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‘Qu‘un'ti‘tative versions of a result of Hecke
in the theory of uniform distribution mod 1
oy

1L Nmpgrrerrer* (Princeton, N.J.)

T \
L. Introduction. Let ¢ he an irrational number. Then the feguence
(na)y # == 0,1, .., is uniformly distributed mod1, and so we have

f F(tyt

for every Riemann-integrable funetion f on [0, 1], where {x} denotes
the fractional part of the real number #. Since the Abel snmmation method
Includes the sunimation method of arithmetic means, it follows that

linm 2‘ fl{na}) =

N»oo

(1) Lim {1 —7r) Z F({nai)e"

Forle 0 n=0

1
= [ fir)as.

I‘rmu this observation, Hecke [3] deduced casily that the power series

Z {nﬂ" "

n=0

generally, one can show by Tecke’s
o0

cannot be continued analytically across the unit cirele. More
method that fhe power series
2 y({na})}e” has the unit cirele as its natural boundary whenever g is

Rpe=i}
B H.u,ma,nn intograble function for which all but finitely many of the

integrals f g6 ™M dt, me Z, ave nonzero (seo (67, Ch, 1, Thecrem 2.4).

Ror 01.]101? m.sulm on noncontinuable power sevies of the above type, see
[67, Ch. 1, Bect. 2, and the survey artiele of Schwarz [17].

We remark that in the argwment leading to (1), the sequence (ne)
may, of eourse, be replaced Ty any sequence (#,), =0, 1, ..., of real
numbers that is uniformly distributed modl. Evidently, an analogous

* Thin rosearch wes initiated while the awthor was a participant of the 1973
Swiaer Regearch Tnstitute in Nurmher Theory ab the TTniversity of Michigan and was
also gupported by N8F Grant GP-36418X1.
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avgnment will hold for mulfidimensional sequences. Thus, one arrives
at the following statement. Let (@), » = 0,1, ..., be a sequence in R’
that is uniformly distributed modl; fhen, for every Riemann-integrable
function f on If = [0-, 17® wo have

(2) hm 1L— 2}" ({,)r J

Perl— 0 =0
where for ® = (2, ..., 6" e B® wo put {w} = ({a™}, ..., (2"},

Hlavwlka [4] was the first to establish resuli..s (‘om‘m‘mng the rate of
convergence in (2). Ag in the theory of uniform distribntion modl with
respoct to the summation method of arithmetie means, w suitable notion
of discrepancy plays a central role in these investigations.

Desrvrrion 1 (Hlawka [4]). Let w = (#,), n-= 0, 1, ..., he a sequence
in R, Then, for 0 << ¥ < 1, the 4bel diserepancy D, (w) of w is defined to be

1
O I (O LT B
[}

D,(w) = sup | (1-7) 2 e ({2,
wheu, the ."-.111)]2 emum is extended over all subintervals J of [* of the form
= [0, tY) % ... x [0, #)), and where ¢, and A(J) stand for the character-
151410 function and for the ¢-dimensional Lebesgue measure of J, rexpectively.
The method of Hlawka depends on reducing questions (’onc(*ming
the rate of convergence in (2) or concerning the Abel discrepancy to corres
ponding questions in the quantitative theory of uniform. distribufion. me)dl
with respect to the summation method of arvithmetic means. However,
this involves a certain loss of precision. In the present paper, we shall
improve and complement several results of Hlawka by using o diffevent
{and more direct) method. The gist of our method is fo estimate the rate
of convergence in (2) in terms of the Abel discrepancy, and then to estimate
the Abel discrepancy directly by using an amnalogue of the Krdos—Turin-
K.oksma inequality. In the last section, we prove some resnlts on Irregnlari-
ties of distribution for the Abel discrepincy. It should be noted that the
prineipal results of this paper can be extended to other types of swumation
methods. The aunthor intends 6o treat this subject in detail on another
oceasion.

2. Integration errors. We show first how to wstimate the vate of
convergence in (2) in terms of the Abel diserepancy of the sequence in-
volved. Let w = (x,), » = 0,1, ..., be an arbitrary sequence in R®. Then,
for a given Riemann-integrable function f on I* and for 0y << 1, we
introduce the ‘“integration error”

