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A generalisation of Artin’s conjecture for primitive roots -
by

K. R. Marturws (Brishane, Australia)

1. Introduction. In 1927 Artin (see Artin [1], p. vii~ix) conjectured
that if o is an infeger other than 1 or a perfect square, then the number
N, () of primes p <« such that a is a primitive root modyp, satisfies an
asymptotic formula of the form

(—c0)

for some positive congtant 4 (a).
In 1967 Hooley (see [6]) showed that the tmth of the Riemann

hypothesis for the fields Q(l/l I/_ & square-free, would lmply the truth

of Artin’s conjecture. _
Let @y, ..., a, be non-zero integers not 1. In this paper the method

of Hooley is u&ec’l to obtain &n asymptotic formula for the number N, ()

of primes p <<'» such that each of a;, ..., 8, is & primitive 10013 modp.
An equation

12 N (@) = ~—— A, ..., & )+o Toi logloga)™™~?

WLor Epsneerlly - lﬂge’ﬂ 1y e==y ¥p =

iy obtained subject to the truﬂl of the Riemann hypothesis for each of

the fields Q(l/l,l/a[,...,l/wn) where % =y, ..., L> (the Lem. of

I, ..., 1) i8 square-free. Here
. Dol
(1.3) Alty, ooy ty) = Z,u(?c)c(?a)
=1

where ¢(k) is the mtmal density of the pnmes g = l(modlc ) ot e ... 6y,
such that for each prime p |k, at least one of a,;..., a, is a pth power
residue modg.
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The constant A(a,, ..., a,) is then converted to an infinite product,

namely |
i 1 D
(Ld) Aty .y =[Jo—e@) .. 3 (=1 flal)
n> &= an==0 A
’ = x(nlil. 0 i) =] (mod 4)
where
@) et = utin) [ | 770
' olat

(Here ={b) iz the square-free kernel of &.)

Denoting the finite swm by §, the positivity of A(ay, ..., @,) I8 equiv-
alent to that of 8. A necessary and sufficient eondition for 8§ to be posi-
tive is then obfained, namely the conjunction of the following two con-
ditions:

C: Tiap...ofn =0% beZ, ;=0 or 1, then 2|3 ¢,

C: If afi...alr = —30% beZ, s, =0 or 1 and if 8]Y ¢, then d'(3),
the natural density of the primes g = L{mod3), ¢ta, ... ,, such
that each of @y, ..., a, is & cubic nopn-regidue mod ¢, must be positive.

1
An cxplicit formula is available for d'(p) (= PRy —o¢{p)) where p
is an odd prime. By applying the exclusion principle to Lemmsn 1 of Schin-
zel [10], p. 162, we have

[

1 & .
(1.6) P = Z (—1)p" 7o
-1 &, !
where ‘
] . ' 2 Y
(1.7) o= ) PSR
L)< iy Vgl M=l
. u:il...a:;.'lcb’ﬂ, bezZ
and o, = 1.

Ifn =1,20r3, orif ay, ..., a, are relatively prime in puirs, an exam-
ination of formula (1.6) allows us to replace the condition “@(8)> 07
in G, by the statement “rione of ay, ..., a, is a perfect eube”. Elowever
if » > 3 the situation is more complicated.

If # is the set of primes p such that each of ay, ..., @, i5 @ primitive
To0t modp, we shall show in the next seetion that conditions €, and C,
are each necessary for 2 1o he infinite. :

Finally I would like to acknowledge by indebtedhess to Professors

H. Halberstam and C. Hooley for suggesting the problem to me. I am also -
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exfremely grateful to Professor D. A. Burgess for much help while the
main part of this work was carried out during a recent sabbatical year
spent at the University of Nottingham where I was on leave from the
University of Queensland. This paper forms part of a Ph. D. thesis to
be submitted to the latter university. Finally, I wish to thank Professor
C. 8. Davis for improving the presentation of the manusecrips.

2. Necessary conditions for # to be infinite. We prove that the fals-
ity of Gy or G, implies that & contains at most the element 2. For suppose
that G, is false. Then we have

a'il...w.ij:bg, bEZ, 1\<__?:1<...<‘ij£%

.

and j odd. Now if pe# is an odd prime, then each of a,, ..., a, is a quad-
ratic non-residue modp, and the Legendre symbol gives the following
contradiction:

1 =(£2—) =(fb—‘—j—f) =(&)(mf) — (1Y = -1,
P P p! \p

Hence the only possible element of & is 2.
Now suppose that €, is falge. Then we have

beZ,

& g, = —3b2,

iy - iy 1§i1<...<ij<ﬂ

with j even and 4'(3) = 0. If pe# is an odd prime, an argument similar

—3
to the ahove gives (T) = 1. Hence

(- (587

But quadratic reciprocity gives

3 M' p 01
(7) = [§)-1%
p

and consequently (3) = 1. Hence p = 1(mod3). Now as each of a,, ..., a,

Iy a primitive root modp, in view of the copgruence p =1(mod3) just
derived, each of a,, ..., a, i§ & cubic non-residue modp. Hence the con-
dition d'(3) = 0 implies that # has density zero. Flowever by Lemms 2.4
below, much more is true. For by that lemmma we know that at least one
of @, ..., a, is a cubic residue modp, and hence there are no odd primes
pe. : _
It remains to prove Lemma 2.4, Our proof depends on a theorem of

~ Elliott [4] (Theorem 1, p. 143) on the number of prime ideals p which

~
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have preseribed pth power residue symbol values at each of n given non-
zero rational integers.

- DerFivirioN 2.1. Let p be a ra,tmna;l prime, o an algebraic ln'befrel

of Q1 ]/.1.) and p o prime ideal of Q(lf_ )y pt {pa]. Then the pth power resi-
due symbhol is defined by

(g) Ea—j;[N(p)mu
p jod

(See Landau [8], Definition 135, p. 295.)
We note that

(2.1) (modp), (—a-)? -1

Py

o n_
(2.2) (_p-) =lea = f(modp), peQ(V1).

We also have the equatfion

RO
P ),17 Pipi\Plp
ifpd [pa, a.].

Elliott’s result can now be stated as .-

Tnmora 2.1, Let p be a rational prime and let ay, .
rational integers. Also let o, .

(: N(_’p,ﬂ?:; Exy vany sn)) by
n p

N@,n): 2 Z (AN e

1;1:1 'llnml

(2.3)

oy &, be non-zero

(2.4)

r] 2 v p»‘
Lol 67, geqly'T)

Let 8{w,pyn) (=8(z,p,n; =, vy &) be the mumber of prime ideals p
of the first degree which satisfy N (p) < x, and for which the relations

. .
(2.5) (—-) —y G=1,...m)
Plo o
are satisfied. Then as z-»>oc ' .
B0) - Bl p,m = p™ N ip, ma(o) + Osoxp(— 4Vloga)

Cwhere A is a positive constant.

(The extra condition, that the prime ideals be of the first degree,
is not present in Elhott’s theorem, but the contribution of the prime
ideals of degree greater than one is O(l/_

The next result is not mentioned in Dlhotb’% paper.

.y &, be p- -th vools of unity. We define N(p,n)
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LeMmA 2.2, With N(p,n) defined as in (2.4) we have

.. u;’z“=ﬁf’, ﬁEQ(IF

{(2.7) N(p,n) =

IIM»;;,:

1) = 0.
Then

if & prime ideal p ewists satisfying conditions (2.5); otherwise N(p,1
Proof. (i) Let p be a prime ideal satisfying conditions (2.5).

i0 v, 7 ,
£l Evn_(a'l)l (an)n_(all“'av;"')
1 e BV = T s |T =\ 1
Pin Pip P P

by (2.3). Hence
\pﬂ = @l e\ z -
, SO, _
= . o= i
swo= 33 (EeE - 3L
1'l=1 :l,"m vy=1 =1
P BONT) L, 5OV
by (2.2).

