The reciprocity theorem for Dedekind-Rademacher sums

by

L. CARLITZ (Durham, N.C.)*

1. Put

\[(a) = \begin{cases} a - [a] - \frac{1}{k} & (a \neq \text{integer}), \\ 0 & (a = \text{integer}). \end{cases} \]

The Dedekind sum \(s(h, k)\) is defined by

\[(1.2) \quad s(h, k) = \sum_{r \equiv (mod k)} \left(\frac{r}{k} \right) \left(\frac{hr}{k} \right). \]

The sum satisfies the reciprocity relation

\[(1.3) \quad s(h, k) + s(k, h) = -\frac{1}{4} + \frac{1}{12} \left(\frac{h}{k} + \frac{1}{h} + \frac{k}{h} \right), \]

where \((h, k) = 1\). For proofs and references see [4].

Rademacher [3] has defined the more general sum

\[(1.4) \quad s(h, k; y, \omega) = \sum_{r \equiv (mod k)} \left(\frac{r + \omega}{k} x + y \right) \left(\frac{r + \omega}{k} \right), \]

where \(x, y\) are arbitrary real numbers. Grosswald [4] has agreed that it is appropriate to call \(s(h, k; y, \omega)\) a Dedekind-Rademacher sum. In the paper cited, Rademacher proved that \(s(h, k; y, \omega)\) satisfies

\[(1.5) \quad s(h, k; y, \omega) + s(k, h; x, y) = \frac{(\omega)(y)}{2} + \frac{1}{h^2} B_2(x) + \frac{1}{hk} B_2(x + ky) + \frac{h}{k} B_2(y), \]

where \((h, k) = 1, x, y\) are not both integers and \(B_2(x) = B_2(x - \lfloor x \rfloor)\), where

\[B_2(x) = x^2 - x + \frac{1}{6},\]

the Bernoulli polynomial of degree 2. The writer [1, 2] has proved a generalization of (1.5).

* Supported in part by NSF grant GP-37994X1.
Rademacher's proof of (1.5) is elegant but rather involved. In the present note we give a simplified proof of the result. The simplification is due mainly to using the function \(x - [x] - \frac{1}{2} \) in place of \((\zeta(x)) \).

2. Put

\[
B_1(x) = x - [x] - \frac{1}{2} = B_1(x - [x]).
\]

Then \(B_2(x + 1) = B_1(x) \) and

\[
B_2(x) = \sum_{r \mod k} B_1\left(\frac{x + r}{k}\right).
\]

We now define

\[
\bar{r}(h, k; y, w) = \sum_{r \mod k} B_1\left(\frac{r + x}{k} + y\right) B_1\left(\frac{r + x}{k} + \frac{s + y}{h}\right).
\]

Thus, using (2.2), we get

\[
\bar{s}(h, k; y, w) = \sum_{r, s} B_1\left(\frac{r + x}{k}\right) B_1\left(\frac{r + x}{k} + \frac{s + y}{h}\right),
\]

where \(r, s \) run through complete residue systems modulo \(h, k \) respectively.

It is convenient to put

\[
\xi = \frac{r + x}{k}, \quad \eta = \frac{s + y}{h},
\]

so that (2.4) becomes

\[
\bar{s}(h, k; y, w) = \sum_{r, s} B_1(\xi) B_1(\xi + \eta).
\]

Hence

\[
\bar{S} = \bar{s}(h, k; y, w) + \bar{s}(h, k; x, y) = \sum_{r, s} (B_1(\xi) + B_1(\eta)) B_1(\xi + \eta).
\]

There is no loss in generality in assuming that

\[
0 \leq x < 1, \quad 0 \leq y < 1
\]

and that

\[
0 \leq r < h, \quad 0 \leq s < h.
\]

Thus (2.7) becomes

\[
\bar{S} = \sum_{r, s} (\xi + \eta - 1) B_1(\xi + \eta).
\]

Put

\[
T = \sum_{r, s} (\xi + \eta - 1 - B_1(\xi + \eta))^2 = S_1 - 2 \bar{S} + S_2,
\]

where

\[
S_1 = \sum_{r, s} (\xi + \eta - 1)^2, \quad S_2 = \sum_{r, s} B_1^2(\xi + \eta).
\]