8,f5 @) = | (1—7) g’f({mn})?" , AW L @

n={

1 1
= [ [,
0 0
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Our first esbimate iy an unalogue of the so-called Koksma-Hlawks ine-
quality (see [6], Uh. 2, Theorem 5.5) and will be valid for s any function
[ which is of bounded variation on 7* in the sense of Hardy and Krause.
For the definition of this coneept of variation, seo [67, (th. 2 2, Definition 5.2.
Tor fechnical reasons, we have to introduce one more clags of dis-
swepaneies, which may be cnlled truneuted Abel diserepancies.
_I)Jn:,.u‘lsz‘m.N 2. Let © = (x,), n =0,1,..., be a Requence
Then, for @ =721 and for a posiive integer N, we set
N1
T
e o) — A00) 1,
Qe f)
where the supremum is extended over the same class of subintervals J of
L% an in Definition 1,
It 1w ey 1o see Shat D, y(w) tends to D, (w) as N->co. In tact, the
following morve precise statement ean be shown.
Twmwa 1. For any sequence w in R, we hawe
iﬁr(m) =B, y(w)
Jor all O < v<2 1 and all N
Proot. Without Ioss of w'nuemlﬂ.v, wemay suppose that o is a sequence
in I% = [0, 1) Por (89, ..., 1% ¢ I%, we detine :

in RS

Dy yim) + sap

J 1—r
J

N

E

43

([l( (l) . t(s)) s (l e 'i") 2 (:J(w,l) R '!;(l] s t(s),
n=0 ’
1 N1
RGN L :-'L':jﬁ\f*Z e{o,) " — 1 @,
w0

where of == [0, 1)
(3) (o) Dy ()]

osmp O™ LB~ sup
GO CHPYS _ @i, 2eheae

AT (YA L BN S L1
@, @y e :

. % [0, ). Then,

lga(t™, ooy 1)

Fov fixed (1, ., 89 ) patting again o = [0, 1) x ... %[0, ¥, we
obtain
(D oy ) gy (807, )
%y 1 ; Nl
BT S
=l Yo @i — = 3 g (@]
M) fi=0
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But
(=] 00 9’._Zv'
0= Y € (%) 1" < Z # =
néj\f n= N Ly
and
Nt Ne-l
N N N
0 M o)t e Nt
1—Y " R P Lot
=i qreal)
so that

lg2 (1, ... (&)) g (10, L, ) g Y

Together with (3), we arrive at the desired. inequaliby.
In the following discussion, we use essentially the same notation as
in [6], Oh. 2, Sect. 5, and [18]. In particular, the difference opoerators

A, and A} and the summation symbols 3™ ave defined in
Jl,---,J‘p 91,-'-,fp 4, e

exactly the same way as in these references. By a partition P of I%, we m. m1
2 set of s finite sequences 715,’), 0Py g ) (5 =1,2, .., 8) with 0 = g« o)
L...<q =1 for §=1,2,...,5. The following basic lemuna can De
found in {6], Ch. 2, Lemma 5.2, and [18].

LeMMA 2. Let P be a partition of I¥, consisting of the s sequences
7§, o, ... t (= 1,2, ...,8), and let @ be o second partition of I*, con-
szstmg of the s sequences £, &0, . B (§ 1,2,
let f and g be two funclions on I*‘ .Then we have t}w identity

fp el Mg—1

“) 2 Eﬂé{l“" N4, ,qg(“?%); s 1)

f=0"  ig=0
g My, g
= 2( Z Ab o s 5’ 5"9, b, . 51:) {29 i
D=0 L..,8p 11—_~0

X A: mf 5(1) tery Egmr '5(13-{-11,_ RF] t(s)) .

On the vight-hand side, when p =0, the summation symbols referring io
iy eens by, a8 well s A, ,, are mzderstwd to disappear, ond simdlarly, when
P o=y then Ay . should be disregarded, the variables 191, . 1® disap-
pearing altog&ther
‘ ‘We note that if s = 1, then Lemma 2 veduces to the familinr formula
for surnmation by parts. The analogue of ﬂm Koksma—Hlawka ineqnality
has the expected form.

TigorEM 1. Lef o = (®,), n = 0,1, ..., be & sequence 'm R, and et

£ be a function that is of bounded variation V(f) on I° in the sense of Hardy

and Hrause. Then, for any 0 <+ < 1 we have
(5)° 8l @) < V(HDy(e).

vovy 8). Hurthermore,
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Proof. Without loss of generality, we mm,f suppose that o Is a sequence
in I° Let uy pub e, = (20, ..., 2 for n» 0. We shal fivst ostablish
a ‘““truncated” version of the anurﬂlt}, (8). For this purpose, wefix a
positive integer X,

By an admissible double partition of If, we shall mean an ordered paﬂr
(P, ) of partitions £ and @ of 7? h&‘tl%f},’lnq the following conditions.
Firgt of all, P eonsists of the s sequences

