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Equivalence classes of functions over a finite field®
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Gary L. Murinx {Sharvon, Pa.)

1. Totroduction. Tn [1] Carlitz discussed invariantive properties of
polynomials over a finite field. Cavior in [2] and [3] has considered the
notion of lefti equivalence of functions over a finite field K where the
underlying group of permutations is taken to be the group @ of all permu-
tations on K. In this paper we treat the more general case where we allow
the permutations o lie in an arbitrary subgroup £ of @,

After developing some general theory of left equivalence in Hection 2,
wo treat the case where £ is a eyclic group of permutations. Formulas,
given in terms of the number of invariant elements of the group £2, are
obtained for the number of equivalence claszes of a given order and in
particular for the total number of classes indaced by the group 2. As

_a simple illustration of the type of results which we obtain, let .Q be the
oyelic group of order four generated by the permutation g (@) = #° -+ 4a® +20
over K = GF(B). If A,(2) denotes the number of equivalence classes
induced by £ then A;(2) =782, and moreover, £ decomposes K[»]
into 1 class of order one, 0 claszes of order two, and 781 classes of order four.

In Sections 4 and 5 we develop several results concerning direct
gums and prove that if Q, and 2, are conjugate subgroups, then £, and
£, induce the same number of classes of the samne size.

Lot K = GF(g) denote the finite field of order g where ¢ = p" and i
(v 3+ 1) the product of # copies of K. Let K[ay, ..., 5] = I [F] represent
the ring of polynomialy in # indeterminates over K. Two polynomials
f, ye K [F] are equal if they ave equal as funetions. By the Lagrange Interp-
olation Formula {[4], . H5), each function f frowm X* into K can De
exprossed as o polynomial of degree < ¢ so that KTz] congiste of exadtly
g% polynomials. The group of all permuatations of K will be represented
by @ so that @ is somorphic to §,. That Q is an arbitrary #ubgronp of
@ will be denoted by @< @ and [£2| will denote the order of £.

#The results of this paper ave contrzined in the author’s doctoral dissertation
written under the very helpful direction of Professor Harlan R. Btevens.
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2. General theory, We begin with

DurrxrrioN 2.1, Let 2 < @ and f, ge K[®]. Then f is loft equivalent
to g relative to £2 if there exists a @< £2 such that @f == g.

This relation iy obviously an equivalence relation on K[#] which
reduces to the case considered by Cavior when @ = ®. Lot 2f and p,(f, Q)
denote the class of f and the number of elements in the elass of f relative
te 2 while the number of classes induced by 2 will e denoted by 4, ().
One might suspect that for any polynomial f

prlfs Q) [D: £2] = p{f, D)

where [@: Q] denotes the index of £ in @. That this v not the ease in
general is seen from the simple example f = a where oK.
If K ={a,..,a} and feK[7] let

Si = BB 1(5) = a3,

Agsume that the non-empty &/'s are &, ..., 8, where f it the order of
the range of f. Then my = {8;| 4 =1, ..., 1} is the paridtion of f. We may
now prove

t=1,...,4q.

TomormM 2.1. Let Q<< @ and f, yeK[Z]. Then [ is left equivalent fo

g relative to £ if and only if m, = m, = {8;| 4 =1, ..., 1} and there ewmisty
@ pe 2 such that ¢ly;) = 6 where f(8) =y, and ¢(8) = §; fori =1, ..., 1

Proof. Liet a<K" wo that ael; for some ¢ =1, ..., % Then g(a) = &,
=g(y;) = o(f (a)) which proves the sufficiency. For necessity, if g = yf
for some pef2 and f{a) = f(B) then g(a) = g(f). Similarly since ¢ is 1-1 it
Flay =18 then g(a) # g(8) so that =, = =,.

DEFINITION 2.2. Let £2< & and feK[%]. A permutation ge is a
left automorphism of f relative to Q if ¢f = f.

Let Ay (f, ) and »;(f, 2) denote the group and number of Ioft

automorphisms of frelative to €. It is easily seen that if £ < & then _

_ !AL(f} 2y < A;(f: ®) and  A(f, Q) = An(f, P)nQ.

Moreover if A, (f, £) is normal in 2 then Lf is a group undor the operation

(wf) (of) == pigf). It of = g_for some gef2 then
Aplg, 2) = pdL(f, Qyp~* vi(g, &) =y (f, 82).

Thus the number of left automorphisms depends only upon the class and
not on the particular polynomials in the clags.

The following theorem, whose proof ig immediate, generalizes the
corresponding result of Cavior [2].

