A note on Waring's problem in p-adic fields

by

J. D. BOVEY (Cardiff)

1. Introduction. Let p be any prime and k any positive integer. The number $\Gamma_p(k)$ is defined as the least positive integer s such that we can solve non-trivially the congruence

$$(1) x_1^k + \ldots + x_s^k \equiv N \pmod{p^n}$$

for all integers N and all positive integers n. It is well known that $\Gamma_p(k)$ is also the least s such that any p-adic integer can be represented non-trivially as the sum of s kth powers of p-adic integers.

The function $\Gamma_p(k)$ was introduced by Hardy and Littlewood in their work on Waring's problem [5] though with a different notation and they showed that for all p and k ([5], p. 186, Theorem 12)

$$(2) \Gamma_{p}(k) \leqslant 4k.$$

In 1943 I. Chowla [2] showed that if $\frac{1}{2}(p-1)$ does not divide k then for all positive ε

$$\Gamma_p(k) \ll k^{1-c+s}$$

where $c = (103 - 3\sqrt{641})/220$ and \leq as usual denotes inequality with a fixed positive constant. More recently Dodson [3] improved the exponent to 7/8.

If p does not divide k then the solubility of the congruence (1) is equivalent to the solubility of the congruence

$$(3) x_1^k + \ldots + x_s^k \equiv N(\bmod p).$$

If $\Gamma(k,p)$ is defined as the least s such that (3) is non-trivially soluble for all integers N then Dodson and Tietäväinen [4] have shown that if $\frac{1}{2}(p-1)$ does not divide k then for all $\varepsilon > 0$

$$(4) \Gamma(k, p) \ll k^{1/2+\epsilon}.$$

In this paper we generalize Dodson and Tietäväinen's result to the general p-adic case and prove

THEOREM 3. Given $\varepsilon > 0$ then

$$\Gamma_p(k) \ll k^{1/2+\epsilon}$$

for all positive integers k and all primes p such that $\frac{1}{2}(p-1)$ does not divide k.

Theorem 3 follows fairly easily from Theorems 1 and 2 which are effective when p is large and small respectively.

THEOREM 1. Let $k = p^{\tau}dm$, where p is an odd prime, d = (k, p-1) and p does not divide m. Then

$$\Gamma_p(k) \leqslant \frac{3}{2} \Gamma(k, p) \left(3 \Gamma(k, p) \right)^{\tau}$$
.

THEOREM 2. Let k be any positive integer and p any odd prime. Then for any $\varepsilon > 0$ we have

$$\Gamma_p(k) < C(p, \varepsilon) k^{\frac{1}{\varphi(\ell)} + \varepsilon},$$

where t = (p-1)/d, d = (k, p-1), φ is Euler's φ -function and $C(p, \varepsilon)$ is a function of p and ε only.

It seems likely that (4) is not the best possible (see [4] and [6]) and it is clear that any improvement in the exponent in (4) could be generalized at once to the p-adic case.

2. Notation and preliminary results. We shall always take k, d and t to be positive integers and p to be an odd prime with p-1=dt. As is usual we will write

$$(5) k = p^{\tau} dm,$$

where d=(k, p-1) and p does not divide m. If d=p-1 or $\frac{1}{2}(p-1)$ then $\Gamma_p(k)$ is known and is not in general less than k (see [1] or [5]). This is certainly true if p=2 and so we lose nothing by assuming $p\geqslant 3$.

The number $\Gamma(k, p^n, N)$ is defined as the least s such that the congruence (1) has a non-trivial solution for particular prime power p^n and integer N. Then

$$\Gamma(k, p^n)^r = \max_{0 \leqslant N < p^n} \Gamma(k, p^n, N)$$

is clearly the least s such that (1) has a non-trivial solution for all integers N.

LEMMA 1. If k is expressed as in (5), where p is an odd prime, then

$$\Gamma_p(k) = \Gamma_p(p^{\tau}d) = \Gamma(p^{\tau}d, p^{\tau+1}).$$

Proof. This is very well known (see [1] for example).

Also we need some notation connected with the easier Waring problem. We denote by $\Delta(k, p^n, N)$ the least s such that the congruence

(6)
$$\varepsilon_1 x_1^k + \ldots + \varepsilon_s x_s^k \equiv N \pmod{p^n},$$

$$\Delta(k, p^n) = \sup_{0 \le N < p^n} \Delta(k, p^n, N)$$

is the least s such that the congruence (6) has a primitive solution for every integer N.