(ii) Tf no prime ideal p exists patistying conditions (2.5} then S(z, p, n)
= 0 for each x, and by virtue of {2.6) we must have N(p,n} = 0. =~
BRefore Lemma 2.4 can be proved, we need the following

" LemMa 2.3. Let a be a rational integer, p and g be rational primes,

. L
g =1(modp), gta. Also let p be a prime ideal in Q(V1), p|[g]l. Then the
congruence

B:Q(/T)

is soluble if and only if a 48 a p-th power residue modg.
Proof. The assumption p|[g] and g =1(modp) implies that p Iis

a = p¥(modyp),

Cp _ )
of the first degree. Hence the integers of Q(l/i)modp form a field of
g (= N(p)) elements. Hence if & = #¥(modp) we have
a? =p"" = 1(modp),

and as gep, it follows thatb

AL :

a ? =1(modgq).

Consequently @ is a pth power residue modyg.

Levma 2.4, Let ay, ..., 4, be non-zero rational integers, p a rational
prime and suppose that a prime g ewisis with g = 1(modp), gt oy ...
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and such that.emch of @y ..oy 4, 8 @ p-th power non-residue modg. Then the
natural density d'(p), of the set P, of such primes q, is positive.

, . . B..
. Proof. The prime ideals in Q (V1) of the first degres and not divid-
mng. [pa, ... #,] are grouped naturally together in sefs of p—1 by the
equation N v
[¢] =P1-vt Py

where g = N (p,) =1{modp).
By Lemma 2.3 and (2.2) the conditions

(2.8) (ﬂ) £l (j=1,...,m)
Pisn

are either satistied for all p =p; (4 =1,...,p—1) or for no P;. Hence

Siego )

<%

aePy
vfrhere > deno‘tes a summation over all prime ideals p of Q(%?) of the
first degree, with ¥(p) < o and satisfying the conditions (2.8). Tlence

1 .
Byuenslyy ’

e

P ¥

where ¢, ..., ¢, run over all pth roots of unit y
_ ; ty other than L. B A8ymI-
totic formula (2.6) now gives he s

(2.9) d'(p) = lim S & .
(p) I q(ml =1y L N(p, 056000y 8,).
ifl:\‘?’l ; LT

i g, is & prime satisfying the k is of T i i
_ ypothesis of Temma 2.4 and if p, is a priv
. ideal, py[[gy], then by Lemma 2.3 and {2.2) the conditions i e

& .
51;17#:1 (.?mlr“'!%)
are satisfied amnd if ¢ = (mai) ) (2.9) gives
Po/lp )
q

d'{p) = m N(p,m; e,y .0.ye))

>0, by Lemma 2.9,

m . . . . ‘ .
31 Ihe fll.'llﬂa Elll:al eqllatlon Of HOO]ey. “iv ]fh ][001(3y G E] SG( tlon tdy
i:j 0 t ],,.b j: . o ded : . = 343 E‘Iq
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if and only if pt a and for each prime ¢|p —1, @ is not a gth power residue
modp. Consequently if R{g, p) denotes the statement

(3.1) gqip—1 and at least one of ay,..., @, is @ gth,

power residne modp,

it follows that N(#) (= N, . (s)) i5 the number of primes P <
ot ay ... n,, such that R (g, p) is false for all primes ¢.
Let N (x,7) be the number of primes p <, pfay... a,, such thab

Ri{g,p) is false for all primes g << 5. Then
" N(#) = N(zx,r—1).

“We let P(z, k) be the number of primes p <&, pfa,...a,, such that

R(g, p) is true for all primes ¢|k. Then by the exelusion prineiple
(33 Nz, n) =D u(k)Pla, k)
&

where & runs through 1 and the square-free numbers composed entirely
of primes g =< 7.

Let & = ilogz, & = alog™z, & = «7logw.

Tf 5, < nywelet M(2, %, 5,) he the number of primes p < @, pi e, ... a,,
such that R (g, p) is true for at least one prime ¢, 1, < ¢ < 1,. Then with
only slight changes to Hooley's argument, the fundamental eguation

loglog® )
log2z

'(3..3) ' N(@ = N(=, 51)+0(Jlf(w, £, 52))—}«0(:1;

of Hooley follows.
We recall from (3.2) that

(3.4) - Nz, &) = Y w(b)P(z, k)
IS
and note that
Z logg
(3.5) k< H g=eH <=l
' gy
We also observe that
(3.6) | Mz, &, 60 D Pl@, g

E<pty

4. A formula for Pz, k). We recall from Section 2 that FP(z, k)
counts the primes p << @, p1 @, ... a,, such that for all primes g|k we have
» = 1{modg) and at least one of @y, ..., &, i8 o gth power residue modyp.
Thug P(w, k) counts the primes p <@, ptay ... &y, p =1(modk), such
that for all primes g% at léast one of @y, ..., &, Is a gth power residue
mod p.
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i,..., 1, are divisors of k (square-free) we let P(s,1,,...,7; k)
denote the number of primes p <, pta,...a,, p ==1(mod k), such that
each of the congruences :

a4y = aft (modp), ..., 4, =aofp (modp)
is soluble. Then we have the following formula for LPlw, B,

Limyra 4.1,
1) Plw, k)= pl) o D all) o pll)P(@, by ooy 1y ).
LiE gyl
e enilyd=F

Proof. (This is due to Prof. Burgess.) For each 4, 1 < 4« oy 1 I0Gi-
phca,twe function f;{I) is defined by
. 1 it o' = e {modp) is soluble,
f = |0 otherwise.
Hence if f(g) is defined by

flg =1~ [T -fta),

. 4=l
‘we have
1 ifat least one of 4 = a;(modp),
- flg) = { <1< n, is soluble,
0 otherwige.
Hence ' : :
(4.2) - Pla, k)= 3 []ra-
v gl
p=1l{modk)
L PR
But '
[[r@ =[] H(l ~fi(e) = 2 nn (L—fi()
gk alk aik qld i=1
=D d)ﬂ[‘]l —filg) = D> uid) Hz/ulifim
o dk i=1 gid alk f=1 ld
= D@ > Y ull) ...mzn)n‘m :
an Wz e Faul
Hence from (4.2)
_ . .
(43) Pl k)= D@ D Nut) oty 3 []hit
aik e Iyld P fel
: ﬂnl(nmaf‘)
) ) Wf“l 2y
:2/‘6(‘1)2“'2#(11 s Pla,1y,.. oy by 1)
Ak I A ]

...(L&(ZH)P(:]}', ll) nr n! Ju
ble 10k dfte
. sl
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The inner sum of (4.3) mmphfles on making the substitution d = t(l by
For then

1

D ald) = Wty o0y 13) = (G, S Y a(t)
<z1,.fz.',}§n>m B ' il el
o lu‘(k) if <11: 3 l:-z> = k?
o _otherwise.

Consequently ({4.3) reduces to (4.1}

5. An asymptotic formaula for P(z,l,,...,1,; k). We recall that

P@, by, ..., 1,; k) counts those primes p < 2 which satisty each of the _
conditions '
(5.1) p =1(modk), pte; @ =2ak(modp) soluble,

where 1 <1< n.
The argument of Hooley {6], Sectlon 4, pp. 212-213, shows that (5.1)
is equivalent to the staternent :

(5.2) p»rka,; a.nd P factorises as a product of first degree prime 1d83.]b

in Qf 1/1 l/a

Hence P(=, I,
dition
(5.3)

: bai ) counts the primes p < # which satisfy the con-

'r kay ..
]demls ink = Q(Vl l/a,l, . l/onﬂ

We 13111&1“]{ that such prime ideals are distinet, for p+ kcal . &, implies.
that pt 4(K), the discriminant of K. (The primes le‘ldlIlg' A (K i

. &, and p factons% a.‘s a product of first degree prime

are those which divide either A(K,) or A(K,); also A(Q (l/_ l/a ) s
formed from primes which divide k4, — see Hasse [5], p. 39, Batz 42, and,
Hooley [6], p. 213.)
Hollowing Fooley, we write = (%, K) for the number of prime ideals by
of K with ¥(p) < «. Then
(6.4) w(m, K) = my(a, K) +my(a, E)
where z,(x, K) is the confubu’mon to = (%, K) from the first &egree prime
ideals not dividing ka, ... a,, and @,(z, ) iy the remaining contribution.
Ag K is a Galois extension of O, we know that each prime ptha, ... a,
huag either N(XK).(= [X : Q]) distinct first degree prime ideal factors,
or else factorises into distinct prime ideals of a higher degree, the number.
of factors being less tham N (K). Oonsequently by (5.3)

(5.5) my (@, K) = N(H)P(w, l;, ..., 5y &)
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and

{5.6) wea(y ) < N (K)o (kay ... 6,)+ N (K) M.
: R
Combining (5.4), (8.5) and (5.6) gives
B.7) NE)P@®, Ly ...y by B) = a{z, K)+ O(N (K)o (k) + O (N (K) 2.

