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ACTA ARITHMETICA
XXIX (1978)

A note on Waring’s problem in p-adic fields
by
J. D. Bovey (Carditf)

1. Introduction. Let p Dbe any prime and % any positive integer.
The number I,(%) is defined a3 the least positive integer s such that we
can solve non-trivially the congruence
(1) - ... +af = N{modp")

for all integers N and all positive integers . It is well known that I, (k)
is also the leagt s such that any p-adic integer can be represented non-

trivially as the sum of ¢ kth powers of p-adic integers.

The fumetion I',(%) was introduced by Hardy and Littlewood in
their work on Waring’s problem [5] though with a different notation and
they showed that for all p and % ([5], p. 186, Theorem 12)

(2) ' I, (k) < 4F.

Tn 1943 I. Ohowla [2] showed that if }(p» —1) does not divide % then for
all positive & '

T;n ( 76) < kl—c+a’

where o = (108 —8V641)/220 and < as usual denotes inequality with a
fixed pogitive constant. More recently Dodson [3] improved the exponent
to 7/8.

Tf p does not divide % then the solubility of the congruence (1) is
equivalent to the solubility of the congruence

(3) w4 ... A-ef = N (modp).

Tt Ik, p) in defined as the least s such that (8) it non-trivially soluble
for all integers N then Dodson and Tietéviinen [4] have shown that
it 4(»—1) does not divide k then for all £> 0 '

(4) Ik, p) <€ kM,

In this paper we generalize Dodson and Tietéviinen’s reselt to the
general p-adic cage and prove ‘
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TEHEOREM 3. Given &> 0 then
(k) < pHFe

for all positive integers Tt and all primes p such that §(p —1) does not divide k.
Theorem 3 follows fairly easily from Theorems 1 and 2 which are
effective when p is large and small respectively.
TreoREM 1. Let k& =9 dm, where p is an odd prime, d = (I, p—1)
and p does not divide m. Then

Ly(k) < 30(K, p) (3L, p)).
THROREM 2. Let k be any positive integer and p any odd pritme. Then

for any > 0 we have

1
e
I (7"><0(P3 &)k w0 ’
where t = {p—-1)/d, d = (k, p-—1), ¢ is
a function of p and & only. _
- It seems Jikely that (4) is not the best possible (see [4] and [6]) and
ib is elear that any improvement in the exponent in (4) could be generalized
at once to the p-adic case.

Huler's g-funetion end C(p, &) is

2. Notation and preliminary - results. Wo shall always tuke %, d and
t o be positive integers and p to be an odd prime with pm"i == i, As I8
nsual we will write

(8) k= p*dm,

where d = (k, p—1) and p does not divide m. If d = p—1 or #{p —1) then
I'p(k) is known and is not in general less than k (see [1] or [5]). This is
cerfainly firue if » = 2 and so we lose nothing by assuming p > 3.

The number I'(k, p*, N¥)is defined as the least ¢ such that the congru-

snce (1) h&s & non-trivial solution for particular pnme power p* and
1nteger . Then

Tk, p*f = max T'(k, p*, §)
D N ¥
is clearly the least s such that (1) has a non-trivial solution for all inlegery &,
Tomma 1. If % 4 capressed as in (B), where p 45 an odd prime, then
Ty(k) = I, (p"d) = I(p°d, p**).
Proof. This is very well known (see [1] for examnple).

Algo we need some notation connected with the cagier Waring problen.
We denote by A(k, ", N) the least s such that the CONGruence

(6) , e @+ .. gl == N (modp™),
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where each coetficient s, ¢ =1, ..., &, can assume the values +1 or —1,
hag a primitive solation for some choice of &1, ..., g and for the particular
prime power p™. It is plain that
Ak, p™ = sup Ak, p", &)
nﬁNf\},n

is the least ¢ sueh that the eongruence {6) has a primitive solution for
every integer N.

When ¢ iv small the number 4{k, p*} can provide a good bound for
Ik, ). Leb v be any non-negative integer and let & be any integer stuch
that @™ s L(modp). Then, by Tuler’s theorem, we have

(@7 N =1 (modp™t?)

and. #0

Torat o L ()P = 0 (mod pTtY,

" L TP = L (modptTY).

Tt clearly follows that
(N Iip*d, p™') <

Tinally we introduce two new functions which simplify congiderably
the analysis of the problem, For any non-negative integer r define g(p°®, d)
as the least s such that we can solve

(t—1) 4(p°d, p™+).

i : g
"W“:?td"}‘ —1—.',&7; [i4 = ap'(modp”‘)

for some & prime to p. Similarly detine f (p , @) to be the le‘m’r. & such that
we cean solve : _

7, Td . nSPPL N}
gal @ ., el == apt(modp™t)

for some a prinie to p and some &, ..., & taking the values -+1 and —1.
The following straightforward inequalities are erucial in establishing the
fnal estimates for 1, (%).