7’/9) 7”) "':7’:'5;1:,} (7 "":17:-)‘;"-’3)7
and ¢ consisty of the ¢ sequenses
gD e, ___,,_ggggj“ G=1,2, ... 8,

and these arve related lry

e B ) - j j
0 o= &{)j)‘m T 5(” {J) 5(1) < 7’]: «‘:-; e 7]&{3? == 55;1;+1 =1
fo;‘ J=21,%, .., 5 Moreover, for each j =1,2,...,s the sequence
9, ED whould at leash contain the numbers a:f,” Yoy B

Wlih such an adwissible double partition being chosen, we apply
Lemma 2 with the given functinn J and with the funciion g defined by

I 1
g(t“), . [,(“)) \ {0, t(]) 30, if("");

. x,) 1 — 10 4

1= 0
for (9, ..., 89y e I, where e(u®, 4¥; .5 u®, 49} denotes the characte-
Tistic i’.mlm;iun of @ 1My s L s [Wf, 19), Then the left-hand side of
(4) attains the following form:

my -1 Thg—1 .
_ Q 9 ~
) E)
(6) (\ . \ 414 19+ Ezqu) vl .’/(’75:1): sy ’7&‘:))
iy a:Q i
1 Nl g -1 Arg--1
- ‘3" v Al 1 1 ) 1 o
= YT > " \ \ fi& )11) sy 5‘(;2)-&1)!—'1,.‘.,3"(0: "7(1'1)5 w0y nga)iwn)
' e u m.u a,,wu
Myl Mgeal
W 1 -
- \ \ f elup“- 2 -0 2y, ,sm "755)-
iyt 'a”wl)

Now )
A0y 585 5 0 050) e elnf) s - o, ),
s0 b the fivst term on the right-hand side of {6) iy equal to

Aol mge=l 'm.swl

™ 3 i :
= I JF R
- Rl iyl g0

o

x (v'(ml N SIRERRRE TR A
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5 N —1, consider the inner sum in (7) over 4y, ..., 1,.
, &) for which

For fixed. », 0 <X n
There is a unique s-tuple (4, ...

. .
Wy € [7711 r 7751)\ VEERE

Trom the detinition of the admissible double partition (I, ¢) it follows
then thatb

o [ M Wii)—% 1)

p— ]
RLEN “‘(‘Egl{l?'“rg )
Therefore the expression in (7) is nuthing else but
T 71,

'L P

HE ~U

Altogether, we have shown that the left-hand side of (4) reduces 6o

N1 my—1 - Hg—1 ) * ‘
\ | N 7 N
(8) 1, \ fla ) — ,4:"}_/ Z f(££1]| SEIEEY) §£:?|--1)’-12,...,.~x7]£:) ’”]m

ﬂ.ﬂﬂ iyl Tg=4

Now consider the right-hand side of (4). It is tmportant {o nole that
g%, ..., 1) = 0 whenever at lenst one of the 7 is sero, and that g(1, ..., 1) .
= {. Therefore, the term on the right-hand side of () vorresponding to

P = 0, namely, :

ZISRYICA RN LV R PR T

is equal to zero. Furthermore, for
where all the variables 1@V,
hand side of (4) reduces fo

1 =5 p =8, only those terms arve leld
, 1 are replaced by 1. Tlence, the right-

s i) iy

u AL O 1 . .
(=07 D7 X Mgl a1, 1)

=1 L..aspig=0 z‘.p:u

“~a | 1 Vil "

oAy fED, ,a:gﬁ), 1y eeey 1.
Using the definition of the p-dimensional variation V@ on J* in the seuse
of Vituli (see [6], Ch. 2, Detinition 5.1), we obtain that the above expression
is bounded. in absolute value hy '

D, () Z‘ A\J* VO A, 1, ) o Dy () V()

N==1 L., 80

Thus we arrive at the inequality

1 N1 M-l mg-l

—7r XM - T

9 l 'V,;{.\..Jf( A\J > f(‘fg'?\u'- :éui) L. mf’ -'m
Rl 4y fy=0

< V() Dy ().

oy Doy ;115:;:\‘.V 'nuux(
o4

(ieantttative rersions of w resull of Hecke

8]
-3

We note that

, {1 y
Ay i) ) = (7 — ) ... (7 -2,

and so the detinition of an admissible double Partition implies that the sum
OVEr 4y, ...y by o0 the left of (9) i a Riemann sum for

1

[ [,
0

0

LAY g

The ofher termy in (9) are independent of the chosen admissible double
partition (£, @), By letting (1, ) run throngl » sequence of admissible
double partitions with

max max (p; — 9@ 0,
Lelyelg 0ot ny

we will therefore obtain the inequality -
1 y N1 1 1
q Y e .

) - }NQJ ey | ... J FUEO 0y g g
- fromei 0 i

= V{f1D, »(w).