1 Iy, .

6. A recursive formula for [F(]/a—i, e 1/3;):1?’]. We shall t:veutn.-
k 'L
ally need a lower estimate for ¥ (K) = [K : Q] where K = Q( i ]/a,”

ﬂ__ - - -
o Ve, @, ..., m, are non-zero rational integers and & == {ly, ..., 1>
k_
Now N( =[EK : Q(V1)]p(k), and hence it suffiees to investigute

[F(lfal, . l/an : I} where ¥ is a number field containing all %th roots
of uniby.

Levora 6.1, Tet F be o number field containing oll k-th rools of unity,
Uyy oeey &, G Non-2ere elements of F and 1y, ..., L, are divisors of &, o square-
free integer. Positive integers Ay, ..., hyy My ooy Ay are defined as follows: A, is
the product of those primes p|l, such that oy = %, Bek; Ay ==L /A].

If 1 < v < m, & is the product of those primes pil, for whick integers
Thyyerny My_y 6TISE SOLISFYINgG

. om Wz AD
ar“‘"al_l"'ari‘llﬁz BeF,

where in addition, ptm;=p|3;, for L<igr—1; also A ='1,.|A." Then

. h In,
{6.1), [F(Voayy ooy V)1 BT = 4y ... 4.
Proof. Let J, = K, = F and for 1 r<n letg

i b . A A
4, '“-“F(l/al,...,l/a,,), XK, :F(Vala---?l/“r)'

Then the following statements can be proved by induetion on #:

(1) J, = K, for 0 << r< n, :

(i) ‘@ —a, is irreducible over K, ., for 1 <7 =5 n.

Equation (6.1) now follows immediately, for from (i} we have

[Kr:~Kr—~1] =4 lgrn

and hence

[7,:F] = [E,:T] = H (K, K, ] = n 4.

?‘m'l
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Proof of (i). The cage ¢ =0 needs no proof. Let 1<+ < n and
asgume that J, , = K,_;. Then

: I ‘ I
(6.2) Iy = (Vo) =K, (Va,).

We now write I, = 4p, ... p;, where 9,,...,5; are the prime factors
of .. Then
F2 e

I . fg Ay
(6.3) K, (Va) = K, (Va,, ..., Va, Va,).

But from construction of 4., we have for p = p,, , i

gl Mo 1/
]/ar_all RN Sl

where §eF and ptm;=>plid, L<i<+#—1. Hence for such p we have

D__ ) P .
Va,eX,_; and hence X, ,(Vea,) = K,_,. From {6.3) it follows that

. z‘r___‘ lr___
Koa(Va) =K, (Ve) =K,

and hence from (8.2) we have J, == K_, completing the induction.
Before we can prove (ii) we need the following result which is basi-
cally Satz 150 of Hasse [5], pp. 220-221.,
Lmyma 6.2. Lot F be a number field containing all k-th roots of unity
and let a be 6 non-zero element of F Also assume that &* - a is irreducible

over F, where A| k. Then if B i8 a non-zero elemem of B with § = %, yeF(]/a
ond p |k, we have § = o’ 6%, where §¢F and ptrv=pii
~ Proof of (ii). For 1 < » < n let P, denote the statement

(a) @’ —a, is irreducible over K, , and

(b} i § is a non-zero element of # such that g = y?, y<I,, then
B =oft... g% where de and ptm=pll;, for 1<i<r,

We use a well-known criterion for the irreducibility of #* —a over
a field H, stated for example in Lang (9], Theorem 16, p. 221. For square-
free A this states that #*--a is irreducible over H if pli=a == 7, BeH
(H ix asgnmed to be of characteristic zero or prime to 2.)

We prove by induction on r that P, holds for 1 < r < n. Our proof
is based on that of Elliots [3], Lemma 3, pp. 134-135. When » = 1, (a)
follows from the construction of A, and the above mentioned criterion

for irredueibility, while (b) reduces to the statement of Lemma 6.2.

Hence we assume 1 < # << » and. that P, is valid for s < r. We argue
indirectly and assume that o' — g, is reducible over K, ;. Then for some
Pl we have

64) 4 =f, BeK, ..
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Equation (6.4) together with the irreducibility of #**~1—a,_; over K, ,
Ay

and the. fact that K, ; = K, 4 l/a,_l allows the application of Lemma
6.2; we obtain ‘

(6.5) a, = a8 where deK, ,,
and where p{m,_,=plh_;.

From (6.5) we have
(6.6) : ga 1 = 3 where  SeK,_;.

Hence if » > 2 we have 1 < r—2 < r and the induction hypothesis giveé

(6.7) goo -t = o .., eprrtn®  where  pell,

and where -

(6.8) ptm, =i jifo:r 1<i<r—2.
From (6.6), {6.7) and (6.8) Wé have

(6.9) - o, = a’f"l a?&flnj’ where el

and where . ‘

(6.10) j}‘[’miwplli- Hor - 1Kigr—L.

If » = 2, (6.9) and ({6.10) remain valid by (6.5) and (6.6). However
from the definition of 7., (6.9) and (6.10) give p|A;, and hence pt 4., contra-
dicting ‘the initial assumption that p|2,.

We have now proved that o' — a, is irreducible over K,_,. One proves
{b) in exactly the same way that {6 9) and (6.10) were dednced from (6 43,
(One nses the irredueibility of a™ —a, over K, ,.)

This completes the proof by induction of the validity of P, for L < » < n.

7. An upper estimate for 4 (K). The argument of I Ifooley TG (Section b)

dealt with the Dedelkind zeta function of the field QO 1/ l/a To enable

Ic 5) by,
the argument of that section to carry over to X = Q( ]/L l/mj, . V(Ln):
where k = (I, ..., 1>, it suffices to verily that ' :
(7.1) |4 (K)| < EANE)
for some positive congtant 4. This is a consequenee of Lemma 7.3 below.