TamaA 8. If a, by, a and B ave integers with o, § 2
Ppid, ptt, ap® Iiptd, 9", bp),

BN 3

A(pd, p=*', ap™) 4 (p"d, ™, bp).
Proof. We prove only (i) ax the proof of (i) is eﬂsenbiallv identical.

First we make the well known observation that for %z and for any
@ priine to p

0 then

(]') i]v(pu.iq’fd 'p“!-'ﬂ'im] (l?)'p“'t‘ﬂ) o
(if) A(p™d, pr i, abp ) =

2™ == 27" (mod p®T ).
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Therefore we know that for some A4 and B we ean solve
ad-fyg

(8) g ™ apt o Apet

(9) g L Lyt = +B;p”" ,

with : ) .
r = I(p°d, p***, ap®), s = I'(p’d, p"*", bp”).

Multiplying (9) and (S) we get
ST (@ = b (modp o)

1<y
lgj<s

and the result follows.
Leviwma 3. Let p be any odd prime, d dwmde p—~1landv b@ any non-negative

integer. Then
(i) - I(pd, pY < T(d, p) }_j g(p°, d),
o==0)
() Alg*ad, 5"+ < 4(d, ) 3] f(2°, 4).
azal)

Proof. Again we only prove (i). The proof is by induction on 7.
Clearly it is trne for v == 0 and go it is sufticient to show that for all v = 1

Tp*d, p™) < Ip™'d, p°) +g(p%, d) I(d, p).
Let ¥ be any integer. Since 2" = m”r_l‘?(modp’), we can solve
+af® = ¥ (modp")
for s = I'(p*'d, 7). So for.some % we have
(10) o4 o by = N (modpttY).
From the definition of g(p*, d) we have, for some @ prime to p,
T(p"d, 5™, ap") = g(p", d). '
Now applying Lemma 2 with a = » and ﬁ. ~0 we see thab
T, ) < D, 57V, ) T(E, p, 1)
it aa = 1(modp).
Oombined with (10) this gives the required result.

Thus we see that if we can get suitable bounds for g(p°,
we will get bounds for I" and A.

Let o and 8 continue to be non- negative integers. Then it is an im-
mediate consequence of Lemina 2 that

(11)- glp*? a) < (p d)g (p,d)_

¥
i S

d) and f(p*, 4)
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and. .
(12) Fot+F, @) < f(p°, d)f(p®, ).
In particalar, for any = > 0 -
(13) gt dy < glp, d)
anid
(14) J(o", ) < flp, @)

Algo it is immediate that g(p®, d)>2 and f(p®, d)>=2

3. Large p. The bound for I',(%) tound in this section is valid for
all primes p 2 8 but iy really only effective for large p.
Lmmwia 4. We hove that
g(p.d) < 8I(4, p).

Proof. The proof is by contradiction. We write s =
suppose that if for some @4, ..., ®,, we have

+25¢ = 0(modp)

I(d, p) and we

a4 ...
then we must have
Pl .., Pl e (modp?):

Now for each ¢ =1,...,9—1 we can solve

o+ ... +oft =i+hp(modp?),
where 0 < ;< p —1 for each ¢. Then by our assurmption, it i-+j+% = p
we have .
b+ by + by, = p—1(modp)
ang if ¢+j = p we have
(15) hi+h; =p—1(medp).

S0 in particular, for each i =2, ..., p—1 we have

By b Py =By g 5= p —1 (m00d )

and _
oy~ By g v p—«»—-l(mod]{)).
Subtracting, we get by == hy_y +h, {modp) which gives inductively
hy = 4y (modp) for o p—1

i=1, ..

-

and in pamticula.f . o
by oy = (p—1) hy(modp) .

3 — Acla Arithmetiea XXIX A
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Hence we have kb, -4k = ph = 0 (modyp) which contradicts (15) and
the result is proved. '

TrEOREM 1. Let & = p dm where p s « prime = 3,d = (&, p-—1)
and p does not divide m. Thern

Iy(k)y <@, p) (30(d, p)'.

Proof. By Lemma 1, Lemma 3 and (13) woe have

z : s g(p, &)
I,k = @dfw<ﬂdm2(WMﬂﬂMm)(%mmy
w1 3 P
< rea,p 345’(21132) 1 < g, 2}(4’“25)) - (neeld, p) = 2)

= ir(d, p) (3I(d, p))".