This is the truncated version of (5). By letting N -0 in (10) and taking
into accound Lemma 1, we deduce (5) itself. We remark that the method.
yiﬂl(‘h even » sotewhat sharper inequality, in the same sense as in [67,
Ch. 2, Theorem B.5. i .

In the case ¢ =~ 1, one ean establish an estimate for 8,(f, o) that is
valid for all continuons functions £ on [0, 1], We first need an albernative
reprosentation for the truncated Abel diserepancy D, y(w)thatis analogous
to [8], Theorem 1, and [12], Lemma 2.4 ‘We note that the definition of
D, (o) also makes sense for a finite sequence of ¥ numbers; in this case,
wo slmply write ), o Tor the teuncated Abel discrepaney. '

KA A B, Lt gy by .00, iy be N opoinds én [0, 1), and let By 0 Loy
Sy e an arrangement nf these points dn -mmr]#('?'e’a%nq order,
20 that gy @y, oy ay e a permadation of 0,0, ..., N 1. Then, for any
2" Loaoe have

-
£
ol Ly oee i

where, ay wsval, an emply swm is meant to be zero, _
Proof. Por notational convendence, we write #y = = 0 and @, an = 1.
Moreover, let ¢ denote the cha 1.l't\(11‘1'~11,1(* funetion of the interval [0, ¢).
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Then,
1 N
— -
Dy y = max Rup T > e (m, )7 n—-—tJ
Fml,1s N g, <isimg, n‘_:o
T, <y
J 1 j . "
g1
1—7 1 .
=  max qup ~ 2,7 T )
I=0,1, .0 Ny, | <lg, Lo —
mag._1<:caj :
. F—1
\ ( 1—r N iy, 1o X7, ol
= max max||-——sm ST N PRt ety | ]
J— =1 :'L__,_,;w e nd a1
Jub 3, N TN'I’LMU gl )

Tay_ . <Tay

In the same way as in the proof of [8], Theorem 1, one shows that one
may drop the restriction @, , <@ in the first maximum. Therefore,

ay
1 J—-1
— -y _— 3
D o= max max|lw, ,———m % X it
#N : (. l—ﬁ”N ,',.N
. ) Fm0,8,.. N —0
J | ~
\7,a 1-r N7,
= max max||e - ——g > 1|, Oy N
Fmu0,L, ey Bl L—v s Ly ;-:-(;’

The last step is valid becaunse we only dropped the terms

1 - N—1
@ ._..__..:.?.... \1 ¥
e Y

A=l

|ma_1m0| and ,

both of which, are ZET0.
" We recall that the modulus of continuity of a continuous function

fon [0,17 is defined by
M (k) = sup |f(o)—f(y) for

€0, 1]
lw—plsh

bz 0.

The following is an analogue of an inequality of the author in [L07], Theorén
3, [11]. _

TumorEM 2. Let @ = (@), ® = 0,1, ..., be a sequence of real numbers,
and let f be a continuous function on [0, 1] with mofulus of continuity M.
Then, for any 0 < r<< 1 we have

5.(f, w) << M(D,(w).
Proof. Without loss of generaliby, we may assuine Ghab o is o sequenco
in [0, 1). Fix a positive Integer &, As in Lenuna 3, let Wy 5 By B8 ovs 3 By,
be an arrangement of the points a4y, ..., oy, in nun(lc,a(*.rcaming order, I'at

i1
L-r x P g o
§ =g 2, Tor  1=j< N, and g = 0.
Toe=id .
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Then, .
Nl 1 N-1 Ne1 &4y
L--7 X ' . 1—r
T 2 = [ fa = 3 e Y j oL
nralt 1] ' Fe=ip -.0 8
\~1 e
IR
T f("’ P B84
= =

witly g - &
saleulus. Tt follows fhat

w8 Tor O f oD N <L Dy the mean-valne theorem. of integral

Nl 1 N—1

Jrwan = 27N (g - g,

0 0=0

a2 - Lo-r

From (LL) we deduce that
|y, & =2 Dy pe(m)  for  Q=j < N—1,

and so (12) hnplies

Nl i N1
o | L XY PV I Y Y,
{(13) 1 -;—"7""':-...\'..4 Fla o™ w] f(t)cﬁi-! £ i ‘;,"']I{?”-M(Dr,.\‘(w))z Y == M(D,.,N(w)).

e ) F=0

Lotting N-»oo-in (13) und using Lemma 1 as well as the fact that M (h)
is a continuous function of h because of the uniform eontinuity of f on
[0, 1], wo arrive at the desired incquality,

3. Abel discrepancy and exponential sams. In the same way as in [6],
Uh. 2, Corollary 8.1, one deduces froin Theorem 1 that for any sequence
@ == (i), n o= 0,1, ..., in B and any integer kb 5% 0 the inequality

(14) (1 =) S prriihi gy

e

= L {h]D, ()

holds Tor 0 -2 ¢ 1o Gonversely, the Abel discrepancy can be estimated
in terms of the weightel exponentinl sums ocourring in (14).