Levua 7.1, Let F be o number field and let o = a, a non-zere mbmomi
integer. Then if o*—a is irreducible over ¥, we have

{1.2)  A(F(a)) divides (4 (F)) (o)1

icm
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Proof. Let F denote the ring of integers of F. Then the tower formula
for diseriminant ideals (see Cassels and Fréhlich [27], Proposition 7(ii),
. 17) gives -

(7.3) b () = (0(F)*N pyolb(F () /F)),

where b (F(a)) is an “absolute” diseriminant and d(F (a)/F) is a “relative”
diseriminant, Now

o(F[a)/F) = N paslg (@) F,

where g(z) = 2*—a. (See Oagsels and Frohlich [2], Proposition 6 (i),
p. 17.) Hence

b(F [a]/F) = .Z\TF(a)fF(kakﬂl)F == kk(NF(a)fF(C&))k—IF = kkark_IF

Algo Fq] it a finitely generated F sub-module of F( ) and hence b{F (a),’ )
divides d(F[a] /F), and hence divides k*a* F. (See Cassels and Frohlich (2],
Corollary 1, p. 12.) Hence N ng(b( (@) /F)) divides Nmo(k*a*'F), and
congequently divides (Ko 1FLZ, as acZ. _ '
Eqguation (7.3) now shows that b(F(a)) divides (b(F)F(k*a* " 91Z,

and hence (7.2) holds.
Z

i n__
Tovya 7.2. Let K = F(Vay,...,Va,) where F is o number fidd
condaining all k-th roots of unily, a1, ..., @, @ré Non-zero rational mtegers
and 1y, ..., 1, are divisors of k, o square ffree wnteger. Then

(7.4} AK) divides (A(F)FF( L

1"’1110’1 cee O

Proof. From Lemma 6.1 we recall that eertain divisors 1,..., 4,
of I, ..., l,, respectively were constructed with the property that
2

. in
K =F{Vay,..., l/?z;) and «%—a; 18 irreducible over

AL S S ‘
Kipg=F(WVay,..., Va,;) for 1<i<n.

Hence Lemma 7.1 may be applied with F, %k and « replaced by K 1y A
and a,;, respectively. Writing 4, = A(K;) we have

(7.5) A, divides 4%, (4e,)% 2 for 1<i<n.

T4 follows by induction on ¢ that
4, divides Agti(d, ...

(7.6) @) 52 for

Ay .. 1<i<n.
To prove Lemma 7.2 we consider (7.8) with 4 = n. We have
A(EY (= 4,) divides (A[(,F.’))"‘l"""‘n(k1 ME2]

N T
and (7.4) follows since Al for 1<<i<n and 4,...4, =
Lemma 6.1,

[KE: 7] by
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Lemya 7.3, Let ay, ..., &, be non-zere valional integers, 1y, ..., 1, be
divisers of &, a sguare-free infeger, and let

k. f_. I
K =0Q1,Va,,...,Va,).

Then
(1.7 A(K) divides (K, ... Ly ... a )Y where N(K) = [K:0].

Proof. From Lemma 7.2 we have

‘ ® k. N
(7.8) A(X) divides [4 (Q(]/':[))][K‘Q'("”](Zl A A

Now it is well-known (see Cassels and Fréhlich [2], Chapter 3, Section 1,

k_ .
Lemma 6, p. 88) that 4(@ (V1)) divides " when % is square-free. Ience

from (7.8)

k_ k_
A(E) divides pEQVINQOLQY
whiceh is (7.7). '

oyt )V,

8. A conditional asymptotic formula for ¥ (x). The assumption is
now made that the Riemann hypothesiz holds for each of the fields

: L n_..
K =Q(V1,Va,...,Va, where k =<l,...,I,> is square-free. Then
ineguality (7.1} allows us to deduce with Hooley [6], Section 5, pp. 214-218,
that =(z, K), the number of prime ideals p of K with ¥ (p) < @, satisfies
(8.1) (@, K) = lin+ O(N (K)o Plog k).

This expansion of x(s, K) is substituted into (3.7) to obtain

(8.2) Pla, b, ..,k =

1 5 127 vy 7
N (E) liz+ O(x log?'tw).

vy Iys B) 18 in turn substituted into (4.1) to give

Dutt) . ully )(

This expansion of Pz, I,

(8.3) P, k) = u(k) —lig4+O(w 1"zloﬁ'l’mz)))

% Tyl N (K)
(l},.l.,ln)sk }
= o{k)liz-+0 (" logzd" (%)),
where :
3.4 B = . N A # k)
(84) o(#) u(mgj - i
A Il
yvens b=k
Hence _
(8.6) - Plw, k) = e(®)liz+ O (a'+*)
for each

&> 0.
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We remark that a formula, similar o (8.5) but with a weaker error
term, may be proved without any Riemann hypothesis, using the prime
ideal thecrem (sce Landau [7], Satz 191, p. 110} instead of (8.1). Henece
we have

Tevma 8.1, Let & be square-free. Then the primes p = 1(modk)
such that for each prime g\l at loast one of ay, ..., &, is o g-th power residue
modp, have a noatural density eil) given by (8.4).

The expression for Pz, k) given by (8.5) iz now substituted in (3.4)
to give

(8.6) Niw, &) =lin 3 u(kje(k)+ 0 37 1u(k))
i Eeoll®
- limZ’p(k)e(k)+0(m

To show that the series Z‘,u (F)e

5/6+B) )

(k) converges absolutely we need the

following lower estiinate for N(XK).

Lemma. 8.2. Let ay, ..., a, be non-zero vational integers not 1 and
let h; be the largest Ppositive mtege? such that a; is o perfect b, -th power Alse

Tot b == {ly, ---s L) be square-free,
. ) . ‘
A K = OO, Vi, ooy Vi, N(E) = 101,
Then
1i L:{ (Tgs 1)
(8.7) NE) © ke(k)
Proof. From Lemma 6.1 we have
A
NE) o) b...b,

The eonstruction of 1, ..., 4, reveals the following chain of inegualities:

< (b, Ty _

Ay K (P, 1, )( 23 ba)s

Iy < (s 1) {(Tsy 1)y (T Ta
and so on. _

We prove by induction thatforl <r<n
ke
. Hw

(8.8)

L .
Loy Chageeeslyd
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Inequality (8.8) is clearly true when 7 = 1. Consequently let 1< r<n
and assume that {8.8) holds, Then

‘ , gy by) .
Aans Ar+1 ,,Q( ’ ) (o1 L) Kbsas Ba)y ooy (g 10D
I r+1 <11: > lr-i-l
eyl
7 ] by 1
wﬁ Ty, 1) (bpay <y Z)) ,Ul ( " ‘c')___
LETo L, oy T s

This eompletes the induction.
LEmMA 8.3. Let aq, ...
Z

L' n__
K = Q(I;/Is ]/a'lﬂ teey V“n): . -N(K)

= [E:Q].
Then if e(k) is defined (as in (8.4)) b
O sl . (n)
6() = (k) Y ... M ELE o), .
_ %1 &~ . NE)
Sl =
the series 3 u(k)c(k) is absolutely convergent.
w1
Proof. From (8.7) we have
1 an._q a(k) ar(x
(8.9) R Y e A AL
G & e®) T kel (k)
LUTIRE T
Now )
" (k) klogloghk :
Fo(h) < i for ench &> 0,

and hence

@ ()
“ ko (k)

converges by comparison with

°°l loglog i

et 0<e<zl,

foma3

Consequently 2 ulk

k=1

¢ (k) eonverges absolutely by (8.9).

s @y, be non-zero rational integers not 41 and lot

icm
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The finite sum 2 u(k)e(k) oceurring in (8.6) may now be replaced’

- by Z‘,u (%) e (%) with. an error that is estimated by
k=1
Levma 8.4, Let
ar (k)
8(z) = ) .

&~ kop(k)

Then
(8.10) S (@) < o~ (loga)™'.