When t is small the number $A(k, p^n)$ can provide a good bound for $\Gamma(k, p^n)$. Let τ be any non-negative integer and let x be any integer such that $x^{p^n d} \not\equiv 1 \pmod{p}$. Then, by Euler's theorem, we have

$$(x^{p^{\tau}d})^l \equiv 1 \pmod{p^{\tau+1}}$$

and so

$$1 + x^{p^{\tau}d} + \dots + (x^{l-1})^{p^{\tau}d} \equiv 0 \pmod{p^{\tau+1}},$$

i.e.

$$x^{p^{\tau_d}} + \ldots + (x^{t-1})^{p^{\tau_d}} = -1 \pmod{p^{\tau+1}}$$

It clearly follows that

(7)
$$\Gamma(p^{\tau}d, p^{\tau+1}) \leq (t-1) \Delta(p^{\tau}d, p^{\tau+1}).$$

Finally we introduce two new functions which simplify considerably the analysis of the problem. For any non-negative integer τ define $g(p^{\tau}, d)$ as the least s such that we can solve

$$x_1^{p^{\tau_d}} + \ldots + x_s^{p^{\tau_d}} = ap^{\tau} (\operatorname{mod} p^{\tau+1})$$

for some a prime to p. Similarly define $f(p^r, d)$ to be the least s such that we can solve

$$\varepsilon_1 x_1^{p^{\tau}d} + \ldots + \varepsilon_s x_s^{p^{\tau}d} \equiv ap^{\tau} \pmod{p^{\tau+1}}$$

for some a prime to p and some $\varepsilon_1, \ldots, \varepsilon_s$ taking the values +1 and -1. The following straightforward inequalities are crucial in establishing the final estimates for $P_p(k)$.

THEMMA 2. If a, b, a and β are integers with α , $\beta \geqslant 0$ then

$$\text{(i)} \ \ \{ \varGamma(p^{a+\beta}d,\,p^{a+\beta+1},\,abp^{a+\beta}) \leqslant \varGamma(p^ad,\,p^{a+1},\,ap^a)\,\varGamma(p^\beta d,\,p^{\beta+1},\,bp^\beta),$$

$$\text{(ii)} \quad \varDelta(p^{a+\beta}d,\,p^{a+\beta+1},\,abp^{a+\beta}) \leqslant \varDelta(p^ad,\,p^{a+1},\,ap^a)\, \varDelta(p^\beta d,\,p^{\beta+1},\,bp^\beta)\,.$$

Proof. We prove only (i) as the proof of (ii) is essentially identical. First we make the well known observation that for $u \ge v$ and for any x prime to p

$$x^{p^u} \equiv x^{p^v} \pmod{p^{v+1}}.$$

Therefore we know that for some A and B we can solve

(8)
$$x_1^{p^{\alpha+\beta_d}} + \dots + x_r^{p^{\alpha+\beta_d}} = ap^{\alpha} + Ap^{\alpha+1},$$

(9)
$$y_1^{p^{a+\beta_d}} + \dots + y_s^{p^{a+\beta_d}} = bp^{\beta} + Bp^{\beta+1},$$

with

$$r = \Gamma(p^a d, p^{a+1}, ap^a), \quad s = \Gamma(p^{\beta} d, p^{\beta+1}, bp^{\beta}).$$

Multiplying (9) and (8) we get

$$\sum_{\substack{1 \leqslant i \leqslant r \\ 1 \leqslant j \leqslant s}} (x_i y_j)^{p^{\alpha+\beta}d} \equiv abp^{\alpha+\beta} (\operatorname{mod} p^{\alpha+\beta+1})$$

and the result follows.

Lemma 3. Let p be any odd prime, d divide p-1 and τ be any non-negative integer. Then

(i)
$$\Gamma(p^{\tau}d, p^{\tau+1}) \leqslant \Gamma(d, p) \sum_{\sigma=0}^{\tau} g(p^{\sigma}, d),$$

(ii)
$$\Delta(p^{\tau}d, p^{\tau+1}) \leqslant \Delta(d, p) \sum_{\alpha=0}^{\tau} f(p^{\alpha}, d).$$

Proof. Again we only prove (i). The proof is by induction on τ . Clearly it is true for $\tau = 0$ and so it is sufficient to show that for all $\tau \ge 1$

$$\Gamma(p^{\tau}d, p^{\tau+1}) \leqslant \Gamma(p^{\tau-1}d, p^{\tau}) + g(p^{\tau}, d)\Gamma(d, p).$$