Tarworsst 3. Lk o o (), mose O, 1, 0, De o Sequence of veal numbers.
Then, for amy O~ -1 and for oy positive nteger n,

e 6o
31 11 }Z TG |
ho m-1 -

Proot. The following theorem was established by the author and
Philipp ([14], Theevermn 1), Let ¥ bhe nondesreasing on. [0, 1] with
F{0) = 0 and L) -+ 1, let @ satisfy a Lipschitz condition on [0, 1]

¢ i)
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with constant I, and suppose GH(0) = 0 and (1) = 1. Then for any posi-
tive Integer m we have

i

4K 4 \" 1 1 ) 2 .
aup | F (D —G (1] < — b LR — O
sup ()6 (0] < n,;-;-;_-g(n 1) -G,

where F' and & denote the Hourier-Stieltjos transforms of F and 6, res-
pectively. We apply this result with

Ft) =1 —n 2@,({@3)1"”’ and () =4 for 0=t 1,
W)

where ¢ is the characteristic function of [0, ¢). We have (;’(h,) w0 For all

integers b = 0, a8 well as

1 T G
) = [ APy = (L) [ gzm'm(z(5(:,({:43.,,_})4-?'-).
[1] [ el

Using a well-known theorem on Stieltjes infegraly (see [1 b, pp. 120-121),
we, ¢an write
o 1 ' o
5 O Sreihl . N anif
FhY = (1—7) Z_Tnf 6“”””(1(%({{1{,,}) = (1 —7) ,}_J Amifivy yn
n=0 ] PRy
for oll integers #. This completos the proof of Theorem 3.
There iy also a wultidimensional analogue of Theovemn 3. Fiest we
need some notation. For a lattice point R = (KD, ..., B9 e Z%  define

§

A(h) = max W and  R(R) = [_ max ([, 1).
Gail

1 faly
Also, let (e, y> denote the standard inmer produet of &, ye R,
Trporem 4. Let 0 = (x,), n = 0,1, ..., be wequence in RE. Then,
Jor any 0 < r<1 and for any positive integer i e hawve

o
D,.(m) =, (_?s( (L) 31 1 \.1 LIRS ‘)

el id R

Oz cd (R e PPt 1
with a constant -, only depending on s.

Proof. The resulfi can be dedused from [14], Theorem 2, in the sanwe
way as Thearem 3 was deduced from [14], Theorsm 1. We note that we
have used a slightly modified definition of E(h), Dot that the [(f) from
[14] is ab least as large as the R(h) employed in the present paper.

By analyzing the proof of [14], Theorem 2, one conld, in fact, give
an explicit valne for the constant (/. However, due to the way i which
the inductive argument in [14] operaties, this value would be fairly large.

icm
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To arvive al an analogne of LeVeque's inequality (see [7]) forthe
Abel digerepancy, we first oxtablish an auxiliary resulf that improves
a theorem ol Illoté ([2], Theorem 1) in the case under consideration.
We tako this opportunity to point out that in the firgt displayed inequality
on p. 512 of [2] fhe constant ¢ *° has o be replaced by ¢4,

Lasama Ao Lol B8} be nondecreasing on [0, 1] awith F(0) =0 and
(1) = 1, and let the function G(1) on [0, 1] satisfy the Lipschits condition

(6 {t) — 6 ()| =0 I [y~ 1}

Sor all 02l dy T 1L Suppose also that G(0) =0 and (1) = 1. Then

o 11+ Pl G 7 o o R G {91 1 . ‘ - 21/3.
(155) 0'_2:’1”1_})‘_21[(.(m)...._;(.b))m.(. () -~ m)| < K EPae By—émp|

where

1 . 1
F(h e [ ™My and - G(h) = [ et ag ().
1] . ]

Prooi. We extend £ and & by setting F(f) = [¢]-+F({t}) and G(#)
= [#] 4G ({t}) Lov real ¢, where [£] denotes thé integral part of £. We note
thati F is nondecreasing on R and that G satisties a Lipschitz condition
on B with constant K. Wo put

1
4 = [ (B —a(n)a
and '

H() = Fy—-G{)— 4  for 1eR.
Then H is periodie on B with period 1. Let @,ye¢ R with H(z) = 0

1
and H(y) = 0; sael points exivt sinee [ H(t)dt = 0 and since H has at
0 .\
most courdnbly many discontinuition, Choose ¥, e [, 2+1] with H(y,)
== [T (), Thor £- o wo lave

Tty () = (F() - Fw)) — () -G (@) o K (t—w),

andl o

1
(L6) HE - H) K20 Tor  esilg-h «-jEH(m).