By direct computation

\[
S_1 = \frac{x^2}{hk} - \left(\frac{1}{h} + \frac{1}{k}\right) x + \frac{1}{6} \frac{h}{h} x + \frac{1}{6} \frac{k}{k} y + \frac{1}{2}.
\]

As for \(S_2 \), we have

\[
S_2 = \sum_{r \mod h} B_1^2\left(\frac{r + x}{h}\right),
\]

so that

\[
S_2 = \frac{1}{6} \frac{h}{h} k (h^2 k - (2 h k - 1) + (h k - 1) \left(\frac{x}{h} \frac{1}{h} - \frac{1}{2}\right) + \frac{x}{h} \frac{y}{k} - \frac{1}{2}).
\]

By (2.1) and (2.11)

\[
T = \sum_{r, s} (\xi + \eta - 1)^2.
\]

Since \([\xi + \eta] = 0 \) or 1, it follows at once that

\[
T = \frac{1}{h^2 k}.
\]

Substituting from (2.13), (2.14), (2.15) in (2.11), we get

\[
\bar{S} = (x - \frac{1}{2}) (y - \frac{1}{2}) + \frac{1}{h} B_1(x) + \frac{1}{k} B_1(y).
\]

Finally, removing the restriction (2.8), we state the following theorem. The sum \(\bar{s}(h, k; y, w) \) satisfies

\[
\bar{s}(h, k; y, w) = \frac{1}{2} \left(\frac{1}{h} B_1(x) + \frac{1}{k} B_1(y)\right),
\]

where \((h, k) = 1 \) and \(x, y \) are arbitrary real numbers.
3. For \(x, y \) both integral, it is evident that (2.17) reduces to (1.3). For \(x = \text{integer}, y \neq \text{integer} \),

\[
\bar{s}(k, h; y, x) = \sum_{r \equiv y \mod h} B_1\left(\frac{hr}{k} + y\right) B_1\left(\frac{r}{k}\right),
\]

\[
\bar{s}(k, h; x, y) = \sum_{s \equiv x \mod h} B_1\left(\frac{s + y}{k}\right) B_1\left(\frac{s}{k}\right).
\]

If for some pair of integers \(r_0, s_0 \), we have

\[
hr_0 - h(s_0 + y) = 0,
\]

then clearly

\[
B_1\left(\frac{hr_0}{k} + y\right) = B_1\left(\frac{s_0 + y}{k}\right) = B_1(0) = -\frac{1}{2},
\]

while

\[
B_1\left(\frac{s_0 + y}{k}\right) = B_1\left(-\frac{r_0}{k}\right) = -B_1\left(\frac{r_0}{k}\right).
\]

Hence, if we put

\[
S = s(h, k; y, x) + s(k, h; x, y), \quad \bar{S} = \bar{s}(h, k; y, x) + \bar{s}(k, h; x, y),
\]

we have

\[
S - \bar{S} = \frac{1}{2} B_1(y).
\]

Moreover this holds even when (3.1) is not satisfied. It follows that (2.16) and (1.5) are in agreement in this case \((x = \text{integer}, y \neq \text{integer})\). By symmetry this holds also for \(x \neq \text{integer}, y \neq \text{integer} \).

Finally assume

\[
x \neq \text{integer}, \quad y \neq \text{integer}.
\]

If for some pair of integers \(r_0, s_0 \), we have

\[
h(r_0 + x) + h(s_0 + y) = 0,
\]

then

\[
B_1\left(\frac{r_0 + x}{k} + y\right) = B_1(-s_0) = -\frac{1}{2},
\]

\[
B_1\left(\frac{s_0 + y}{k} + x\right) = B_1(-r_0) = -\frac{1}{2},
\]

\[
B_1\left(\frac{s_0 + y}{h}\right) = B_1\left(-\frac{r_0 + x}{k}\right) = -B_1\left(\frac{r_0 + x}{k}\right),
\]

so that

\[
S - \bar{S} = 0.
\]

Moreover (3.5) holds even when (3.4) is not satisfied. It follows again that (2.16) and (1.5) are in agreement in this case.

Thus (2.16) contains both (1.3) and (1.5)

References

Received on 15. 10. 1974