Proof. (Kindly supplied by Mr. M. Croft.) By a Stieltjes inte-
gration ’

~ k ~ I '
(8.11)  S(a) = t‘zd( ] )):2 5 (k))d
( ) ( ) a;f a:«;t ('P(]f}) ( : ! r st ( )
‘Write
%
(8.12) Ey = — e (R).
m<k<t(p( )
Then _
1\ #A(1)
< i ——] = "
= Z ra ] p) Z ¥ (”Z 0
2 Bk =71 oIk
M Z)
= a* (% ™ (ml)
1
‘u,2 sy w3 Z

Z Z &' (m) < t(logl) Z @

Iﬁi mifl
by Wilson [12),

© Hence

(8.13) Z, < t{logt)® 1,

Hence from (8.11), (8.12) and (8.13) we have

o
8@y < [ 17 (logt)" '@t < &7 (loga)" ™.
@

-3 — Acta Arithmetica XXIX.2
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“From (8.6) and. (8.10) .we deduce that

@ dTE)
loga ]::;-E-' imp(_]c)

(8.14) N(z, £) =1iw2H(7ﬂ)0(k)+O( )0ty

. ]ﬂb - Qb .
= lis S“ﬂ k c()‘r)+()( Mog by ) O

a o _
mllwgy(k)c(i’f)-l—(?(m% (loglogz)® 1)
& f‘ @ Y]
= ke (k)4 O [— logloga)y )
T A) pE)o k) 4 (Ogam( gloga)

From (3.3) it remains to estimate M(x, &, &) from above, using (3.6}.
From (8.3) we have ‘

+ 0(2"*logw)

. ]‘
Plx, ¢) = e(g)liz + O (5P logx) < i
(@, q) = ¢(g) (@ log @) 22=1)

by (8.9).
Hence from (3.6), following Hooley [6], end of Secfion 6, we have
(recalling that & ==3loge and & = 2'log™w)

(8.15) M(w, &y, G ( AT ”-*logm)
2 q{g—1)
=gty ' .
— 1/21 . “,_)
O(IO,gmz_q)_io( 08¢ 1

43

@\ w2 Elogw T
- 0 Falfnd ol--* .
O(fllogm)+ ( log & ) (1g )

which isx the estimate required.
Fipally from (3.3), (8.14) and (8.15) we have

=3

i,

(816)  N{z) =

>~1 p{kYe(®)+ 0O (~--~T-v-(10010gﬁ") ”"1),
logte

loga L
5% =1

where ¢(%) is defined by (8.4) and has an inferpretation given by Lemuia 8.1.
The reader is reminded that (8.16) has heen derived on the assutption
that none of a,, .. an is il and T:hfut the Riemann hypothesiy holds for

each of the fleldb lfl 1/051, ..

free.

l/a,& where § = (l, ..., 5> is squarve-
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. o
9. Another formula for [F(Va,, .. l/an) Fl.

Levma 9.1, Let F be a nuwmber fce[(l containing oll T-th mots of unity,
Gy g -y Oy G NON-2000 elements of B, and 1,, ..., 1, are divisors of k. Then

11_ In,___ b Iy
(9.1) [F(Veay,...,Va,): F] =11...z,1‘/’ PITHD
=1 V=l

ﬂ;lk‘ul.__u;ﬂ"l'ﬂn—pi\- BeF

Proof. (9.1) is a consequence of the formula

B k__ 2 %
(9.9) [PiVay, ...,Va,): F] = PIRTEDI ¥

1n1,=1 1"R=1
3 Yn— i
all...anlﬁﬁ BeF

h In___ R o
For F(l/al, ety l'fan) = F(Vdh, . I/aﬁ”n ‘hnd by (9 2) with ay, ..., q,
replaced by o, ..., o we hwe
u__ by | "h :
PWVay, ..., V) :F] = D Z 1
ryesl =1

AL, o nkltn gk per

il 33

Ty —1
vlltﬂl avﬂfc/zn & el
Whlch gives (9.1).

To prove (9.2) we argue as follows.

Let F* and F* denote the multiplicative groups of non-zero ele-
ments of F and the kth powers of the elements of F* respectively. Following
Hasse [5], pp. 222-223, we let {a, ..., a,, *} denote the multiplicative
group. generated by o, ..., q, and F**. Then the reader is referred to

B
Hagse for a proof of the fact that the (ﬂlms group of ¥ l/a], oy Vay)
over F' ix isomorphic to {a, ..., a,, ¢ }/F (See Hasre [5], Satz 162,
Pp. 223.) In particular
. x

(0.3) CF (Vg s V) F] = e, ooy any #°HF™.

However, it is not diffieult to prove that if 3 is the abelian group formed
by all n-tuples of residue clasges mod %, while T' is the subgroup of 8 formed
by those n-tuples (»y, ..., »,) of residues mod % which satisfy

agl_'_a;’mn=ﬁk, Bek,
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Now

It I
18] =k and [T} = }.. 31,

==l w”md

then §/1' is isomorphic to {ay, ..., a,, ¥*HF™.

(9.4)
d‘l'l..‘u:,ﬂmﬂ"",ﬂeﬂ‘
and hence (9.2) follows from (9.3) and (9.4).

. k..
A “transcendental” proof in the case when I = Q (V1)
construched from Lemma 1, p. 162, of Schinzel [11].

may be

10. Expressing ¢(k) in terms of the multiplicative finction ¢’ (%), It iy
ke
convenient to state some rvesults on Q(l/.-)

LeMMA 10.1. Let k be a square-free posnvma wteger and let & be ¢ non-
zere rotional integer. Them

V4= ﬁk,ﬂeQ(]/i_)¢- k is odd, a = b

heZ, or

beZ, I/beQ(ll;i),

k is even, a = bM*,
(it} f & 4s even, ‘

: k
o = '31’6/2, ﬁEQ(l/—l‘)«»a == P beZ,
i) VaeQ(V D) wn(a)b ond »(a) = 1(modd).

Proof For (i) and (iii) see Schinzel {11] Lemmas 3 and 4, p. 162.

To prove (il) assume that ¢ = 4% feQ( 1/1 Then o = g% and. by (i)
=", beZ. Heneo b = ¢, ceZ, as k/2 is odd. Then a* = (¢?) and
@ = (:|:¢3)m as required.
From (9.1) and the definition of ¢(k) given in (8.4) we have

b 2 - pl,)
(10.1) o(f) = L2272 1 () gy
p k) o Z’...ln (1’. 3 by )
(I]_, pln>=}¢
where
h “In,
(10.2) &y, ..., Zn; B == Z 2 1.

Pyl o'y =]
k.
a'ilk" o, u;',flj"j g, Bed(¥'1)

We now define @'(I, ..., 1,; %) and ¢’ (k) similaxly :

. ! 11 M
(10.3) Pl bsk) = 3.3 1
=1 =l '

a{iy i, ..ns:g’bkl T, bezt

icn
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and
w(F) MW epll)
(10.4)  ¢(k) = W “lT—-I—”— Ly, sl F).
1% ET 1w

(11,...,ln)=k

Then from Lemma 10.1(i) we have immediately the following

LeMMA 10.2. Let I be an odd square-free integer. Then

o(k) =o' (k).

{(For even L the relation between o{%) and ¢’ (%) is mueh more complicated.)
We will later need the fact that ¢’ (%) iz multlphca.twe This is a conge-
quence of the following two lemmas:

Lemma 10.3. Let I =1y, ..., Lo, m = (m,,
Then

ceny My and (L, M) =1,

a(Tmy, . Ly Tm) = d' (L, .., 1 DA (my, ...
LEMMA 10.4. Let [ satisfy
Fhmy,y oy bymys tm) = f(ly, ..., by l).f_("”’l: --

whenever 1 = Iy, ..., vy My and (I,m) =1, Then the
function g defined by

i s My W),

vy My § )

L, m = {my,

gy = o Dy s las )
hlk Inik
.. In)—i'c

is multiplicative.

Proof of Lemma 10.3. Let & ...
voo aln®ima) — gm e Z. Then

anitn — B, beZ and )

I
Now the residues im,—+ plymodl,m; are in 1-1 correspondence with
the ordered pairs (4;, u;) of residues modl; and m; respectively. Conse-
quently it remains to show that every (»,...,7,) which contributes
to &' (Lmy, ..., Lm,; lm) arises in the above way. Accordingly we assume

that
(10.5) gty graltnlyma)l — @im o qeZ,
and define %—tuples (Ayeeey Ay) and (gy, ..., p,) of regidues by the con-
gruences : ‘
l,;mi+yi11;_£ 'J»"'(mod.l.,:mi), 1-<., 'f:é__ﬂu
From (10.5) we deduce tha’q _
. T .
“’1”"1"'"1’1)'{;,,__1 (An""n""”nln)m = ( dl)hﬂ.

1 vue iy,
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and hence
(10.6) (@i, gralty™ — (@'Y, A eZ.