Similarty,

(A7) H(@) - H () K(—y)< 0 for g, ~+~»33~H(:v1)<t-€. Yy
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Because of (16) and (17), the intervals
1 1.
[-’JU: ® -+ N H(W):I and [?/1 + ":K“H(?IJ): ?/1]

‘can have at most one point in eommon. Therefore,

1 241 at ) i1
[B et = [ Boaz [ Bmas [ o
g © % m-i-%—ﬂ{m)
:c»}-%.,-H@:) in
= [ (H@)+Ke—Rfdt+ [ (H{p) FKy, - K dd
<2

Lo,
Yty Hiyy)

1, 1 1 .
e ; s """H 3 T e IB el 4 3_
s @)+ 5 (—E@) =5 BN0) e (— H ()
From the ineq{lality a*+ b3 2= §(a--0)® for nonnegative real numbers
a and B, we infex ‘
1
. 1
2

0

(H ()~ H (1))

It follows easily that (18) holds, in fact, for all @, y< B, and so

1
(19) H(w)-H()l < 12K [ B*()dr  for all @, yeR.
J .
By the same reasoning as in the proof of 2], Theorem 1, we obtain
1 (=)
' 1L 1 - ao

(20) f B (1)@t = '5;524%? VB (B) — G (b))

] el

(We have corrected a typographical error in that paper.) By combining
(18) and (20) and noting that the left-hand side of (15) is equal to
~-sup |H(z)—H(y)l, one completes the proof of the lemma.

a, el
TrmoRrEM 5. Let o = (2,), n = 0,1, ..., be a sequence of veal numbery.
Then, for any 0<r< 1 we have

_ 6 \1 1 Y ity 1Y
(21) . D.,,(U)) 5, (?l‘:mé- };é— (1. W'l') > ﬁ““ﬁhmﬂ'ﬁ' ) -
=1 Tyl

Proof. For F and & in Lemma 4, one chooses the same functions as
in the proof of Theoremn 3.

. 6
We remark that the constant —- in (21) 38 best possible, as one
'y

verifies by choosing for w the sequence (x,) with @, = 0 for # = 0,1,...

Quantitalive versions of o vesult of Feeld 333

4. Abel discrepancy of special sequences. Theorem 3 provides a very
effective means for establishing estimsates for the Abel discrepancy of
sequences of the form o = (na), » = 0,1, ..., with « hrational,

Tor a real number 1, lot [#]] denote the distance from t to the nearest
integer. Lot p bo o nondecreasing positive function defined at least for
all positive integers, We reeall that the irrational « is said to be of type < p
it g glgell = 1 holds for all positive integers ¢ {see [6], Ch. 2, Defi-
nition 3.3).

TrwoweM 6. Liet a be an drrational of type <<y, Then the Abel diserepancy

of the sequence o == (Ra), n == 0,1, ..., satisfies
. ) 1 <
(22) Do ()= (m I.I A L1~ ) (lng“‘m - (m) -+ Z—Li}b) ))ﬁ

=1
for all 0=z v <21 and for all positive integers m, where the constant only
depends on a. = '
Proof. According o Theorem 3, we first have 1o estimate surs
of the Lorm
b
Z At i

()

"Slh =

for positive integers h. Now
1

S‘fl = |1 “:HT e‘.’.’r\:ikﬂ? H

and for real @ woe have

[L- ™2 (L — )L dpsinre 2 (1 — )2 4 167 |2

By distingnishing between » > 2 and r =0 1, we obtain
+ ™ ke ik

| L~ e 2 ]
amdl so0
. 2
\ PR
Py 1]
Therelore, with an abselute constant ¢, we get
"
1 S
I) LRR7H ERSIT—— ,l. e \ _—
o) o g ) )
for wll & - ¢ <2 1 and for all positive integers #. From [6], Ch. 2, Txercise '
312, we know that
i3 - m
1 . Y w{h
\ ()(1t.>g’~’m~i-ep(m) +- \ _p_(*)_)
ot Fu Meex]) = h
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with the constant implied by the Liandau symbol only depending on e,
This completes the proof of the theorem.