Let N be any integer. Since $x^{p^{\tau}d} \equiv x^{p^{\tau-1}d} \pmod{p^{\tau}}$, we can solve

$$x_a^{p^{\tau_d}} + \ldots + x_a^{p^{\tau_d}} \equiv N \pmod{p^{\tau}}$$

for $s = \Gamma(p^{\tau-1}d, p^{\tau})$. So for some h we have

(10)
$$x_1^{p^{\tau_d}} + \dots + x_s^{p^{\tau_d}} + hp^{\tau} \equiv N(\text{mod } p^{\tau+1}).$$

From the definition of $g(p^r, d)$ we have, for some a prime to p,

$$\Gamma(p^{\tau}d, p^{\tau+1}, ap^{\tau}) = g(p^{\tau}, d).$$

Now applying Lemma 2 with $\alpha = \tau$ and $\beta = 0$ we see that

$$\Gamma(p^{\tau}d, p^{\tau+1}, hp^{\tau}) \leqslant \Gamma(p^{\tau}d, p^{\tau+1}, ap^{\tau}) \Gamma(d, p, h\overline{a})$$

if $a\bar{a} \equiv 1 \pmod{p}$.

Combined with (10) this gives the required result.

Thus we see that if we can get suitable bounds for $g(p^r, d)$ and $f(p^r, d)$ we will get bounds for Γ and Δ .

Let α and β continue to be non-negative integers. Then it is an immediate consequence of Lemma 2 that

(11)
$$g(p^{\alpha+\beta}, d) \leqslant g(p^{\alpha}, d)g(p^{\beta}, d)$$

and

$$(12) f(p^{\alpha+\beta}, d) \leqslant f(p^{\alpha}, d)f(p^{\beta}, d).$$

In particular, for any $\tau > 0$

$$(13) g(p^{\tau}, d) \leqslant g(p, d)^{\tau}$$

and

$$(14) f(p^{\tau}, d) \leqslant f(p, d)^{\tau}.$$

Also it is immediate that $g(p^{\alpha}, d) \ge 2$ and $f(p^{\alpha}, d) \ge 2$.

3. Large p. The bound for $\Gamma_p(k)$ found in this section is valid for all primes $p \ge 3$ but is really only effective for large p.

LEMMA 4. We have that

$$g(p, d) \leqslant 3\Gamma(d, p)$$
.

Proof. The proof is by contradiction. We write $s = \Gamma(d, p)$ and we suppose that if for some x_1, \ldots, x_{n} we have

$$x_1^{pd} + \ldots + x_{3s}^{pd} \equiv 0 \pmod{p}$$

then we must have

$$x_1^{pd}+\ldots+x_{3s}^{pd}\equiv 0\,(\mathrm{mod}\,p^2).$$

Now for each i = 1, ..., p-1 we can solve

$$x_1^{pd} + \ldots + x_s^{pd} \equiv i + h_i p \pmod{p^2},$$

where $0 \le h_i \le p-1$ for each i. Then by our assumption, if i+j+k=p we have

$$h_i + h_j + h_k \equiv p - 1 \pmod{p}$$

and if i+j=p we have

$$(15) h_i + h_j \equiv p - 1 \pmod{p}.$$

So in particular, for each i = 2, ..., p-1 we have

$$h_{i-1} + h_1 + h_{p-i} = p - 1 \pmod{p}$$

and

$$h_i + h_{p-i} \equiv p - 1 \pmod{p}.$$

Subtracting, we get $h_i \equiv h_{i-1} + h_i \pmod{p}$ which gives inductively

$$h_i \equiv ih_1(\bmod p)$$
 for $i = 1, ..., p-1$

and in particular

$$h_{p-1} \equiv (p-1)h_1(\bmod p).$$

Hence we have $h_{p-1} + h_1 \equiv ph_1 \equiv 0 \pmod{p}$ which contradicts (15) and the result is proved.

THEOREM 1. Let $k = p^{\tau}dm$ where p is a prime ≥ 3 , d = (k, p-1) and p does not divide m. Then

$$\Gamma_p(k) \leqslant \frac{3}{2}\Gamma(d, p) \left(3\Gamma(d, p)\right)^{\tau}$$

Proof. By Lemma 1, Lemma 3 and (13) we have

$$\begin{split} \varGamma_p(k) &= \varGamma(p^\mathsf{r} d, p^{\mathsf{r}+1}) \leqslant \varGamma(d, p) \sum_{\sigma=0}^\mathsf{r} g(p, d)^\mathsf{r} = \varGamma(d, p) \frac{g(p, d)^{\mathsf{r}+1} - 1}{g(p, d) - 1} \\ &\leqslant \varGamma(d, p) \frac{(3\varGamma(d, p))^{\mathsf{r}+1} - 1}{3\varGamma(d, p) - 1} < \varGamma(d, p) \frac{(3\varGamma(d, p))^{\mathsf{r}+1}}{2\varGamma(d, p)} \quad (\mathrm{since} \varGamma(d, p) \geqslant 2) \\ &= \frac{3}{2} \varGamma(d, p) \left(3\varGamma(d, p) \right)^\mathsf{r}. \end{split}$$

4. p bounded. Now we obtain an estimate which is highly effective when p is bounded.