THROREM 2.2. Let feK[F]. Then for any - group 82
#r(f, Ly (f, Q) =12

BO that

icm

Hguivalence classes of funchions over a finite field 3b5

Tt fe K [Z] let R, denote the range of f and |B,| the number of distinet
elements in E,, We have : o

LievwA 2.3, A permutation ¢ is a left automorphism of & polynomial
fif and only if ¢la) = a for all weRy,

If ¢ is @ permufation of X, let

F, = {eeK| p(a) = a}

denote”l;l;e set of invariant elements of @. More generally, if £ is a group
of pevmutations, define the invariant set F, of the group 2 by
Fg= T,
wesd

The following theorem is crueial in what follows. _

THROREM 2.4, Suppose 2 has 1 imvariont elements. Then the number
of polynomials for which each permutation in Q is a left automorphism, is 1¢

Proof. By Lemma 2.3, pe 2 is a left automorphism of a polynomial
fif and only if ¢(a) = « for all oel;. Thus a permutation ¢e2 will be
a left automorphism of those f for which R, < F,. Sinee there are [ distinet
elements in I, there are I¥ functions which map K" into ¥, which com-
pletes the proof.

3. Cyclic groups. In this section we suppose that @ is a cyclic group
of permnutations of order n. Let H(t) denote the unique subgroup of £ of
order t for each ¢ which divides #. Let Fyy, represent the invariant elements
of H(t) and 1(?) their number respectively. Finally suppose N(I) denotes
the number of polynomials f such that Ap(f, &) = H(L).

. By Theorem 2.4 for fixed 1, {(£)? is the number of polynomials f such
that H(#) < A (f, 2). The number of polynomialy f such that H(i)
ZAL(f, Q) is given by } N(u) where the sum is over all « such that
w|n, t|u, and ¥ £ 4. Thus we have proven

Tunorem 3.1. For each divisor ¥ of n
F{) =10~ YN (u)

where the swm is over all w for which wjn, t|u, end T % u.
QOROLLARY 3.2. For cach divisor t of n there ave N ({)/n classes of
order nft and : o
1
A () = 2;24 LN (£).

i

CQOROLTARY 3.3. Let fe K [E]. Then v (f, 2) = t, or equivalently py (f, 2)
= nft, if and only if H (1) is the largest subgroup of Q for which By = Fyy.

4
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Note, By the largest subgroup of Q for which &, & Iy, we mean
that if H{t)< K and R, S ¥ then H(¢) = K.

DERNIrION 3.1. Let £,, 2, < @. Suppose that £, and £, decompose
K[#] into the equivalence classes 44, ..., A,,l and By, ..., B, respectively.
Then £, and 2, induce eguivalens decompositions of K[E] if {4} i
a permutation of {|B,|} where |4| denotes the order of the sot 4. Odher-
wise, the decompositions arve inequivalent.

THROREM 3.4, Suppose 2y and £, are cyclic grouwps of order n, Then
8, and Ry induce equivolent loft decompositions of K [&] if and only if for
each divisor t of n, H, (1) and H, (¢} have the same number of invariani elements
where (1) (§ = 1, 2) denotes the unique subgroups of 2y und £, of order &,

Prool. Follows from Theorem 3.1 and Corollary 3.2,

COROLLARY 3.5, Let Qy, 2, < D such that |2,| == |y == p & prime.
Then 0, and Q, induce equivalerd left decompositions of K [F] if and only
if 2, and Q, have the same number of invariant elements.

Ay Corollary 3.5 shows, if &, and £, are isomorphic, they need not
induce equivalent left decompositions of K[#]. For exmmple, if 2p < ¢
then there exist groups £, and £, of oxder p which ave c¢learly iromorphie,
but which hawve different numbers of invariant elements aud thus induce

. inequivalent left decompositions of KTx].

4. Diveet sums. Suppose that Q = L@ ...

generated by ¢, for ¢ =1, ..., n. Let

(4.1) CH = {ae K| gyl 5 a}, - 4=,
TumomreM 4.1. Lét fe K [B] and Q = H, Q

in (4.1) are peirwise c%sgomt then

Ar(f, Q) = AL (f, H)@®

: Proof. Lot ped (f, 2) so that p
to show that y.f =f for "= 1

@ I, where esch ;s

H,. If the K5 defined

. GDA"L(f? 1‘:[11)

= 4y ...y, Whoere well),
1 ooy M Lot d@e K" De arbitravy.