Given an explicit funetion », one will, of course, establish the final
estimate for D, (o) by choosing m so as to minimize the expression. on the
right-hand side of (22). We mention briefly the important special case
where o iz of finite fype in the sense of Koksma [B], p. 28,

COROLLARY. Let o be an drrational of finite type . Then the Abel diser-
pancy of the sequence m = (na), =0, 1, ..., savisfies

Dyw) = O{(L—r)f"~7)

Jor every &> 0,

Proof. According to [6], Ch. 2, Lemma 3.1, the irrational « is of
finite typé 5 it and only if % is the infimum of all real numbers = for which
there exists a positive constant ¢ = e(t, ) such that o is of type < v,
~ where y(q) = o¢" ' Thus, given an &> 0, we can apply Theorem ¢ with
the function w(g) = ¢(n +e¢, a)g" '"*. Then, since % 3 1, we obtain

m

3\’ h”"““)

LES

Dy (o)< ("i—_‘i + (L —7) (l()gzm At

<0 (‘“T']‘-"" +(1-7) afn,”“l‘“‘)

with constants ¢, ¢ independent of r and m. Now choose m, == {{1 —#) "),
and we arrive ab the desired estimate.

On the basis of Theorem 4, one can also establish estimates for the
Abel diserepancy of sequences o in R of the form o = (na), n == 0, 1,
where a = (o, ..., &N e R® with 1,d",...,d® linearly independent
over the rationals. Fm such a, we mhroduub Gu notion, of Wpe as follows
(compare with [13], Definition 6.1).

DrrmvrrioN 3. Let a = (o, ..., a®)e B* with 1, o, o line-
arly independent over the rationals. Tor a rea) number , the s-tuple « is
said to be of finite fype » if 5 Is the infinm of 1l numbers o for which
there exists & positive eonstant ¢ = ¢(o, a) such thai

(23) BBk, oDl 0

holds for all lattice points he Z* with h = 0,

It follows easily from the Minkowski linear forms theovem that we
always have 02 1. For s == 1, the above concept reduocos, of course,
to Koksma’s notion of finite type. For certain ¢ the inequality (23) need
not hold for any finite ¢. Such an e could be called of infinite type, On
the other hand, explicit examples of s-tuples of finite type 5 = 1 are
known. Sehmidt [16] has shown that a = (o, ..., d®) iy of finite Type
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= L whenever the o, 14 8, wre real algebraic numbers for which

I
1, ¢, o e mm.rly 1n(lupcmdvnt over the rationals. Also, it follows
fmm H 1(»%111‘( of Baker [1] that a = (¢4, , oy 6%}, with distinet nonzero
rationals g, ooy ¢y I8 of finite fiype o = 1 :

TuBOREM 7. Let e R be of .ﬁ%'itw 'L-W?a,
of the sequence w == (na), w == 0,1,

¥ ) ((r}) o ((L - 5\.) ....a)

Prool, Tor o katbice |mmh he Z° with I -~ 0, we consider the weighted

exponontisl gnm
I ‘ Z (,-o'l'!l(h ME | ‘ }7 czm;z(h,ub?.n .
e

o=l el

== L. Then the Abel (Z?,snwepmqm
oy sadisfies

Jor every 5 0.

In the same wuy as in ihe proof of Theorem 6, one shows that

2
T T
3Ry a) | )
Therefore, Tor any 0«7« 1 and for any positive integer m we obtain:
from Theorent 4 that

Dyle) 7 €, (1 ) N Ry <, a)ii"'l).

a1,

0.y
Now It was showr in the proof of [18], Theorem 6.1, (see also [97) that
under the given condition on & we have

(24) P

l Iy

W hy a7 = O ()

Aor overy s 0. Wo conclude that

, . 1
Dy () ] ”:‘(m A 4')m)

with & constont ¢ independent of # and m. The proof is completed by
choosing e e [(Lopy i),

Theorem 7 ean be oxtended to m(hnle any aec R of finife type.
Thix {5 achieved Dy goneralizing the erucvial estinate (24). Tt follows,
in fuet, from |67, Ch. 2, Tixorcives 3,15 and 8.6, that for ae B* of finite
typoe 4 one has

D R Ch,y ) =

0T A (W) Tm

. Xor w =

D {m)

(.r'in“(’.' =1}t )

{na), m == 0,1,.,., this yields then the estimate

ree ()((I - 5-)1,’(8(1;“ 1).{.,1), E)

for evory & o
for every g > 0.

8 — Acta Ariihmotles XK VIILE
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We note that Hlawka [4] has shown the following result. Tet

= (a, ..., d®) with the o, 1< i<s, being mtegem of a fixed real
a;lgebreuc pumber ticld of degree s+ such that 1, o, ..., ™ are lincarly
independent over the rationals, and set o = (n _),' 0 1, ... Then,
for a function f that is of bounded variation V¥ (f) on I* in the sense of Tardy
and Krauge, we have

(25) 5,(fy ) << o(a, &) V{f) (L —w)ie)-e

for 0 < r < 1 and any 2> 0, where ¢(a, £) only depends on a winid 2. This

regult can be improved considerably. Numely, by combining Theorems

1 and 7, we gee that the exponent {1/s) & in (25) can be replaced by L-- e
Thig is an indication of the strength of our method.