4. p bounded. Now we obtain an estimate which is highly effective
when p is bounded.-

Linvea 5. Let p be any prime = 3, and let p—1 = di with { = 2. Then
there ewist arbitrarily large integers o sweh that
' -
flp”, &) <qp(tip™
. where @ is Buler's p-function.
Proof. Let g be a primitive root (modp). For i =1, 2, ... we define

R, = g%,

Then we note that in the p-adic field the sequence {R,} converges
to K say, where R is a primitive tth root of 1, and that for ¢ < §

{16) : R, = R,(modp").

" Let w be any integer > 0 and write r = ¢(i), We will find ¢’ 3= #w. Consider
" the (p" 1) integers

LIRS W W S 11‘3:1;]7 p1 S P

It is cleax that two of them must be congruent (modp™) and so it follows
that- there exist inbegers mq, my, ...; M,_q, not all zero such that

Rept o m,y B = 0(mod p™),

0y, ..., m

g+ O< Imgly vony [y | =5 D7
or o
. F{R,) = 0{modp™),
where F(x) iz the polynomial my—+mqm - ...
most *—1 with rational integer coefficients.

-1 A 7 i
My @1 of degree at
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Now suppose I'(R;) == 0(modp’) for all iz rw. Then F(R) =0 in
the field of p-adic numbers, but F is & non-zero polynomial with rational
coefficionts and degree less than ¢(4) while B has degree p(¢) over the
rational numbers. Henee we have a contradiction and there exists ¢ > »w
with (R, # 0(modp®). We thus have

I (7)) = 0(modp™) Ty (16)
and

F(R ) # 0{modp®).

Let o he the largest integer such that
F(E;) = 0(modp™).
Clearly o' = e, and we have by {16)

F(B,,.) = ap” (modp™+!)
71 s
for some a prime to p. Further ¥ |m,| < rp¥ < rp™"" ag rvequired.
J=0
. Let & be any positive integer, and p any prime >

TrrorEM 2 3. Then

for amy 5> 0 we have

1
1-’17(70) < 0(30: E)k‘pm 1
where b= (p—1)jd, 4 = (k,p—1),
i3 a function of p and & only.

Proof. If ¢ = 1 the result follows from (2) and s0 we can assume ! }
By Lemmsa 1 and the estimate (7), where it was observed that

IipTd, p™™) <

¢ is Euler’s g-function end C(p, &)

L (t=1) d(p*d, p™H),
it iy sutficient to show that
N
Alptd, pty < Clp,.e) kW
‘ , a7,

Let o and o' be any positive integers. We can write o = [?]a -ty
where 0= =5 o =1, and so by (12) we gof

Flp", d) < Fp” s @V (p, Ay < fip”, d
Now by Lenma 3

(17)  A(p*d, p™) < 4,

Y, @)

>\W( dy < A(d, p)fip, &) >fw ay

awO . m-—o
<A@, p)f(p, Q7 f(p7, A
sinee f(p”, d) > 1 '
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We now choose o to satisty Lemma 5 and such that

Q’(t)”g’ <p%
and (17) then gives
-1

Apd, 7 < A, p)f (2, & (p6)p™)
. 1 1

= A{d, P)F(p, &) (p(t)” p POy

1 \
<A@, pyf(p, ay7 g TN

. 1 1
A(d, p)fip, d)a'plpﬁ) i ]‘*‘Wﬁ 5,
as 1eq1med

5. The main result. First we note that if 4 < p 1,]1011 I’(d, P)<6

([1], Lemma 3).
THEOREM 3. Giten &> 0 then
Iy(k) < L2+

Jor all integers k> 0 and all primes p such that §(p —1) does mot divide k.

Proof. As usual we write & = p dm where p does not divide m and
d = (k, p—1). Let &> 0 be given. By (4) we can find an integer D such

that for d =D, I'(d, p} < dP**®. We can then find an integer P such
that P> D3, P> 3 and P > 18,

We consxder three cases _
(i p > P and 4> p". Then d> D and by Theorem. 1

Pp(]ﬁ) < §d112+a/2(3dl;’2+s]’2)r .
< gd1|2+s,'2 (3?1[2+e/2)t< gdlfﬂ-l-up}_124—s ~'§_ :2‘[761,’2-{-5.
(i) p > P and d< p®. Then I'(d, p) < 6 and by Theorem 1
Tp{l) << 3% 6 % 187 < 9™ < 0142,
(iii) p < P. The assumption §(p —1) does not divide & implies ¢ > 2
and s0 ¢(t) = 2. Hence by Theorem. 2
. L
Tp(l) € B¥W° o Jite
and the proof of the theorsm is complete.
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