Lemma 5. Let p be any prime $\geqslant 3$, and let p-1=dt with $t\geqslant 2$. Then there exist arbitrarily large integers σ' such that

$$f(p^{\sigma'}, d) \leqslant \varphi(t) p^{\frac{\sigma'}{\varphi(t)}}$$

where φ is Euler's φ -function.

Proof. Let g be a primitive root (mod p). For i = 1, 2, ... we define

$$R_i = g^{dp^{i-1}}.$$

Then we note that in the *p*-adic field the sequence $\{R_i\}$ converges to R say, where R is a primitive tth root of 1, and that for $i \leq j$

$$(16) R_j \equiv R_i (\bmod p^i).$$

Let w be any integer > 0 and write $r = \varphi(t)$. We will find $\sigma' \geqslant rw$. Consider the $(p^w + 1)^r$ integers

$$n_0 + n_1 R_{rw} + \ldots + n_{r-1} R_{rw}^{r-1}, \quad 0 \le n_0, \ldots, n_{r-1} < p^w.$$

It is clear that two of them must be congruent $\pmod{p^{rw}}$ and so it follows that there exist integers $m_0, m_1, \ldots, m_{r-1}$, not all zero such that

$$m_0 + m_1 R_{rw} + \ldots + m_{r-1} R_{rw}^{r-1} \equiv 0 \pmod{p^{rw}}, \quad 0 \leqslant |m_0|, \ldots, |m_{r-1}| \leqslant p^w,$$
 or

$$\dots F(R_{rw}) \equiv 0 \pmod{p^{rw}},$$

where F(x) is the polynomial $m_0 + m_1 x + ... + m_{r-1} x^{r-1}$ of degree at most r-1 with rational integer coefficients.

Now suppose $F(R_i) \equiv 0 \pmod{p^i}$ for all $i \ge rw$. Then F(R) = 0 in the field of p-adic numbers, but F is a non-zero polynomial with rational coefficients and degree less than $\varphi(t)$ while R has degree $\varphi(t)$ over the rational numbers. Hence we have a contradiction and there exists i > rw with $F(R_i) \not\equiv 0 \pmod{p^i}$. We thus have

$$F(R_i) = 0 \pmod{p^{rw}} \quad \text{by (16)}$$

and

$$F(R_i) \neq 0 \pmod{p^i}$$
.

Let σ' be the largest integer such that

$$F(R_i) \equiv 0 \pmod{p^{a'}}$$
.

Clearly $\sigma' \geqslant rw$, and we have by (16)

$$F(R_{\sigma'+1}) \equiv ap^{\sigma'} (\bmod p^{\sigma'+1})$$

for some a prime to p. Further $\sum_{j=0}^{r-1} |m_j| \leqslant rp^w \leqslant rp^{n'/r}$ as required.

THEOREM 2. Let k be any positive integer, and p any prime $\geqslant 3$. Then for any $\epsilon > 0$ we have

$$\Gamma_p(k) < C(p, \varepsilon) k^{\frac{1}{p(l)} + \varepsilon},$$

where t = (p-1)/d, d = (k, p-1), φ is Euler's φ -function and $C(p, \varepsilon)$ is a function of p and ε only.

Proof. If t = 1 the result follows from (2) and so we can assume $t \ge 2$. By Lemma 1 and the estimate (7), where it was observed that

$$\Gamma(p^{\tau}d, p^{\tau+1}) \leqslant (t-1) \Delta(p^{\tau}d, p^{\tau+1}),$$

it is sufficient to show that

$$\Delta(p^{\tau}d, p^{\tau+1}) < C(p, \varepsilon) k^{\frac{1}{\varphi(l)} + \varepsilon}.$$

Let σ and σ' be any positive integers. We can write $\sigma = \left[\frac{\sigma}{\sigma'}\right]\sigma' + r$, where $0 \le r \le \sigma' - 1$, and so by (12) we get

$$f(p^{\sigma}, d) \leqslant f(p^{\sigma'}, d)^{[\sigma/\sigma']} f(p, d)^r \leqslant f(p^{\sigma'}, d)^{\sigma/\sigma'} f(p, d)^{\sigma'}.$$

Now by Lemma 3

(17)
$$\Delta(p^{\tau}d, p^{\tau+1}) \leq \Delta(d, p) \sum_{\sigma=0}^{\tau} f(p^{\sigma}, d) \leq \Delta(d, p) f(p, d)^{\sigma'} \sum_{\sigma=0}^{\tau} f(p^{\sigma'}, d)^{\sigma/\sigma'}$$

 $\leq \Delta(d, p) f(p, d)^{\sigma'} f(p^{\sigma'}, d)^{(\tau+1)/\sigma'}$

since
$$f(p^{\sigma'}, d) > 1$$
.