It follows from (10.6) and (I, m) =1 that &' = f7, f<Z. Hence from
(10.6)
a’}](ml) . a;‘:z(mﬂ) = Cfl,

where [ is an mth root of unity, necessarily -+ 1. Hence
G | Al (L fY

and (A, ...y 4,) contributes to d'(3, ..., 1,; 1); similaxly for (s, ..., @)

This completes the proof of Lemma 10.3.
Proof of Lemma 10.4. Let (I, m) = 1. Then

g(lm) = Z Z.f 18 273 m )

Teplim Tepllim
hpyeonkygy=Im

We now write k; = I;m; where L]l and . Then
s By =y, L
Hence

gitm) = 3. 30 Moo D fllum, .

213 10U mylm Ty |10
one n) U St il y=mm

=2 y Zf (s~ s Las (M, oy 3 m) = g (L) g (m).
Ik 1._,;[1 ?n.ﬁ’m. P T8 .
Appeanlpd=l My,en My d=1m '

=L and {m, ..., m> = m,

ot

Ly, ; T

Y

- We now proceed to express ¢{k) in terms of ¢'(#) when k is an even
square-free -integer. ’

Loyya 10.5, Let | = (Zl, by and 2 = (Mg, ..., My where T ds
odd and square-free. Also lat k == 9Z and - R

iy my,
(107) D(’ﬁhy eey My 7(‘ Z Z o
py=1 Pt
ﬂi(“lt""’?’.l). . "?L("”m”)mﬁz,,ecg)(':r/' 5
Then :

(08} & (T, oy Bymys ) = & by ooy By Rf2) D, oy g5 ),

Proof. The argument is quite similar to that of Lemma 10 3 ulltll
we reach (10.6). We must now exhibit both paxts of the “onto” a gumom
(1) Asgume that

(@han) m;n(mﬂ))z = ( d:r)k;ﬁ?

d"eg(ﬁ).
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Then by Lemma 10.1 (i) we may assunte that 4" eZ; and the rest of the |

argument is the same as before, with (4,, ..., ,) contributing to d'(l, ...
* lﬂ.; 7{:/2)'
(ii) Assume that
B
(a3kaimD) |, g2mbma s — (g3 g e (V).
Then from Lemma 101 (iil) we have x(a?) =

1(mod4) and ={a")}|k
where a = a2/™) | gllmiie, Byg ;w( MY = x(a) an

d henee by Lemma 10.1

(i) again, we have ¢ = f feQ( 1/1 Hence (g, ..., u,) contributes to
Dy ooy Moy 3 T}

This completes the proof of Lemma 10.5.

The next result is proved in & fashion similar to the proof of Lemma
10.4. :

LemmA 10.6. Let & be an even square-free integer and let

(10.9) " (k) = —2 Zﬁ%'—w@jﬂmu ...,.mn; &)

Wy e T,
w2 Ny |2 L n

{Higyee i d=2
where D{my, ..., m,; k) 18 defined (as in {10.7)) by

iy,

D{my, ..., m,5 k) = 2 2 1.

p=1 =1

;(.ul,'ml) 2(#,&!”1,1)_,3‘ .EEQ(]/I)
Then with ¢(k) defined as in (10 1), we have
e(k) = c’(ka)c”(k)

The next result will be needed when o (k) is expanded further. Tt
will algo prove useful when the vanishing of x(") =1-¢(2) iy con-
sidered. later,

Temwa 10.7, Let I be a field and let p be o prime. For 1< iy < ...

Ly s let

n D
' . - ™
(10.10) Tligy oeeydy) = 1 E} 1.
= 'J
av,&] azﬁ'mlﬂ bel
“1 3'
Also let
(10.11) o= 3 i)y 6 =1

’ A§i1<...<‘ij{;4L
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Then if ©*(4y, ..., %) ond of ove defined similarly, but with none of iy e %
divisible by p, we have

k3

(10.12) D-1p o = Z(“ (p—1)"7dj.

i= f=0

Proof. The following identity holds:

Tligy ey i) =1 3T Pli)+ ¥ )+ e F iy ey ).

Iisd lgd <Jpd

=]

Hence

(10.13) oy = 2 HCTE "':j)

1€,i1<...<'_1'j£n

]
= X oy N A CARr

1)<, <ij<n r=1 lsi1<...<ij,-<n IS <...<dpd
- " X
(143 3 o) 21
1T 1J<n
FEEN l411<: <I,,.€n 1<H <. '<j1-€:f

i =Il, ,zj =T,
But the inner $um on the right of (10.13) is the number of subseﬁs of a
given set of » elements, each subsef containing j elements and containing
2 given seb of # elements. This number is (J ) Hence

w030 o= (1 3620 = ()« 3620 = S

= )
= Yot Y (—yprt (;?_r) = Y(—1r-1
. P
as asserted.

LEnwA 10.8. Let k be an oven square-free mteqew and iet ¢" (k) be de-
fined as in (10.9). Then

f
(10.15) ¢''(k) = ¢'(2) — 5:5,;‘2("—1)" 2 1,
_ =1 1R <,. . lypsn
x(a,;l...aij)al mod 4)
"('z‘il"'a‘j)lk
u(a,,;l..,aij]qﬁl

icm
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Prooi. '
y) i
oy =1- 3. Z” ) ) Dl i
oy [2 my, |2 m”‘ -‘:‘-1:{ Ep=1 . i o
’ C&? (Mllml)."agn(f‘nfwln)=52 :r‘
% ‘
ﬁegm)
n : . i
1 Y !
=1egm Dy Y Z 2 1
T = I <o .<ipgn i vig=1

.L.;i...aij1=ﬁ2, BT

1 ; '

—l-E N,
i=0 1stiy <. o<ipn ;
: b
a.,-l...aijaﬁz,ﬁcg(\/l) ) . ‘
by Lemms 10.7. . . ,w
Similarly ' 1
1 % ‘
(10.16) ¢'(2) = 1—5W2( —1y 1. ;
g=al 1£i1<...<i3-£ﬂ,
a,:l...a_gg_=b2, be '.
Hence

1 v, '
() =@ =g D=1 Y
j=1 Ly <...<ipn
g -ty =B

k.. .
BT, 47 5

which reduces to (10.15) by Lemma 10.1 (iii). _
From Lemms 10,6 and the multiplicativity of ¢ (%) we deduce im-
mediately from Lemins 10.8 the formmula for ¢(k), & even: ‘

Lmmyma 10.9. Let & be an even square-free integer, Then

1 -7
(1017)  o(k) = o (k) ——a—a 70/2)Z(m Z 1.
“ i=1 1 <, <dgsn
"("ir --“-ij)El (mod4)
u(al-l. . "‘ij)”"
g, a1

LeMmA 10.10. The series 3, u(k)e' (k) is absolutely convergent.
k=1 . . .
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Proof. First let & be an even squave-free integer. Then by (10.17)
we have

o' (k) = o(k) + O(o(%/2))
O(dn(ki) ,_O( ar{k[2) ) by .(8.9);
)

Tog (1 Ty (]2)
~old a* (%
gy ]
This relation holds also when & iy odd as &' (%) == ¢(k) then holds.

