—dx,+Fax )’ + 4 (x,— 1x,— et a4+, — &,

- %xi + a:ixb)2 + % (x4 - 'il’.xs + qus)z + (xs + asx(,)z

11 42
3%

Hence

(30) 20,=4a,=ja;—a,—a,=fe,—4e;—20,=a,— }a,~}a,— 2, =0 (mod 1)
and R;=2a}+4ai-+{ai4-§fa2+a2=1/12 (mod 1),

Since 120 R, = 120a? =0 (mod 1), we have &,=0 or— £,

(A) Suppose first a, = 0. Since then 20R,= 24a2=2/3 (mod 1), we
have a,=—1/6,—1/3,—2/3 or—5/6. We can take a,=—1/3 or—1/6,
for if a,=—2/3 or—5/6, we need only to replace x; by — x;+2x, (i=1,3),
x, by —x,+x,;, x, by —x,+x,4 x,.

(A1) Let a,==—}. Substituting the values of a,, a; into R, and multi-
plying it by 4, we get 5a2 =4/5 {mod 1) and so a,=—2/5or—3/5. Since
a,=—2/5 gives 2a, =— 6a4/5— a,= 2.5-+-2/5 (mod 1), which contradicts to
2a, = 0 (mod 1). Hence we have a,=— 3/5. From (30), we have

a,=—3q,/5—3a;=—4, a,=5a/4—a,=—1/4 (mod 1).

Hence @, =-—1/2, a,=—1/4 a,=—3/5, a,=—1/3, a;==0. But these values
give R,=1/3=1=1/12 (mod 1).

(A2) Let then a,=—1/6. Substituting it into R, and multiplying by
4, we get 5a2=1/5 (mod 1) and so a;=—1/5 or —4/5. Since a;=—1/5,
gives 2a, = —6a,/5—a,; = 1/5+1/5 (mod 1), which contradicts to 2a,=0
(mod 1). Hence we have a,=—4/5. From (30), we gdet

0, —30,/5—4a;=1/10+2/5=—%, a,=5a;/4—a,=—% (mod 1).
Hence a,=—14, a,=—4, a;,=—4/5, a,=—1/6, a;=0. But these values
give R;=1/3='=1/12 (mod 1).

(B) Suppose next a;=—4%. Then 20R, =24a2=2/3 (mod 1). As above

we can take a,=—1/3 or — 1/6.
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(B1) Let first a,=1/3. Substituting it into R, and multiplying by
4, we get 5a2= 4/5 (mod 1), and so a,= —2'5 or— 3/5, Since a,=—2/5
gives 2¢,=2a,—6a,/5—a;=4/5 (mod 1), which contradicts 20, =0
(mod 1), we have a,=~3/5. Then from (30), we get

a,=a,—3a,/5—%a,=0, a,= —a,+5a,/4=—3/4 (mod 1)
Hence we have a,=0, a,=—3/4, a,=—3/5, a,=—1/3, a,=—} and
they give the form f,,.

It can be easily computed that the adjoint form of Jog I8
11 ('lix% + %xg + '45 (x3 ")L' %Exz 'l— %‘7‘:1)2 + 'g (x4 + 'gx:s + ?i‘xz —i' ‘?yxl)z 'i“ (xs "J(" 'Qlfx4
+x3 +%x2+x1)2 +H (xe T El'xs + 1 Xy =+ 3 xa'i‘ %’g'xz -+ x1)2)

and it represents the value 4 for x,=x, = x;= 0, x, =1, X, = xg=—1.

Since 4 <11, the form /,, can be decomposed into a sum of a square and
a positive definite quadratic form both with integer coefficients.

(B2) Let then a,= —}, Substituting it into R, and multiplying by 4,
we get 5a2=1/5 (mod 1) and so a,=—1/5 or—4/5. Since a,=—1/5
gives 2a,=—6a,/5—a;=1/5+1/5 (mod 1), which contradicts to 24, =0
(mod 1). Hence we have a,=—4/5. From (30), we get

a,=a;—3a,/5—4a; =0, a,=5a,/4—a, =0 (mod 1).

Hence a,=a,=0, a,=—4/5, a,=—1/6, a,=—3. These values give
the form fs3.

It can be easily computed that the adjoint form of Jos is
11 (“é'xf + i‘xH‘% (1 1, + ‘%xl)z +3 (EA + x, + x, + ‘g'xl)z +(x5 -+ %x4
Fx bt ) b x4 a1,
which represents the value 4 for x, =x, =x§ =x,=0, x,= 1, x,=—1,
Hence 75 can be decomposed as 4 is less than the determinant value of Joa
Here the proof of lemma 8 and so the theorem 3 is completed,

In closing, I should like to thank Prof. Mordell for his kind help with
my manuscript.

(Received 22 Niovember, 1937.)
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On the positive definite quadratic forms
with determinant unity.

By

Chao Ko (Manchester).

It will make the results of this paper more intelligible to the reader if

we commence by giving a brief resumé of a little of the theory of quadratic
forms.

Let

n

fo= X

i,j=1

axx; (@ =aj)

be a positive definite quadratic form with determinant D, and integer
coefficients a;. Denote the minor determinant of the matrix (a,-f)
(ij=1, ..., n) of f, formed by the elements at the intersections of rows
iy &y +.. i, and columns j, j,...,j, by Agf') Wafs o b the greatest
common divisor of all the minors of order k=1, ..., nby d w so that
d, | d,, Write d,=1, d_ +y=0. Denote the greatest common divisor of all
the integers

b )
Aiyceig e iBe 2A0 g g de
by 5,= lor 2 (k=1, ..., n), and write 5,=1. Define the numbers, really

integers
0,= d,‘+1dkﬁ‘/df{ (k=1,...,n),

so that
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