5. Irregularities of distribution. In this section, we prove gome resulty
concerning lower bounds for D,(w) in the one-dimensional case. For a
gequence @ = {(#,), » =0, 1, ..., of veal numbers, Hiawka [4] has intro-
duced the [modified) Abel discrepancy

D} (w) = sup’ —7 Zr’J {x, )7 l

Hma 0o

for 0 < r << 1, where the supremum is now extended over sl subintervals
J of [0, 1) of the form J = [, {,}. By the wsual argument, one shows that

D, (w) < D} (w) < 2D,{w)
for any 0 <¢ 7 < 1 and any . On the other hand, by o result of Hlawka [4],
we always have
Doy =17,
Therefore, for any 0<% < 1 and any w, the inequality

’ ‘ T g
26 ) e
( ) :-_(m) E 0 :

holds. This lower bhound is best possible, as the following theorem shows.
TunoreM 8. For any 0<r-<1, there ewists « sequence w = (a,),
wo=0,1,..., of real numbers depending on ¥ such that

Do) = 0

2
Proof. For given r, 0<#< 1, consider the sequence w == (&),
n=40,1,..., given by

D pn bl
) wn = -———-—--._é.._._.‘.,.hgg__ fOr

-

f ==O‘,1,...

icm
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Tividently, this I8 un inereasing sequence contained in [0, 1) with lima, = 1.
00

Tor notational convenience, we set z_, == 0, Choose ¢ with 0 < t < 1; then

thers is o unique § 2 0 sueh that #y. < tss ;. With g denomng the
characteristic function-of [0,14), we get

i PR
(1) Erel(wn)r“ b} sz | {1 ~7) Zr“ 5!
o0 o ()
L= d i s max (| o — @], (L —a)).

Now for j.o 1, we have

e K - ”

? - ﬁ 1
- ’j_..h: o

|1 -4 .| = Pt 5

and thix holds as well for j = 0. Shmilarly, for 7 2 0 we get

T—gp | e «
I 9 mj| 5 €5y
g0 that
1 1—»
‘ (L—») ) a1 5

for 0 < <7 1. Since the Inequality is frivial for ¢ = 0, 1, we obtain D,(w)
% (L—-7)/2, and together with (26) the formula for D, (w) is established.
Thcs above theoran shows also, of uourse, that Hlawka’s lower bound
for D} (m) is Dest possible.
The estimate in the Corollary of Theorem 6 is hest possible in the
following sense. '
’l"n‘lumt‘lm 9. J}ot a be an irrational of findte type n. Then the Abel discre-
vy Botisfios

1, () s p(( )(1!1)) " s)

Jfor every &= 0.

Proof. Since the rosult: is trivial fO'E % w1, we agsume # > 1 in the
rot of the proof. lor given & ), choose o real number & with

&
0 - 6 < min{y—1L, 700>}
(7 n+1)’

and then determine y > 0 from the eqnation

Lty 1

Sl = g,

=0 7
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By a well-known characterization of irrationals of finite type % (sce [6],

Oh. 2, Definition 3.4), we have limg’~%?|gal| = 0, where g runs through
G0

the positive integers. In particular, there exist infinitely many positive

integers ¢ and corresponding integers p such that

P

a— =

q
Choose one such ¢, and set N == [¢"°] and r = 1— NV, By writing

< gw L—3| (.d“) .

o = -g R il 8] << L,
we gel for Lsga<< N, -

e =22 +6, with [0,]< ¢ @Y.
¢
Tt follows that mone of the numbers 0, {a}, {2a}, ..., {Na} lies in the
interval
J o= [, gt gy

Therefore, 7
D:(cu)?;l(J)~(1~r) E@({ﬂa})v“ 2= AMd)—(L—7) E Pz A () VL

} e w=NNI1
Tor sufficiently large g, we have. 1{J) = 1/2q. Moreover,

Pl AN =21 —7)7"7,
and so :
= g << QO] —gym Q=0 - 9 — )
Therefore,

D} (©) > 31— r)ilike -0t

for an infinite sequence of values of v tending to 1. The proof will be

complete once we show thal
==

iy T

By the substitution # =1/(1 —), the above limit relation iy equivalent to

FRE L ad
: 1y
Tim wtfte (1 _.__) e (),

i 00 1

N .
However, the latter limit relation follows from 1 — — < e™¥ and
. 1 .

=

Lim e g~ o g,
Urc0 ’ :
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