0 ;r
Hencs Z‘ p#{k)e' (k) is absolutely eonvergent Iy comnparison with kzﬂi o7 (;}))

11. An infinite product for 2 #(kjo{k). The lemma below follows

- k=1
from the multiplicativity of ¢'(k) and the absolufie convergence of
3 w(k)e'(h
k=1 ,
Ly 11.1. For each prime p let
{111y #(p) = 1—0'(p) = 1~o(p).
Then ' ‘
(11.2) - Y umew) =[x
k=1 EY)
Levwma 11.2.
. . i
@) K2 =5 D Y (-
. ey =0 e, =0

& £ LI
call...a?fi=b RV A

Proof. We have g(2) = 1—¢'(2). Hence from (10.18) | .;;

1L !
8 = M=y M1 '
- i Loty <ty

ﬂilu .a.tjmw., beld
and thiy is equivalent to (11.3).
Limyya 11.3. With y(p) defined by (11.1) we hcwe

(L1.4) 2,4 (k)o(%) = nx ZZ’ (— 1) (| al)

fem=1 P - syu=( &0

a=u(af1.. .a;‘ﬂ)ul(modﬂ)

icm
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where
(11.5) fllal) = u(lal [ ]
: 2l
Proof. From Lemmas 10.2, 10.9 :m(l 11.1 we have
=]
Z o () e ()

mi’w‘ i J—w;:, y i D Sﬂ(k)b"(;)

o= Igh <. <L k=1 \
: s Hay . i )-=1(1u0d4) 2alk
a;él

n .
\! i . ' 14
~][x w2 D uland(ay ) al@e®)
=l Lgiy < <hEn Tl
w=u(mb-l...aij)sl(mnd4J (k:2a)=1
a#l

o [ [ (2”x(z)+j(_~—1)f D))

=3 =l 1g{1<...<1‘jgn
a=x(a.;] o .aij)ﬁl (mod 4)
asl

= [ ] rie Z Z ~ 1744 (lal)

=l syl sy =0

(gL o)=L (mnod4)

by Lemma 11.2,
The product |]x(p) it positive. For the absolute convergence of
P2 - .
Se{p) implies that []x(p) vanishes if and only if a factor x(p) vanishes,
b P ’ . ; ! :
p = 2. However as ¢(p) is the natural density of the primes ¢ =1(modyp)

such that at least one of @y, ...,a, I8 & pth power residue modg (see
Lemms 81) it follows that

(11.6) 0<e(p) S —=
and hence

L :
——> 0 if > 2.
zp)=1 p— T »

Oonsequenﬂy by (11.4) the vamshlng of Z ,u(k)c is equiva,lent :

to the vanishing of the finite sum occurring in (11 4) The reader may
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be amused to verify that this sum vanishes (as it must by Section 2)
if C, is false. If G, holds, some simplification of thg finite sum is possible.
It is convenient to state
Tmsovia 11.4. Let S(ay, ..., a,) be the sel of n-tuples (&, ...
or 1, satisfying a3... a;p = b2, beZ. Then

y En)y & =0

) 1
(i) G, dmplies that x(2) = Eﬁl‘g(“u ceny Gl

(i5) €, implies that the number of solutions (&g, ...,8,), & =0 or 1
of w{af ... &) = x(efl...ain) is 18(ay, ..., &)l
e, =

(i) of €y, them w=(af...an) == x(ail... ajr} implies
S (mnod2).

Proof. (i) follows immediately from (11.3); the proofs of (ii) and (iii)
are straightforward and are left to the reader. _

Let G{a,, ..., ,) be the set of integers (square-free) of the form
g = x(a% ... ¢} = 1(mod4), & = 0 or 1. Then from Lemma 11.4 (iii), as-
suming C,, the expression ( —1)* depends on a only; and we may define
unambignously a function o{e) on &{a,, ..., a,) by the formula

+

. 1)2331- .

that

(11.7)

w(a) == (
It follows from Lemma 11.4(ii) that

1 1 -

(11.8) 2 )

&=0 £y =0

(—1)" f(lal)

a=»(a®l ... atn)=1(mod4}
1y

= [8lay, -y a,)] o(a)f(la]) = 2"x(2)
A6 yores Uy )

w(a)f(lal),

QEGHAY 4oy Bp)

by Lemma 11.4 (i). Henee from (11.4) and (11.8) we have
Lmmya 11.5. On the assumption that C, holds

D akey = [[x@ >

k=l G(G(ﬂl,.n, ﬁn)

where f(lal) is defined by (11.5) and where. [] x(p) > 0.
0

w(a)f(lal),

We remark that &, ..., a,) is cloged under the asgociative oper-
ation a @b = »(ab}; also ¢ @& = 1. Hence (se¢ Ledermann [10], Lemms 3,
. 47) G{ay,..., a,) i3 lsomorphic to a group C, x .
product of ¢ gyclic groups of order 2. We observe alse that
(11.9) 0(a®b) = wla)w(d)

for all @ and b in Gy, ..., a,).

.. X0y, the direct
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12. The non-vanishing of 3 w(a)f(|a|). For cach acG(ay, ..., a,)
aef¥{@y you0p01y,)
let

(12.1) Ji(a) = w(a)f(tal).

In this section we prove that ¥ h(a) is positive if C, holds. But

aeli(a,oay)
lirst we need some information about 4(a).

Leyma 12.1. For each aeGlay, ..., a,) we Kave.
(1) (e} < 1, and

(i) G, implies that hia) # —1.

Proof. (i) follows from the inequalities

h{a)] = ]Y 1f_(f()p) gnp:? <1.

@llal »llal

(12.2)

(See inequalities (11.8).)

To prove (ii) we assme that h(a) = —1 for some acF(ay, ..., a,).
Then. inequalities (12.2) imply that @ = —3 and ¢(3) = . Also as f(3) =
—1 we have o(—8) = L. Consequently from (11.7), —3 = z(a ... a.%)
where 2|Ye,. Hence a...a," = —30% beZ where 2|Ye; this, fogether
with ¢{3) = 4, implies that C, is false.

The reader may be amused to prove that if C, fails to hold, then

> I{a) vanishes (as it must by Section 2).
ey 400, )

Let ap, ..., q be a basis for the group G(e,, ..., a,). Then the elements

of G{ay,...,a,) are the numbers 4 = o' ®... @, ¢ =0 or 1, and

hence by (11.9) we have

1 1
wa) = Y. Yo(@) e (o)t flale ... @l

LLE NN 9 &yl gp=0

It remains to express |o2@ ... ® g% a8 » square-free integer
w8 Lollows, Write each |w;] as a product of square-free integers

Joug| == I’I”A‘%'
#

where A; runs through all t-tuples (n,, ..., %), o =0 or 1, with #; = 1,
and. where 4, ., is the produet (possibly empty) of those primes which
divide each |a;] where n; = 1. Then if (e, ..., ) % (0, ..., 0), the canon-
ical factorisation of |a] = |1 ® ... ®|g)|%is found by replacing each Afi

Ly 1 inthe product _
(ﬂﬁﬂlrl (IJ Aa‘)_ﬂz‘_ ‘
3
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We get a factorisation of the type @ = [] 4, where 1 runs over certain 2~
' A

. # 2
-tuples. Tt is important to notice that the term Ag, o ... 4d o5
is present in the above factorisation of |a|. For this factorisation we have

h(a) = (wla)f ... (o(@))t [ [ fd,) = 1; [ot4)

where g{d;) = w{a)f(d,,) if A= =(0,...,1,...,0) for gome ¢, and
-where g(d,) = f(4;) otherwise. We observe that Lemma 12.1 huplies
that '

(12.3) ‘ (Al <1

and that on the assumption that C, holds

(12.4) J] o4 = 1.
2

‘We can now prove .
Lmya 12.2. If G, holds then

@) > 0.
QLG yun s (B}
. Qur proof depends on the following result kindly supplied Dy John
Campbell. ' :
Leyaa 12.3. Let py be the polynomial
i
" o= [}t [] m)
) de=1 A5
where Z; vuns through oll t-tuples (v, ..., 1) with 9 =0 or 1 and n, =1,
A related polynomial g, s defined by replacing w;@ by 1 in oll monomials
Bt py other than the monomial 1, which are Jormed by multiplying out the ¢
terms in p;. We write

(12.8) G =L4my+ o e,

where my, ..., Wy_, are monomials (each of degree 21 in fact). Then if ol
variables x; take on veal volues satisfiing 1w =3 L, with the added restrie-
fion that an; = —1 for § =1, ..., 2" —1, we have q, > 0, B

Proof. From the construction of ¢, we observe that Py gy i every
By = 41,

(i) Let 1 be the minimum of 4y when all vaviables satisfy |u,| < 1.
Then 1z 0. For ¢, is a linear function of ench #;, and g; attaing its minimum
for at least one assighment of values #; = +1. But for such values of o,
we have '

u

: Z=qimpﬁ=n(1+nm%);>,0.