Then y(f(a) =

Wo wish

"
Casel: SBuppose (@) e\ (U K,.
i
Uase 2: Suppose f(a) el for some 4 =<1, ..., n. Fix 1-7j=
constder w;. If ¢ 5§ then v, (f (a )) v F) 8O wuppose thit 4
qu(f ) = v for gome yeX. Then we have

(@) =y (F@) = g (@) == g ()

(learly f(a)eo where ¢ 1& a eyele of ¢, and moreover o = K, for the

same 4. But p = 9,(f(a) = ¢} (f( 3)) eo for some positive integor (i which
implies that yK;. Since the K% are pairwise digjoint we haive

flay =y g (y) =y,

Jla) fov dea 1y

T aad
=2 f and, lof

iom
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Tlence yf == f for 4 =1, ..., s which, along with the fact that A (f, H,)

< H,, completes Ghe proof,
COROTLLARY 1.2, Under the hypothesis of Theovem 4.1
1 ) 3
olfy @ =[Tvetss HY  and  wy(f, @) = [[ pulfy B
Tl i=1
5. Conjugate subgroups. In this section we show that conjugate
gubgroups of @ induce equivalent leff decompositions of K [&]. We first
develop neveral very general results copcerning an arbifrary group of
pernmtations. Let 2 < @ he of order n. Suppose 2 has subgroups Hy, ..., H,
of orders dy, ..., &,. Finally, mlpfpo% that N, vepresents the number of
polynomials f such that A, (f, &) = H,.
TiworyM 5.1. for each 1 = 1 G

X ﬂlifr"'*ZNj

where the sum is over all § such that H, 5 H;.

Proof. By Theorem 2.4, the number of polynomials f such that H;
leaves f tixed is given by 7. From this we subtract the number of poly-
nomialy f such that the containment is proper. The number of such f is
given. by the sum in (5.1). :

OoROLLARY 5.2, Let d be a divisor of n. Then there are

d

= N.

% 2-/ ‘
classes of order n/d and

]
dZ ¥,

2

1\
@ == >
din

where the sums wre over all 4 such that |Hy| = d.

Wo may now prove

MyemoRit 5.3, If 2, and £, ave conjugete subgroups of @-then Q and
2, induce cquivalont left decompositions of K[E].

Proof. Tt ix easy to show that if two groups are conjugate they have
the same number of iwvariant elements. Since the subgroups of £, are
sonjugnte to the correxponding subgroups of £,, the subgroups of £, have
the sarue number of invariant elements as the corresponding subgronps
of £2,. We may now apply Theorem 5.1 and Corollary 5.2 to complebe
the proof.

COROLLARY D4, If 2, and £, are p-Sylow subgroups of P then Ql and
Q, induce equivalont left decompositions of I [T].
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Some results on the distribution of values of additive
functions on the set of pairs of positive integers, 11

by
: G. Joegmsuy BABU (Urbana, ILL.)

1. Introduction. H. Delange [1] in 1969 defined a density for sets of
pairs [m, n] of positive integers and determined it for some sets defined
by arithmetical properties. In this paper we give necessary and sufficient
conditions for a real-valued additive arithmetic funection f on the set of
pairs of positive integers to have a distribution (mod1) and generalize
a result obtained in [B] to additive funections defined on the set of pairs
of positive integers.

2. Notations and definitions. Throughout this paper the letters p, ¢ with
or without suffixes denote always prime numbers. The letters m, n, 7, 8, .- .
with or without suffixes denote positive integers and ¢, & denote non-vega-
tive integers. If A is a seb of pairs of positive integers then N(A) denotes
the cardinality of the pairs in 4. Let H be a set of pairs [m, n] of positive
integers. If
(Limy) N {[m,nleE: m<» and n <y}

tends to a limit ¢ as # and y tend to infinity independently, then we say
that the set B possesses density a, see [1].
Let Z, denote the set of pairs of positive integers.

DEFINIIION. A real-valued function on Z, is said to be additive if

Flmy g, Nytg} = Fmy, %) +F (Mg, )
whonever (#i,m,, Maty) = 1.
DErINITIoN. A real-valuad additive function f on Z, is said to have

distribution (modl) if there iy & nondecreasing, right continuons funciion
F on the res) line such that F(o) = 0 if ¢ < 0, F(¢} =1 if ¢> 1 and for

‘all continuity points @, be(0,1) of F and a < b the density of

[Im, »]: @< {f(m, n}} < b]

exists and equals F(b) — F(a), where {2} denotes the fractional part of 2.
We pub ||| = min({w}, 1—{x}) and e(t) = exp (2nit).