We now choose σ' to satisfy Lemma 5 and such that

$$\varphi(t)^{1/\sigma'} < p^{\epsilon},$$

and (17) then gives

$$\begin{split} \varDelta(p^{\tau}d,p^{\tau+1}) &< \varDelta(d,p)f(p,d)^{\sigma'}\big(\varphi(t)p^{\frac{\sigma'}{\varphi(t)}}\big)^{\frac{\tau+1}{\sigma'}} \\ &= \varDelta(d,p)f(p,d)^{\sigma'}\big(\varphi(t)^{\frac{1}{\sigma'}}p^{\frac{1}{\varphi(t)}}\big)^{\tau+1} \\ &< \varDelta(d,p)f(p,d)^{\sigma'}p^{\left(\frac{1}{\varphi(t)}+s\right)(\tau+1)} \\ &\leqslant \varDelta(d,p)f(p,d)^{\sigma'}p^{\frac{1}{\varphi(t)}+s}k^{\frac{1}{\varphi(t)}+s}, \end{split}$$

as required.

5. The main result. First we note that if $d^3 < p$ then $\Gamma(d, p) \le 6$ ([1], Lemma 3).

THEOREM 3. Given $\varepsilon > 0$ then

$$\Gamma_p(k) \ll k^{1/2+s}$$

for all integers k > 0 and all primes p such that $\frac{1}{2}(p-1)$ does not divide k. Proof. As usual we write $k = p^*dm$ where p does not divide m and d = (k, p-1). Let $\varepsilon > 0$ be given. By (4) we can find an integer D such that for $d \ge D$, $\Gamma(d, p) < d^{1/2 + \varepsilon/2}$. We can then find an integer P such that $P > D^3$, $P^{\varepsilon/2} > 3$ and $P^{1/2} > 18$.

We consider three cases

(i) p>P and $d>p^{1/3}$. Then d>D and by Theorem 1 $\Gamma_p(k)<\frac{_3}{^2}d^{1/2+\epsilon/2}(3d^{1/2+\epsilon/2})^{\tau} < \frac{_3}{^2}d^{1/2+\epsilon/2}(3p^{1/2+\epsilon/2})^{\tau}<\frac{_3}{^2}d^{1/2+\epsilon}p^{1/2+\epsilon}\leqslant \frac{_3}{^2}k^{1/2+\epsilon}.$

(ii) p>P and $d< p^{1/3}$. Then $\Gamma(d,\,p)\leqslant 6$ and by Theorem 1 $\Gamma_p(k)<\frac{3}{2}\times 6\times 18^{\tau}<9p^{\tau/2}\leqslant 9k^{1/2}.$

(iii) p < P. The assumption $\frac{1}{2}(p-1)$ does not divide k implies t > 2 and so $\varphi(t) \ge 2$. Hence by Theorem 2

$$\Gamma_p(k) \ll k^{\frac{1}{\varphi(t)} + s} \leqslant k^{\frac{1}{s} + s}$$

and the proof of the theorem is complete.

References

- [1] J. D. Bovey, On the congruence $a_1 x_1^k + \ldots + a_s x_s^k \equiv N \pmod{p^n}$, Acta Arith. 23 (1973), pp. 257-269.
- [2] I. Chowla, On Waring's problem (mod p), Proc. Nat. Acad. Sci. India, A, 12 (1943), pp. 195-220.

- [3] M. M. Dodson, On Waring's problem in p-adic fields, Acta Arith. 22 (1973), pp. 315-327.
- [4] M. M. Dodson and A. Tietäväinen, A note on Waring's problem in GF[p], Acta Arith., to appear.
- [5] G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio Numerorum' (IV): The singular series in Waring's problem and the value of the number G(k), Math. Zeitschr. 12 (1922), pp. 161-188.
- [6] H. Heilbronn, Lecture notes on additive number theory mod p, California Institute of Technology, 1964.
- [7] A. Tietäväinen, Note on Waring's problem (mod p), Ann. Acad. Sci. Fenn. Ser. AI 554 (1973).

Received on 5. 4. 1974

and in revised form on 15. 11. 1974

(555)