=] A
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(it} We complete the proof by showing that g = 0=>m; = —1 for
some J. ‘

We write for each ;, ¢, = f4 gu, where f and g are independent
of ;. Then if ¢, = 0 and —1 < 2, < 1, we must have gy = 0, otherwise ¢,
could be made to assume negative values, contrary to (i). We then replace
each m, by zero. Hence if q, = 0 we may assume that each =, is either
sero or -1, Uonﬂmluent_ly from (12.5) we have

0 =¢ =1+m ... +my,
where each i, is cither zero or 41, and hence Wy = — 1 for ali least one 3.

This completes the proot of Lemma 12.3. '

To prove Lemma 12.2 we observe that the earlier remarks of this
pection show that 2 h(a) = ¢(1), where the variables in g; satisfy

i . (r,_st(al, ,.f.:n)
@y = g(4;). Conditions (12.3) and (12.4) are then precisely those of Lemma,
12.3, which in twn gives ¢, > 0.

13. The theorems. On combining (8.16) with Temmas 11.5 and 12.2
we have the following theorem. '

TurorEM 13.1. Let ay, ..., a, be non-sero rational integers and assume

(i) that if ap ... a;p =" beZ, &, =0 or 1, then 2|3 s,

(i) that of alt... a4 = —3b°, beZ, &, =0 or 1, and if 213 &, then
d'(3), the notural density of the primes q = 1(mod3), atay ... a,, such
that ouch of ., ..., &, is & cubic non-residue mod g, must be positive,

E.ooh__
(1it} thet the Biemanm hypothesis holds for each of the fields Q(¥1, l/c—r;l, .
Z

n__.
ceey l/con), where & = (ly, ..., 1> 8 square-free. :

Also let ¢(p) be the natural density of the primes ¢ = 1(mod 2 gty ... @,
such that at least one of ay, ..., a, @8 @ p-th power residue modg, and let
x(p) =1-—e(p). Also let G(ay,...,a,) denole the set of distinet square-
Jreo mumbers of the form o = u(aft... ofn) = 1L(mod4), g =0 or 1, and
Jinally let '

wle) = (-1  and  f(lo]) = plla]) [] -.i(gzlm.
L L—a(p)
»lled

Thew the following  asymplotic formule holds for N, ooty (), hE
nawber of primes p o] w such that each of ay, ..., 6, is o primitive root modp =

AP C

n et . Y . ' & ot .1
R + O =——(logl
loga ]] x(2) z-—-fB @ (@l (logzm togloga) )
7 ey, ty)

4

as w-rca, whd the eocfficient of - 18 positive.

logw
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TEROREM 13.2. Let 4, ..., a, be relatively prime in pa'b‘ws and nol
4.1 or & perfect square. We also assume

A generalisation of Ariin's conjeclure 145

Iowever as none of a, ..., @, I8 a pth power, we have 7(¢) = 1 and bence

(i) that if wil...an = —8b°, beZ, 5, =0 or 1, and 2| s;, then none ¥ )mﬁ_l)ﬂ 1 LAy
of @yy.vey Gy 98 a.pev_fect oube, or _dpn(l’_“l) __'P“—l ——-3;) )

hypothesis holds for each of the fields O lﬁ l/wL 5
(11) that the Riemann hypothesi b R ) . Fally o stote

1/— a,) where & == {ly, .0, 1> 48 square ff’ea THROREM 13.4. Let @, and ay be non-zero rationad indegers not -1
Then the conclusions Of Theorem 13.1 remain valid. ) or perfect squares, and assume
Proof. Condition (i) of Theorem 13.1 is satbisfied. [‘31' uiular Eth? (D) that if ayey = —B8b°, beZ, then neither @y NOT By i3 a4 perfect cube,
ion that a;, ..., &, zhre relatively prime in pairs and not perfeet o o ] o ) _ E_ b
i;i::lepst&n equatio;:;a, .1 — 1 baZ, ¢, = 0or L, implies th'h’b G = o 1 (1) that the Riemann hypothesis holds Jor each of the fields Q(V1, Va,,
2
if & = 1. Hence an equ&tlon of the form, Vig) where T = {yy by @5 square-free. :
(—1)%%g = B2 Then the conclusions of Theovem 13.1 (with n = 2) remain valid,
q OIZ. There is a similar theorem when % = 3.
results, and consequently 2|).s; Both results d ; =
. c:ndmon (i) of Theorem 18.1 i also satistied as is cvidenced from L results depend on the case p = 3 of the following 1e%u1t
the case p = 3 of the following Tozmara 18.5. ( ) If n =2 and neither a; nor s 18 a p-th power, then
- . , . . a'(p) > 0. :
Limiwa 13.3. Suppose that ay, ..., a, are relatively prime in poirs () If n =3 and none of ay, @y, or a, is @ p-th power odd, then
and that none of a;, ..., a, is a p-th power, p an odd prime. Then Z(p) >0 11 oy 3 p-th p , P
1 e ' Lroof. We uge (13.2).
13.1) d'(p) = p—1 (1' E) o ' : (i) follows from
Proof. From {10.4) we have
| ) " Pp—1) & (p Z(M o = pr~2p43(1,2) > (p—1)2.
(132) @) =——— —olp) = ( =5 -1, =
P— PPl = (i) follows from
where .
oy = 2 T{dyy erey by 2 (1) d'(p) 2’ 1Y s
1) <. <hy=n : . i=0 .
and . mﬁB—BpH-(ﬁr_(l, 2)—7{1,2, 3))+p(z(2, 8)+7(L, 3))
iy ey = ) D)1 LB =300 2p = p(p—2)(p—-1).
u.:-l&xl 1‘,&“’1
af;fll. : a':;'l =0, beZt
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Conjugate algebraic numbers on circles
by
VEIKKO HNNOLA and C. J, SMyTH (Turka)

L. Iniroduction. In 1969, R. M. Robinson [4] posed the following
question :

(T) Which cireles |o—y| = R contain infinitely many sety of conju- .
gate algebraic integers?

In order to answer this question, we have asked, more generally:

(1I) Which algebraic numbers have all their conjugates lying on
& circle? . _

In this paper we give a complete answer to the second question
(Theorems 2 and 3). We also tind all circles ‘which contain nfinitely many
sety of conjugate algebraic numbers. This enables us to show, towards
angwering question (I), that the following holds: '

Fuporem 1. For every n > 1 there ave algebraic numbers y of degree n
such that there is a circle of centre y containing infinitely mony sets of conju-
gate algebraic integers.

There is & method which should, in principle, enable one, from The-
orem 3, to give a complete answer to (X}, but so far we have only worked
out the details when y is of degree at most 4.

revious partial answers to (I) and (IT) have been as follows: Robin-
son [4] answered (I), under the assumption that v 18 rational. Question (IT)
is very easy when the centre y is rational — seo [2], Theorem 3. In [1] the
fivet suthor answered both (I) and (II) when y is totally real, and in [2]
we did tho same for ¢ not totally real and of degree 3 or 4. '

When considering (I) and (I1), we can, because of the above results,
consider only circles with irrational centre. Hence, since any rational
or quadvatic £ lies, with its other conjugate (it any), on a circle of rational
sentre (of course they lie on many circles), such g can e excluded from
congideration in answering question (IT). Fuorther, these § are cleaxrly
of no interest to question (I). We can therefore confine our attention
to the set & of all algebraic numbers §, of degree at least 3 over the ra-
tionals @, whose conjugates (including ) all lie on a circle with irrational

~eentre y(f). It iz eany to see that »(f) must be a real algebraic number.

i



